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Abstract
Seasonal and El Niño-Southern Oscillation (ENSO) warming result in similar ocean changes as predicted
with climate change. Climate-driven environmental cycles have strong impacts on microbiome diversity,
but impacts on microbiome function are poorly understood. We quanti�ed changes in microbial genomic
diversity and functioning over 11 years covering seasonal and ENSO cycles at a coastal site in the
southern California Current. We observed seasonal oscillations between large genome lineages during
cold, nutrient rich conditions in winter and spring versus small genome lineages, including
Prochlorococcus and Pelagibacter, in summer and fall. Parallel interannual changes separated
communities depending on ENSO condition. Biodiversity shifts translated into clear oscillations in
microbiome functional potential. Ocean warming induced an ecosystem with less iron but more
macronutrient stress genes, depressed organic carbon degradation potential and biomass, and elevated
carbon-to-nutrient biomass ratios. The consistent microbial response observed across time-scales
points towards large climate-driven changes in marine ecosystems and biogeochemical cycles.

Introduction
Empirical observations of microbial responses to marine warming are necessary to better understand
nonlinear, climate-driven biophysical interactions between the environment and plankton communities.
Previous work has demonstrated that warming events, including marine heatwaves, can have profound
effects on the biodiversity of microbial communities1–4. For example, a 2015-16 marine heatwave in the
Tasman Sea resulted in a shift in microbial communities to niche states that resembled locations over
1000 km equatorward5. However, these climate-driven impacts on microbial functional potential are
poorly quanti�ed. For example, only a limited number of studies have examined metagenomic functional
potential for periods longer than 5 years6–8. Moreover, differing hypotheses exist as to whether
taxonomic changes in microbial communities result in changing ecosystem processes9–13. Some

studies demonstrate widespread functional redundancy14,15, while others have observed global
variability in functional potential for traits including nutrient uptake16, predicted growth and
replication17,18, and carbon metabolism19. Thus, whether temperature-driven changes in marine
microbial communities may impact ecosystem functional potential remains an outstanding question.

El Niño-driven warming events result in many of the same environmental changes as predicted with
climate change. However, observations of El Niño’s impact on bacterioplankton communities are limited.
The 2015 El Niño event was one of the strongest on record in terms of the spatial extent of warming in
the Eastern North Paci�c20. In the California Current, phytoplankton communities shifted to increased
cyanobacteria cell abundances21 and zooplankton communities showed signi�cant changes in
composition22. In addition, common microbial taxa including SAR11, Synechococcus, and

Prochlorococcus shifted from cold to warm water ecotypes23,24. In terms of biogeochemical impact, the
2015 El Niño suppressed primary production25,26, biomass, and particulate organic matter
concentrations, and increased the carbon-to-nutrient ratios27. Given the signi�cant impacts on microbial
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community composition and marine biogeochemistry, the 2015 El Niño offers an opportunity to examine
the impact of warming temperatures on microbial metabolism as well as establish links between
microbial community composition, functional potential and ecosystem impacts.

Within the California Current Ecosystem, the Southern California Bight (SCB) is a critical transition zone
between subpolar and subtropical biomes. ENSO cycles affect the region directly through warming and
also indirectly through circulation changes. This region is in�uenced by the southward, cold, nutrient
poor, and low salinity California Current as well as the northward, warm, nutrient rich, and high salinity
California Undercurrent28. In addition, the SCB is strongly impacted by both point and non-point source
pollution, which can induce high levels of localized nutrient loading29. Past studies have found clear
seasonal cycles in environmental conditions and microbial taxonomic diversity both near- and
offshore27,30,31. Thus, it represents an excellent model system to test the impact of diverse
environmental changes on marine microbiomes.

Here, we combine environmental analyses and metagenomic sequencing from 2011-2022 to quantify
links between in situ warming, changing nutrient inputs, microbial biodiversity, and ecosystem functions.
In particular, we identify the major temporal modes of variation in microbial biodiversity. We hypothesize
clear impacts of seasonal and ENSO cycles (including the strong 2015 El Niño event). Thus, we predict
that El Niño-driven warming will result in increases of oligotrophic bacterioplankton taxa with a
concurrent increase in metabolic strategies associated with oligotrophic communities. We aim to
establish a genome-enabled understanding of the climate-driven feedbacks between environmental
change, coastal functioning, and biogeochemistry.

Results
To identify the drivers of seasonal and interannual succession of marine microbial communities, we
quanti�ed the environmental conditions using a combination of discrete water samples (nitrate,
phosphate, and particulate organic matter) and in situ sensors (temperature and chlorophyll). Samples
were taken at the MiCRO site located near-shore in the Southern California Bight. In addition, we
collected 267 metagenomes covering 11 years (2011–2021) (Supplementary Table 1). These samples
spanned all months as well as several stages of the ENSO cycle. A total of 3.47 Tbp were sequenced
across all samples.

We observed clear seasonal oscillations in temperature and nutrients (Fig. 1). As usual for this latitude
(33˚N), sea-surface temperature peaked between July and September. Nutrients mostly showed an
inverse oscillation with high concentrations during the winter and early spring when upwelling occurs32.
Coinciding with phytoplankton growth (re�ected in rising chlorophyll concentrations), there was a
nutrient decline between March and June resulting in low concentrations during the summer and fall.
However, nitrate and phosphate showed unique trends in the fall, whereby phosphate rose but nitrate
stayed at low levels leading to a shift in the dissolved nitrate:phosphate. The ENSO climate cycle also
had an imprint on the environmental conditions. Interannually, temperature was depressed during La
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Niña conditions from 2011 to 2013, high during the strong El Niño event in 2014–2015, a period of
intermediate conditions, and then another La Niña event in 2021. Nutrients generally inversely followed
interannual temperature trends with higher levels during La Niña and lower during El Niño conditions.
However, phosphate was elevated in 2017 and 2018 despite above average temperature. Thus, we
observed a clear correspondence between temperature and nutrients at both seasonal and interannual
time-scales but also variation in the relationship between temperature and speci�c nutrients.

Overall, the microbial community was dominated by a few lineages, and the top 50 families constituted 
~ 80% of all sequences (Fig. 2A). The most common putative heterotrophic lineages included
Pelagibacteraceae, Rhodobacteraceae, and Flavobacteraceae. The most common photosynthetic
families were found within cyanobacteria covering Synechococcus and Prochlorococcus as well as
small eukaryotes like Mamiellaceae (incl. Micromonas) and Bathycoccaceae (incl. Bathycoccus and
Ostreococcus).

These common taxa showed clear seasonal succession (Fig. 2B). In the colder nutrient replete months
(Dec to Feb), taxa including Cytophagaceae, Alteromonadaceae, Oceanospirillacea, and Rhodobiaceae
as well as the photosynthetic Bathycoccaceae and ammonia oxidizers Nitrosopumilaceae all peaked
(see Supplementary Data). In the period with large increases in biomass and falling nutrients (March to
May), Flavobacteraceae, Pseudomonadaceae and Rhodobacteraceae showed elevated frequency. During
the summer, several non-Proteobacteria families peaked as well as Synechococcaceae. In the fall,
Pelagibacteraceae was common together with the photosynthetic Prochlorococcaceae and
Mamiellaceae. The seasonal cycle in these taxa made a strong community imprint, and community
composition clustered by collection month (Fig. 2C). In general, taxa common under cold, nutrient
replete conditions have large genomes and vice-versa for taxa during warm, nutrient deplete conditions.
In support, we observed a clear oscillation in average genome size with large genomes during the spring
bloom period and the smallest at the end of the warm, oligotrophic period, when Pelagibacteracea and
Prochlorococcaceae were common (Extended Data Fig. 2). Hence, linked to the seasonal taxonomic
succession was an ecological succession between cells with larger vs. smaller genomes.

Functional gene content demonstrated cycles with near clock-like precision and maximal separation
between opposite seasons (Fig. 3). This was consistently seen across different functional classi�cation
schemes. Using a multi-table co-inertia analysis (MCOA) of the combined (four) functional classi�cation
schemes as well as taxonomic variation showed that the two primary principal components can explain
approximately half of the variance (Fig. 3C). Furthermore, the top principal components showed clear
annual oscillation (Extended Data Fig. 3). MCOA_PC1 (35% variance) peaked in the fall and thus was
slightly offset from the temperature oscillation. Hence, the maximum separation in community
composition happened between spring and fall communities. MCOA_PC2 (16%) peaked in the summer
and thus followed temperature. Visually, community functional potential clearly separated based on
sample month (Fig. 3B and 3C). A comparison across all functional gene pro�les reinforced these
�ndings (Fig. 3D and S6). Again, the temporal variation of each functional gene showed strong
seasonality. Here, the �rst principal component (32% variance) separated spring from late fall and the
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second principal component (11%) separated early summer from winter. Thus, the compositional
succession of key taxa coincided with repeated oscillations in microbiome functional genes and overall
potential.

Both taxonomic composition and functional potential showed an interannual succession tied to the
ENSO climate cycle. The combination of seasonal and interannual shifts captured on average 62% of the
total compositional variation (estimated using PERMANOVA, Extended Data Fig. 4). Interannual shifts in
temperature correlated with the ENSO cycle (Fig. 4A). During La Niña conditions (negative ONI index),
temperature was anomalously low. This was seen in 2011–2013 and then again in 2020–2021. Strong El
Niño conditions were present in 2014–2015 and to a lesser extent in 2016–2019. Most microbiome
variation was seasonal, but interannual shifts explained an additional 14% of overall frequency variation
among all the genes. Interannual variability primarily partitioned into two clusters separating La Niña and
El Niño conditions (Extended Data Fig. 5). In support, most genes peaked in frequency either during 2011
(year with the lowest temperature) or 2015 (year with the highest temperature) (Fig. 4B). Nearly half of
the interannual variation (46%) was tied to a combination of temperature and nutrient availability
(Fig. 4C). Thus, long-term changes in temperature and nutrients made key impacts on this ecosystem.
The long-term microbiome changes mimicked the observed seasonal changes. As such, genes most
frequent during cold, nutrient replete (La Niña) years had a seasonal peak during the winter months
(Fig. 4C). Genes more frequent during warm, nutrient depleted (El Niño) years peaked during the late
summer when similar conditions occurred. These functional gene shifts overlapped with biodiversity
shifts. Cells with small, streamlined genomes were enriched during El Niño conditions (Extended Data
Fig. 2). In contrast, the average genome size peaked during La Niña events including 2012 and 2020.
Furthermore, Prochlorococcacea, Synechococceae, and Pelagibacteraceae peaked in the summer and
fall but also in years with high temperature and low nutrients (Fig. 4C). In contrast, Flavobacteraceae,
Porticoccaceae, and Bathycoccaceae peaked in the spring and were common during colder, nutrient
replete conditions. Thus, the same environmental drivers control seasonal and inter-annual cycles of key
lineages and functional potential.

We next explored how the seasonal and long-term metagenomic successions affected speci�c
ecosystem and biogeochemical functions. A challenge is the presence of more than 10,000 unique
functional genes each with individual annotations. To address this methodological challenge, we trained
a ‘Natural Language Processing Model’ and found that annotations including the term ‘iron’ were more
common in the winter and spring. In contrast, annotations with the words ‘nitrate’, ‘urea’, and
‘phosphatase’ were more common in the summer and fall months. In past analyses of pelagic
communities16, we have detected a distinct biogeography of nutrient acquisition genes indicative of
various forms of resource stress in phytoplankton. Seeing this variation in annotation keywords led us to
test, if there were similar systematic shifts in biogeochemically important genes in this coastal
community dominated by putative heterotrophic bacteria.

First, we con�rmed that the frequency of iron acquisition genes were elevated in the winter and spring
and peaked in April (Fig. 5A). The maximum frequency of Fe stress genes matched periods with high
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macronutrient supply in part due to upwelling (Fig. 1). Second, nitrogen and phosphorus stress genes
increased in frequency following this period (Fig. 5A). Both gene groups peaked between July and
October, when macronutrient concentrations were at a minimum. A taxonomic analysis revealed that
these genes were mostly encoded by putative heterotrophs within Proteobacteria and Flavobacteria
(Extended Data Figs. 7 and 8). Thus, we observed a clear seasonal succession in putative heterotrophic
nutrient acquisition genes linked to the supply of macronutrients.

There was also a parallel change in carbon availability and processing (Fig. 5C). Carbon degradation
enzymes (e.g., glycoside hydrolases) were common and constituted 3.6% of all annotated sequences.
These genes peaked in frequency in the spring. This seasonal pattern matched the period with high
biomass represented by chlorophyll and particulate organic carbon (POC). Furthermore, chlorophyll and
POC declined in tandem with nutrient concentrations in the summer and reached a minimum in the fall.
This was followed by a similar decline in the frequency of carbon degradation enzymes.

In this ecosystem, plankton constitute a large fraction of the overall particulate organic matter21. Thus,
we hypothesized that the succession in key microbial biogeochemical functions would make an imprint
on the organic matter carbon-to-nutrient ratios, which are commonly high during N or P limitation33. In
support, we observed that both the carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P) ratios were
low in the winter and spring when POC was high, macronutrients were high, and N and P acquisition
genes were low in frequency (Fig. 5E). In contrast, we observed high C:N and C:P ratios in parallel to the
higher frequencies of N and P acquisition genes in the summer and fall. Thus, we detected a clear
parallel succession between key nutrient stress markers and the carbon-to-nutrient ratios in organic
matter.

As seen for the whole community function potential, we also detected a link between interannual shifts
in key functional genes and nutrient and carbon biogeochemistry. The frequency of Fe acquisition genes
were elevated during the 2011-13 La Niña years, dropped during the El Niño event in 2014 and 2015, and
reached a maximum during the next La Niña in 2021 (Fig. 5B). N acquisition genes were anti-correlated
to Fe genes (rspearman = -0.67) and peaked during the El Niño event. P acquisition genes generally
followed N genes but reached a maximum in 2018. Carbon degrading enzymes correlated positively with
concentration of chlorophyll and POC with maxima during La Niña and a minimum during El Niño events
(Fig. 5D). These patterns paralleled shifts in the C:N:P ratios (Fig. 5F). Here, all ratios were low during the
La Niña periods and mostly elevated between 2014 and 2019. However, C:N peaked in 2018, whereas
C:P and N:P peaked the next year. Hence, the biogeochemical dynamics at the interannual scale was
similar to the seasonal scale with colder months matching colder years and vice-versa. This gave rise to
a clear ENSO-driven cycle between La Niña years with high macronutrients, Fe stress, and organic
carbon processing genes, but low N and P stress genes. The opposite pattern was seen during the El
Niño event. Thus, the ENSO cycle led to clear microbiome shifts impacting the biogeochemical coupling
between ocean carbon and nutrient cycles.

Discussion
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Our results clearly support a strong link between marine microbiome compositional and functional
dynamics at both seasonal and interannual time-scales. One common model posits that while individual
taxa are sensitive to environmental change, genetic redundancy leads to resilience in overall microbiome
functions15. In contrast, common lineages including Prochlorococcus, Synechococcus, and Pelagibacter
are all subject to extensive gene gain and losses resulting in connected global phylogenetic and
functional biogeographies34,35. Furthermore, key lineages display extensive seasonal niche

differentiation6,24. A time-series from the Mediterranean Sea12 and now our MiCRO time-series
observations suggest parallel taxonomic and functional microbial biodiversity cycles. These
observations challenge the notion of functional redundancy in marine microbiomes and instead suggest
compositionally as well as functionally very dynamic ecosystems.

Our observations suggested a clear functional succession tied to ocean biogeochemical cycles. The
MiCRO site is located in the near-shore environment, where sediment suspension should lead to a high
iron �ux. Thus, it is unexpected to detect Fe stress under such near-shore conditions, but intermittent
iron stress has been seen further off-shore in the California Current ecosystem36–38. The local ocean
circulation is very dynamic with currents exceeding 0.1 m s− 1 39,40, so we are likely observing cells
adapted to conditions in the wider region. Spatially, iron stress in connection to elevated vertical nutrient
supply, whereas N and P stress are found in warm, highly strati�ed regions41,42. Even regions not
commonly regarded as iron-limited like the Iceland Basin can also experience seasonal Fe stress
following periods of high nutrient supply43. In contrast, macronutrient stress is generally controlled by
temperature and strati�cation and thus peaks in the summer or early fall44,45. Our observed seasonal
patterns in nutrient stress are consistent with these spatial and temporal dynamics in other systems.
ENSO-driven changes to the Equatorial Paci�c Ocean revealed a strong positive correlation between
temperature and Fe stress46 and thus the opposite of our observations. However, reduced Fe stress
during El Niño events is consistent with strati�cation and lower macronutrient �ux47. These observations
of nutrient limitation in other regions are derived from phytoplankton dynamics. However, cycles in
nutrient stress genes at MiCRO were primarily occurring in putative heterotrophic bacteria. We know less
about nutrient limitation in heterotrophic organisms. In another microbiome time-series from the
Mediterranean Sea, a spring peak in bacterial Fe stress gene frequencies were also observed12.

Furthermore, there are reports of Fe stress in heterotrophic organisms in HNLC regions48 and N and P
stress in warm, strati�ed regions49. In the California Current, Fe additions only stimulated bacterial
growth when added together with carbon substrates50. This suggests some level of regional bacterial
iron stress but perhaps not direct Liebig-style limitation. Thus, the microbiome time-series showed
functional shifts among mainly heterotrophic microorganisms but matched biogeochemical theory.

Our observations suggest a strong climate sensitivity of marine microbiome biodiversity and functions.
Past studies have observed seasonal oscillations in rRNA diversity in many ocean environments31,51,52.
Both the seasonal and ENSO climate cycles drive oscillations between cold, nutrient rich and warm,
nutrient deplete conditions53. Such environmental shifts broadly resemble conditions associated with
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anthropogenically-driven climate change. Speci�cally, observed tradeoffs between high biomass, Fe-
limited conditions and low biomass, N- and P-limited conditions (Fig. 5) are consistent with modeled
projections of climate-driven shifts between Fe- and N-limitation and associated impacts on eastern
equatorial Paci�c ecosystems54. Thus, the consistent microbial response observed across both
seasonal and interannual time-scales points towards large climate-driven changes in biodiversity,
ecosystem functions, and biogeochemistry. For our region, this means an ecosystem increasingly
dominated by cells with small genomes including Prochlorococcus and Pelagibacter, declining organic
carbon degradation and POC concentrations, less iron but more macronutrient stress, and cells with
elevated carbon-to-nutrient ratios. Such changes will likely have wide impacts on the broader ecosystem.
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Methods
Sample collection

Sample collection occurred at the MiCRO time series at Newport Pier in Newport Beach, California, USA
(33.608°N and 117.928°W) between September 2009 and 2021 at daily to monthly (weekly, on average)
temporal resolution. Sampling protocols have been previously described21,23,27. Four autoclaved bottles
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were rinsed with nearshore surface water before collection and immediate transport to the lab. A
summary of all metagenomic samples is listed in Supplementary Table 1.

A total of 267 DNA samples (replicated) were collected through �ltration of 1 L of seawater through a 2.7
μm GF/D and a 0.22 μm polyethersulfone Sterivex �lter (Millipore, Darmstadt, Germany) using sterilized
tubing and a Master�ex peristaltic pump (Cole-Parmer, Vernon Hills, IL). DNA was preserved with 1,620
μl of lysis buffer (23.4 mg/ml NaCl, 257 mg/ml Sucrose, 50 mM Tris-HCl, 20 mM EDTA) and stored at
-20°C before extraction.

Particulate organic matter (POM) was collected using two autoclaved bottles from Newport Pier.
Particulate organic carbon/ particulate organic nitrogen (POC/PON) and particulate organic phosphorus
(POP) were each collected by �ltering 300 ml of seawater through pre-combusted (500°C, 5 hours) 25
mm GF/F �lters (Whatman, MA). POC and PON were collected on the same �lter. POC/PON and POP
both had six replicates collected, a triplicate for each bottle. After �ltration, samples were placed on
petri-dishes and stored in a -20 °C freezer.

Nutrients were collected from the �ltrate of the particulate organic matter (POM) sampling. Sample
water initially went through a 25 mm GF/F with a nominal pore size of 0.7 µm (used for POM) and was
re-�ltered through a 0.2 μm syringe �lter into a prewashed 50 ml tube. Filtrate was then stored in a −20°C
freezer before the determination of nitrate concentration and phosphate as soluble reactive phosphorus
(SRP) concentration.

Shore-station measurements

Temperature and chlorophyll were recorded via the Southern California Coastal Observing Systems
(SCCOOS) automated shore station (Newport Pier) located at the sampling site. Sensors include a
Seabird SBE 16plus SeaCAT Conductivity, Temperature, and Pressure recorder and a WetLabs WetSTAR
sensor for chlorophyll. Measurements were taken at 4 min resolution, but we transformed the data into
daily averages to align with other environmental measurements. The El Niño-Southern Oscillation (ENSO)
was measured using the Ocean Nino Index v5 (ONI) from the National Weather Service, Climate
Prediction Center.

Nitrate measurements

From 2011 to 2018: Nitrate samples were thawed in a refrigerator overnight. 50 ml standards were
created from an arti�cial sea water and potassium nitrate solution (10 µM). Standards ranged from 0 µM
to 10µM concentration of potassium nitrate solution across 10 vials. 500 µl of ammonium chloride
solution (4.7 M) was added to each 50 ml sample and standard and mixed. A sample was poured into a
column of copperized cadmium �llings27,55 and 15 ml was used to �ush the system. 25 ml was then
collected from the column and 500 µl of sulfanilamide solution was added to the sample, mixed, and
allowed to react for 6 minutes. 500 µl of N-(1-Naphthyl)-ethylenediamine dihydrochloride solution was
then added to the tube, mixed, and allowed to react for 20 minutes. The sample was read on a
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spectrophotometer set at a wavelength of 543 nm55. From 2018 to 2019, samples were processed using
a QuickChem FIA 8500 autoanalyzer (Lachat Instruments, Loveland, Colorado, USA), with a detection
limit of 0.014 µmol. Beginning in 2019, samples were processed with spongy cadmium. Spongy
cadmium was created with a cadmium sulfate solution (10 g CdSO4 in 50 ml DI water). Zinc sticks are
added to the solution and allowed to sit for 8 hours. After sitting, the zinc sticks were washed with 6 N
HCl, along with several drops of 6 N HCl added to the CdSO4 solution and drained. Precipitated cadmium
was covered with 6 N HCl and stirred to break up the cadmium. The cadmium was drained and rinsed 10
times with DI water. The cadmium in this state was used for this protocol. 5 ml of sample was placed in
borosilicate glass tubes (acid-washed) with 1 ml of NH4Cl solution (0.7 M) added to each. 0.2 g of

spongy cadmium was added to each and then capped off, laying horizontally on a mechanical shaker
table (100 excursions/ minute) for 90 minutes. 5 ml of sample was pipetted out of the tube and placed in
a disposable culture tube. 250 µl of color reagent (mixture 5 g sulfanilamide, 0.5 g N-(1-Naphthyl)-
ethylenediamine dihydrochloride mixed in 50 ml phosphoric acid (8.51 M), diluted in 500 ml of nanopure
water) was added, vortexed, and allowed to react for 10 minutes. The sample was then read using a
spectrophotometer set at a wavelength of 540 nm. Samples were compared to a set of six standard
solutions containing arti�cial sea water and diluted 100 µM KNO3 (standard KNO3 concentration: 0 µM to

60 µM). Standards were treated the same as samples56.

Phosphate measurements

SRP concentrations were determined using the magnesium induced co-precipitation (MAGIC)
protocol57,58. SRP samples to be processed were moved to the refrigerator overnight to thaw. Once
thawed, 0.4 ml of 3M NaOH was added to each tube and shaken vigorously. After 5 minutes the samples
were placed into a centrifuge set at 1500 g for 20 minutes. Supernatant (P-free seawater) was poured
into a separate glass (needed for standards) from the sample tubes and allowed to dry for an hour. 6 ml
of 0.25 M HCl was added to all tubes and shaken to dissolve each pellet. 0.66 ml of Arsenate (2:2:1 parts
sodium metabisul�te (0.74 M), sodium thiosulfate (88.5 mM), sulfuric acid (3.5 N)) was added to each
tube and allowed to react for 15 minutes in the dark. 0.7 ml of mixed reagent (2:5:1:2 parts ammonium
molybdate tetrahydrate (24.3 mM), sulfuric acid (5 N), potassium antimonyl tartrate (4.1 mM), and
ascorbic acid (0.3 M)) was added to the tubes and allowed to react for 30 minutes in the dark. Samples
were then read on a spectrophotometer set to a wavelength of 885 nm, using a 0.125 M HCl solution as
black and rinsing agent. Ten standards were made using the P-free seawater collected from the samples
and mixed with 1 mM KH2PO4 creating different dilutions (2 nM to 1 µM KH2PO4). Standards were

treated the same as the samples once made. From 2018 to 2019 samples were sent out to be processed
on an auto-analyzer. These samples were also run in parallel with samples using the MAGIC protocol for
comparison.

Particulate organic matter

POC/N samples were processed according to Sharp (1974)59. Filters for POC/N were dried at 55 °C for
24 hr and then wrapped with tin discs (CE Elantech). The wrapped �lters were combusted in a FlashEA
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1112 (Thermo-Scienti�c) using the NC Soils setup. The oxidation reactor was set to 900 °C, the reduction
reactor was set to 680 °C, and the oven was set to 50 °C. Oxygen gas (UN 1072, Airgas) was injected at a
�ow rate of 250 ml/min, allowing sample combustion to occur at 1,800 °C. Helium gas (UN 1046, Airgas)
was used as the carrier gas with the carrier �ow rate set to 130 ml/min and the reference �ow rate set to
100 ml/min. The compounds serving as standards were acetanilide (71.1% C, 10.4% N) and atropine
(70.6% C, 4.8% N). The minimum detection limits for this analysis were 2.4 μg C and 3.0 μg N.

POP was analyzed using a modi�ed ash-hydrolysis protocol58. Samples were removed from the freezer
and placed in combusted scintillation vials; along with a set of K2HPO4 (1.0 mM-P) to be used as

standards. 2 ml of MgSO4 (0.017 M) was added to each vial, covered in tin foil, and placed in an 80 °C
oven overnight. The vials were moved to a 500 °C combustion oven for 2 hours. Once cooled 5 ml of HCl
(0.2 M) was added to each vial and put back into the 80 °C oven for 30 minutes. The solution in the vials
was transferred to a 15 ml centrifuge tube. Each vial was rinsed with 5 ml of DI water, which was
transferred to the respective centrifuge tube. 1 ml of mixed reagent [2:5:1:2 parts ammonium molybdate
tetrahydrate (24.3 mM), sulfuric acid (5 N), potassium antimonyl tartrate (4.1 mM), and ascorbic acid
(0.3 M)] was added to each centrifuge tube in 30 second intervals and moved to the dark. Tubes were
centrifuged for 2 minutes to concentrate any glass �bers or debris to the bottom of the tube. After 30
minutes samples were then analyzed using a spectrophotometer set to a wavelength of 885 nm, with a
HCl (0.1 M) solution as a blank and rinsing agent between samples.

Environmental data analysis

Environmental data was collected at higher sampling frequency compared to DNA. We included all data
points to reduce uncertainty for monthly and annual estimates of variation. We �tted a linear model to all
data points using 12 monthly and 12 annual (2011 - 2021) categorical factors. This was done in Matlab.

DNA extraction

To extract DNA, we use an adapted protocol60. Sterivex �lters were �rst incubated at 37°C for 30 minutes
with lysozyme (50 mg/ml �nal concentration). Next, Proteinase K (1 mg/ml) and 10% SDS buffer were
added and incubated at 55°C overnight. A solution of ice-cold isopropanol (100%) and sodium acetate
(245 mg/ml, pH 5.2) was used to precipitate the released DNA, which was then pelleted via centrifuge
and resuspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA) in a 37°C water bath for 30 min. DNA was
puri�ed using a genomic DNA Clean and Concentrator kit (Zymo Research Corp., Irvine, CA). Finally,
extracted DNA was stored at -80°C.

DNA sequencing

DNA concentration was assessed using a Qubit dsDNA HS assay kit and a Qubit �uorometer
(ThermoFisher, Waltham, MA). Next, 30-60 ng of genomic DNA per sample was visually examined via
agarose gel electrophoresis to check for degraded DNA. Finally, a Nanodrop ND-1000 (ThermoFisher,
Waltham, MA) was used to assess sample purity and verify that A260/A280 values were between 1.6-2.0
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and A260/A230 values were between 2.0-2.2. Frozen DNA was transported in 25-500 μl of 1xTE DNA
suspension buffer per sample to the DOE Joint Genome Institute (JGI).

A total of 236 samples collected between 2011 and 2020 underwent successful short-read
metagenomic sequencing at JGI. After QC, total of 120 samples required additional size selection, thus,
an input of 10.0 ng of genomic DNA was sheared around 300 bp using the LE220-Plus Focused-
ultrasonicator (Covaris) and size selected with a double SPRI method using Mag-Bind Total Pure NGS
beads (Omega Bio-tek). Using the KAPA-HyperPrep kit's (Roche) one-tube chemistry of end-repair, A-
tailing, and ligation with NEXTFLEX UDI Barcodes (PerkinElmer), the sample was enriched using 7 cycles
of PCR. For all samples, the prepared libraries were quanti�ed using KAPA Biosystems' next-generation
sequencing library qPCR kit and run on a Roche LightCycler 480 real-time PCR instrument. Sequencing of
the �ow cell was performed on the Illumina NovaSeq sequencer using NovaSeq XP V1.5 reagent kits, S4
�owcell, following a 2x151 indexed run recipe. A total of 3.21 Tbp of short-read metagenomic data was
produced at an average of 13.6 Gbp/sample, exceeding target sequencing depth.

An additional 31 metagenomic libraries were sequenced from samples collected in 2021-2022 (total
0.259 Tbp, average 8.36 Gbp/sample), this data is available through the National Center for
Biotechnology Information Sequence Read Archive (BioProject ID PRJNA624320). For sequence library
preparation please see Supplementary information.

Assembly and annotation

Short-read metagenomes were processed following the Joint Genome Institute’s (JGI) metagenomics
work�ows61. Raw paired-end sequences were quality controlled using rqc�lter2 from BBTools (v38.94)62.
Speci�cally, ‘bbduk’ was used to remove adapters, perform quality trimming by removing reads where
quality drops to zero, removing reads that contain 4 or more “N” bases, removing reads that have an
average quality score < 3, and removing reads with a minimum length of < 51 bp. Bbduk was also used
for artifact removal of homopolymer stretches of 5 G’s or more at the ends of reads. Bbmap was used to
remove reads that matched at 93% identity to host and common microbial contaminant sequences.
Read error correction was performed using ‘bbcms’ from BBTools (v38.94) with a minimum count of 2
and a high-count fraction of 0.6. Corrected reads were then assembled using metaSPAdes (v3.15.0)63

with the ‘metagenome’ �ag and kmer sizes of 33, 55, 77, 99, and 127. Contigs smaller than 200 bp were
discarded. Assembled reads were mapped back to the contigs to obtain coverage information using
‘bbmap’ from BBTools (v38.94) with ‘interleaved’ as true, ‘ambiguous’ as random, and the ‘covstats’
option specifying a contig coverage �le. The assembled reads were structurally annotated using
tRNAscan-SE (v2.0)64, RFAM65, CRT-CLI (v1.8), Prodigal (v2.6.3)66, and GeneMarkS-2 (v1.07)67 as
previously described61. Structural annotation results were merged to create a consensus structural
annotation, which was then used for functional annotation. On average, 71.99% of quality �ltered reads
(Minimum: 22.67%, Maximum: 100%) were assembled.
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Functional annotations were predicted using Last (v983)68 and custom hidden Markov models
implemented through HMMER (v3.1b2)69 and TMHMM (v2.0)70. Functional annotations were assigned

using multiple protein family databases: KO71, EC72, COG73, TIGRFAM74, and Pfam75. Phylogenetic
assignments for each read were assigned based on the best Last hits of the protein coding genes
(CDSs). A consensus phylogenetic assignment for each contig was generated using a majority rule,
whereby the lineage at the lowest taxonomic rank to which at least 50% of CDSs on the contig was
assigned. JGI’s pipeline can be implemented using the National Microbiome Data Collaborative’s
(NMDC) open-source online platform Empowering the Development of Genomics Expertise (EDGE)76.

Community analysis

The microbiome time-series analysis was based on many of the recommendations from Coenen et al
(2020)77. The unit of biodiversity (akin to an OTU) is either taxonomic (at ‘Family’ level) or unique protein
families using primarily KEGG Orthologs (KO) but also COG, Pfam, or TIGRFAM classi�cations.
Occurrence was normalized to summed total coverage for each sample. We excluded biodiversity units
with a frequency below 5E-5 resulting in a low occurrence of absent units (i.e., zeros). Only having a few
instances of zeros for the relative abundances allowed us to use linear models (e.g., PCA) rather than
applying non-linear tools (like Bray-Curtis similarity and PCoA) when comparing samples or units of
biodiversity.

We normalized each biodiversity unit to a mean of zero and a standard deviation of one (i.e., z-score)
when analyzing the temporal variation of individual taxa or genes. From this, we �tted models with
monthly (12 levels representing seasonal variation) and yearly (12 levels representing interannual
variation) categorical factors. A low frequency band-pass �lter using ‘lowess’ (Matlab ‘smoothdata’
function) was applied when assessing temporal changes. There was a strong autocorrelation with
temporally adjacent samples sharing 92.5% taxonomic and 98.7% functional similarity.

Average genome size

The average genome size was calculated according to the standard JGI IMG pipeline. It was estimated
as: NBases_assembly / NGenomes. NGenomes, the median coverage of conserved single-copy core genes (139

marker genes with associated Pfam IDs) as described previously78.

Compositional variance analysis

We used PERMANOVA79,80 to quantify whole community composition variance associated with seasonal
and interannual changes. We used sampling month and year as well as their interactions as factors.
Community composition was estimated using taxonomic (family level) or functional (COG, KO, Pfam, and
TIGRfam) changes. We estimated the Euclidean distance of the normalized frequency of each unit of
biodiversity for the compositional matrix. We used ‘adonis’ from the ‘vegan’ package (v2.6-4) in R81,82 for
this analysis.
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Multi-table co-inertia analysis

A joint principal component analysis of both taxonomic (family level) and functional changes (COG, KO,
PFam, and TIGRFam) was performed as previously described83. In brief, we used Multi-table Co-Intertia
Analysis from the ‘ade4’ package (v1.7-22) in R84,85. The �rst two principal components are presented
from this analysis.

Annotation keyword model

A ‘Natural Language Processing Model’ was trained on all gene annotations. This was done using the
‘spaCy’ Python package86. Subsequently, we calculated the time-series of all keywords weighted by the
relative frequency of the associated gene. Next, we found the seasonal oscillation and annual change of
each keyword.
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Figure 1
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Environmental dynamics across multi time-scales. A: Temperature (˚C) measured at the SCCOOS
automated shore-station, B: Monthly anomaly in temperature, nitrate and phosphate. C:2011 to 2021
annual anomalies in temperature, nitrate and phosphate. The anomalies were scaled from -1 to 1. The
full time-series of nitrate and phosphate are presented in Extended Data Fig. 1.

Figure 2

Dominance and seasonal dynamics of key lineages. A: Rank abundance of top 50 lineages. The top 50
lineages (de�ned at the family level) represented 80% of all lineages detected (n = 929). B: Seasonal
succession of top 50 lineages. A linear model with monthly and yearly factors were �tted to the z-score
normalized relative abundance of each lineage. Here, monthly factors represent the difference in
frequency associated with that time-frame. The lineages were ordered by peak month. Key functional
types are labeled. C:Principal component analysis (PCA) of the z-score normalized relative abundance of
the top 50 families within each sample (n=267). Each sample is colored by collection month to illustrate
the importance of seasonality for community composition.
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Figure 3

Seasonal and long-term succession in microbial community functional potential. A: Time-series of
functional genes annotated with the KEGG ortholog system. Time-series using other annotation systems
(COG, PFam, and TIGRfam) show similar temporal patterns. The frequency of each gene was Z-score
normalized across time. B: Temporal dynamics of community functional potential. Sample similarity was
estimated from Z-score normalized relative abundances of each KEGG ortholog using PCA. C: Integrated
community functional similarity using multi-table co-inertia analysis (MCOA). This integrated analysis
used annotations from KEGG, COG, PFam, and TIGRfam as well as taxonomic variation. D: Similarity in
temporal dynamics of KEGG orthologs. The input data is the same as in Fig. 3B but here we quanti�ed
the temporal dynamics of functional genes (rather than samples) using PCA. Each gene is colored by
peak month illustrating the importance of seasonal dynamics in structuring the variation in gene
frequency. The time-series for COG, PFam, and TIGRfam are presented in Extended Data Fig. 6.

Figure 4

Interannual changes in microbiome taxa and functions. A:Link between ENSO phases (ONI, red line) and
interannual temperature anomalies (blue bars) at MiCRO. B: Interannual succession in microbiome
functions. Interannual anomalies for each are sorted according to peak positive year. C:Spearman
correlation between interannual changes in temperature and nitrate stress (-1 * [nitrate]) vs. interannual
changes in normalized taxa or gene frequencies. Here, we show the interannual changes using KEGG
annotations but similar patterns are seen using other annotation systems.
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Figure 5

Biogeochemical succession at seasonal and interannual time-scale. Scale seasonal anomaly for (A)
nutrient cycling genes, (C) carbon processing genes, particulate organic carbon (POC), and chlorophyll,
and (E) elemental stoichiometry including C:P, C:N, and N:P. Scaled interannual anomaly for (B) nutrient
cycling genes, (D) CAZymes (carbohydrate degrading enzymes), particulate organic carbon (POC), and
chlorophyll, and (F) elemental stoichiometry including C:P, C:N, and N:P. Seasonal and interannual
anomalies are scaled from -1 to 1. See Supplementary Table 2 for a list of genes linked to each
biogeochemical category. See Extended Data Fig. 7 and 8 for the individual variation in each gene and a
summary of phylogenetic a�liation.
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