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Abstract
Research organisms provide invaluable insights into human biology and diseases, serving as
essential tools for functional experiments, disease modeling, and drug testing. However,
evolutionary divergence between humans and research organisms hinders effective knowledge
transfer across species. Here, we review state-of-the-art methods for computationally
transferring knowledge across species, primarily focusing on methods that utilize transcriptome
data and/or molecular networks. We introduce the term “agnology” to describe the functional
equivalence of molecular components regardless of evolutionary origin, as this concept is
becoming pervasive in integrative data-driven models where the role of evolutionary origin can
become unclear. Our review addresses four key areas of information and knowledge transfer
across species: (1) transferring disease and gene annotation knowledge, (2) identifying
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agnologous molecular components, (3) inferring equivalent perturbed genes or gene sets, and
(4) identifying agnologous cell types. We conclude with an outlook on future directions and
several key challenges that remain in cross-species knowledge transfer.

Introduction
The use of research organisms, also known as model species or model systems, is essential to
biomedical research [1]. Leveraging their resemblance in anatomy, physiology, behavior and
genetics to corresponding human conditions, research organisms help scientists investigate a
wide range of biomedical phenomena and therapeutic treatments before they are applied to
humans. For instance, the zebrafish (Danio rerio) is a well-established vertebrate research
organism that has external and fast development in large numbers, transparent embryos, and
allows for easy genetic manipulation and drug administration through compound exposure [2].

There are two main reasons that research organisms are critical to studying human phenotypes,
processes, and diseases. First, it is often unethical to study biomedical processes or apply novel
therapeutic treatments directly in humans. Although there are many unanswered questions on
the ethics of using research organisms [3,4,5], the knowledge derived from these organisms has
helped save countless human lives [2,6]. Secondly, genetic studies in humans typically have
very high variability due to confounding effects such as population genetics and environmental
factors [7,8,9,10], and these confounders can be controlled much more in laboratory research
with research organisms.

However, using research organism data to explore human biology presents its own challenges.
Evolutionary divergence often gives rise to similar yet different underlying biological processes
between human and research organisms [11], thereby impeding the transfer of knowledge
across species. Even orthologs (i.e. homologous genes across species), which have taken a
privileged role in transferring functional annotations across species, may have significant
functional changes across species [12,13,14,15,16,17]. Additionally, the complex genetics
underlying phenotypes/processes shared across species may differ. This is because
interactions among genes responsible for a phenotype could be rewired during the evolutionary
process, potentially encompassing some species-specific genes [18]. Consequently, the
effective and precise transfer of knowledge considering species-specific genes remains
challenging. Finally, since no single research organism can fully recapitulate the entirety of a
complex biological condition in humans [1], how do we predict which research organisms
capture the different facets of the human biology of interest?

To address these issues, researchers have begun developing computational models that can
robustly transfer knowledge between a variety of research organisms and humans to identify
functionally similar genes or groups of genes across species regardless of their evolutionary
origin. For functionally equivalent genes that may or may not be orthologous, we here coin the
term “agnolog”. We define agnologs to be biological entities, processes, or responses — e.g.,
genes, gene sets, or even biological systems — that are “functionally equivalent” across species
regardless of evolutionary origin. “Agno-” conveys the sense of being a data-driven observation
that is noncommittal about the evolutionary origin (may they be homologous or convergently
evolved) and compatible with any biological explanation. Recent discoveries of agnologs were



evidenced by large-scale competitions such as sbvIMPROVER Species Translation Challenge
[19] and the Critical Assessment of Protein Function Annotation Challenge (CAFA)
[20,21,22,23].

In this review, we present a suite of cross-species knowledge transfer approaches with a
significantly broader scope than previous reviews [24,25,26,27]. We comprehensively lay out
the landscape of recent and state-of-the-art data-driven strategies, including those that leverage
AI and machine learning, to answer four classes of important questions that frequently arise
when using research organisms to study biomedical questions and translating findings to
humans (Figure 1): (1) How to predict disease-gene or function-gene relationships across
species? (2) How to identify agnologous molecular components across species? (3) How to
infer perturbed molecular profiles across species? (4) How to map agnologous cell types and
cell states across species?

Instead of discussing methods through an algorithmic lens, we are taking a question-first
perspective to provide inspiration and background both for computational researchers interested
in developing new methods in this area and for experimental/wet-lab researchers interested in
finding and using the best methods in this area. Although we have separated the methods into
four sections, many of the approaches described across these sections share similarities in
algorithmic design, data types, and output formats. Detailed information about the methods
discussed can be found in Supplementary File 1, presented for researchers to easily find the
methods and tools relevant to their application of interest. In addition, we have curated the
benchmark datasets used in the discussed methods, summarized in Supplementary File 2 and
Supplementary Note 1. These resources will enable researchers to test and improve upon
existing computational methods in the field.





Figure 1: Schematic diagram of each section of this review article. a. How to predict
disease-gene or function-gene relationships across species? b. How to identify agnologous
molecular components across species? c. How to infer perturbed molecular profiles across
species? d. How to map agnologous cell types and cell states across species?

How to predict disease-gene or function-gene
relationships across species
Comprehensive knowledge of the roles genes play in molecular functions, phenotypes, and
diseases is fundamental to our understanding of the molecular underpinnings of biological,
physiological, and pathological processes. However, the roles of less than half of all genes in
the human genome have been experimentally characterized even in a single biological context.
Knowledge of gene-function, gene-phenotype, and gene-disease relationships is significantly
richer, though far from complete, in research organisms due to the availability of a variety of
experimental techniques such as gene editing, knock-in, and knockout experiments [28,29].
How do we leverage this knowledge available across species to close massive annotation gaps,
especially in light of the potential functional divergence of homologous genes and the presence
of species-specific genes? Moreover, how do we use existing knowledge in human and
traditional research organisms (e.g., mouse, frog, zebrafish, fly, worm) to fill annotation gaps in
non-traditional research organisms (e.g., dog [30], python [31], gar [32], planaria [33]) that lack
sufficient data. These needs have spurred the development of a number of computational
methods for predicting disease-gene or function-gene relationships across multiple species
(Figure 2).

Figure 2: How to predict disease-gene or function-gene relationships across species. (a)
The objective is to predict gene-related functions or diseases across species by leveraging
known annotations. (b) Network-based methods can annotate diseases or functions for genes
across species by aligning networks or by embedding networks into a shared, low-dimensional
feature space where a supervised learning model is then trained to propagate annotations. (c)



Phylogenetic profile-based methods identify co-presence or co-absence of genes throughout
evolutionary history, implying closely related functions among these genes. This relationship is
then used to propagate annotations across species. (d) Disease and function annotations can
be transferred by combining ontologies across species. Genes with similar functions or disease
associations across species can then be identified through the ontology structure.

Utilizing molecular networks to predict functional gene
annotations across species

Molecular interaction networks composed of experimentally verified or computationally predicted
physical and/or functional relationships between pairs of genes (or their products) have become
indispensable tools for predicting novel gene annotations based on the principle of
“guilt-by-association”, which states that genes close to each other in the underlying molecular
network will be involved in similar biological processes [34]. Interaction neighborhoods within
these networks capture the “functional context” of genes, which is highly complementary to
sequence homology information. Further, these networks typically contain and therefore enable
making inferences about nearly all genes in the genome, including un(-der)studied and
species-specific genes. Therefore, a number of network-based computational approaches have
been developed to transfer and predict function, phenotype, and disease annotations across
species, especially using machine learning (ML) approaches [35,36,37,38,39,40].

For instance, the Functional Knowledge Transfer (FKT) method [36] first finds
“functionally-similar homologous gene pairs” that are in the same gene family and in similar
network neighborhoods [41], and uses these pairs to propagate functional annotation across
species. FKT significantly enhanced the prediction of gene-pathway associations, especially for
biological processes lacking extensive experimental data in the target organism, enabling the
transfer of functional insights from well-studied organisms to less-explored ones. For example,
by transferring knowledge from other species, FKT successfully annotated the genes related to
the regulation of exit from mitosis (GO:0007096) in zebrafish, which had no experimental
annotation at the time of the study. One of the top genes predicted by FKT, cdh2, has then been
experimentally confirmed related to cell cycle progression in zebrafish retina cells [42].

NetQuilt [37] addressed the challenges of transferring functional gene annotations across
species by integrating multiple networks across species using IsoRank [43], which aligns
networks considering both sequence similarity and network similarity. To predict annotations
across species, NetQuilt utilized a deep learning (DL) model trained on node representations of
annotated genes from one or multiple species to predict a fixed set of annotations for genes in
the rest of the species.

GenePlexusZoo [38] simultaneously integrates networks of human and five research organisms
(mouse, zebrafish, fly, worm, yeast) to generate a “functional representation” of genes from all
these species that can be used for any pathway, phenotype, or disease prediction task. By
training ML models on this joint multi-species network representation, GenePlexusZoo improves
the performance of predicting gene annotations within a single species as well as facilitates
knowledge-transfer across species.



Predicting candidate disease genes using networks

While, conceptually, the aforementioned methods can be used to also predict disease-gene
relationships, other network-based methods have been developed exclusively for predicting
disease associations based on cross-species information.

Katz measure [44], a well-established technique in social network link prediction [45], has been
successfully applied to discover connections between diseases and genes across species [46].
The authors constructed a heterogeneous network that included gene-gene, gene-disease, and
disease-disease links within humans and then added links between genes in humans and other
species based on sequence homology. Then, novel disease gene candidates were identified as
those in close proximity to disease nodes in this network (based on overall path lengths),
estimated using the Katz measure. Further, “Katz features” that represent the number of paths
of a certain length between a gene and a disease node, when incorporated into a ML
framework, were shown to significantly enhance the performance of predicting gene-disease
relationships [46].

DiseaseQUEST [47] predicts disease-gene candidates in research organisms by combining
human genome-wide association studies (GWAS) [48] with gene networks that reflect pathways
underlying tissue-specific physiology [49] and disease [50,51]. Specifically, in a target species,
using homologs of GWAS disease genes as positive examples and gene interactions in an
appropriate tissue network as features, diseaseQUEST trains an ML model to prioritize novel
disease-gene candidates. The authors demonstrated this approach by prioritizing and
experimentally validating genes related to Parkinson’s disease in the nematode Caenorhabditis
elegans [47].

In addition, numerous methods have been developed for predicting disease-gene associations
in single species, typically in humans. These methods can be adapted to predict disease-gene
associations across species [39,52,53,54,55].

Discovering disease-related genes using phylogenetic profiles

Genes with similar functions tend to appear and disappear jointly during the evolutionary
process. Most human disease genes have ancient origins [56,57,58,59], with many traceable to
eukaryotic ancestors, some dating back to the evolution of multicellularity [56]. By identifying
genes that co-evolve with known disease-related genes, we could propagate the disease
annotations from the known genes to the co-evolved genes, thereby helping predict functions
for genes that are not well characterized [60,61].

Maxwell and colleagues [62] used evolutionary profiles to examine the evolutionary distribution
of human disease genes from the Online Mendelian Inheritance in Man (OMIM) database [63].
They revealed heterogeneity underlying the evolutionary origins of different classes of human
disease genes. For example, genes related to inflammatory and immune diseases are of
vertebrate origin, while genes associated with cardiovascular and hematological diseases
originate from early metazoans.



Recent methods [64,65] enabled systematic screens of genome-wide co-occurring functional
modules, leading to functional predictions for numerous previously uncharacterized genes. For
example, using phylogenetic profiling, Dey et al. [65] identified understudied candidate genes
linked to the actin-nucleating WASH complex and ciliary and centrosomal defects by scanning
co-occurring gene modules across 177 species on the eukaryotic species tree. They further
evaluated candidate functions of genes by identifying gene product co-localization and gene
knockdown.

Bridging disease-gene association through phenotypic similarity

Extensive gene-phenotype associations in research organisms have been discovered through
hypothesis-driven experiments and large-scale genetics screens [66,67,68]. These links can
lead to the identification of genes in a research organism whose perturbation results in
phenotypes similar to those observed in patients with a particular disease, thereby pointing to a
viable model for the disease under observation.

However, comparing phenotypes across species is challenging due to evolutionary divergence
and non-standard descriptions of phenotypes in different species. The continuous efforts in
phenotypic ontology curation and the development of cross-species phenotype ontologies such
as uPheno [69] and PhenomeNET [70] have now significantly mitigated this challenge, enabling
researchers to use ontology-based semantic similarity measurements between phenotypes to
explore suitable research organisms and identify new disease-gene and function-gene
relationships. For instance, Exomiser [71,72] leveraged disease-to-gene relationships
discovered through semantic similarity measures among integrated ontologies to assist in
disease diagnosis.

Recent studies improve on semantic similarity by creating a latent embedding space based on
the phenotype ontology combined with known disease-phenotype and disease-/phenotype-gene
associations[73,74]. “Node embeddings” created this way contain a low-dimensional numerical
representation of each entity, such as gene, phenotype, and disease that captures that entity’s
relationships. Such embeddings naturally lend themselves as inputs into ML algorithms. In this
study [73], the authors trained a supervised neural network model to predict gene-disease
associations based on the node embeddings of genes and diseases, which performed better
than an unsupervised approach based on the similarities between gene and disease
embeddings.

How to identify agnologous molecular components
across species
Complementary to inferring genes in each species that are associated with a particular function
or disease, another critical task is to infer molecular components that are equivalent
counterparts of each other across species. Termed “agnologs” above, these molecular
counterparts reveal novel biology when they are inferred in a data-driven manner, in the context
of a specific condition or perturbation, and regardless of their evolutionary origin (e.g.,
homology). A number of computational approaches have been developed to identify such



agnologous components at the gene, pathway (gene set), and genomic level across species
(Figure 3).

Figure 3: How to identify agnologous molecular components across species. (a) Definition
of agnology. (b) Agnologous gene pairs can be identified through genes that connect to similar
sets of genes in aligned cross-species gene networks. (c) When prior knowledge about gene
sets is known, agnologous gene sets are discovered through large overlaps between gene sets
across species. (d) When prior knowledge is not available, agnologous gene sets can be
discovered by finding sub-networks with similar topology and expression patterns across
species. (e) Resemblance at the organismal level, i.e., agnologous profiles, can be examined by
comparing genomic profiles across species.

Identifying agnologous gene pairs across species

An essential ingredient of finding agnologous genes is to go beyond solely using sequence
similarity and homology because, in many organisms, proteins performing similar functions
(e.g., playing similar roles in the same biological pathway) may not be the most similar in
sequence [75]. Gene Analogue Finder implemented this notion by measuring functional
similarity between a pair of genes based on the overlap between gene ontology (GO) terms
associated with them [76]. Han et al. [15] used a comparable approach to calculate functional
similarity between homologous human-mouse gene pairs based on the average pairwise
similarity between human and mouse phenotype ontology terms annotated to those genes. This
study identified several cases of functional divergence of orthologs that could be traced to
changes in noncoding regulatory sequences of gene pairs with high protein sequence similarity.
Nevertheless, the performance of such methods depends heavily on the completeness of gene
annotations to terms in function and phenotype ontologies, with term overlap estimates
becoming less meaningful for particular genes or entire species with sparse (i.e., highly
incomplete) annotations [15].



Genome-scale gene interaction networks help overcome this limitation by providing a powerful
alternative way to capture the “functional context” of each gene in terms of its local network
neighborhood. Thus, two genes across species interacting with similar sets of genes in their
respective molecular network neighborhoods are likely agnologs. Chikina et al. [41] realized this
idea by first grouping the network neighbors of individual genes into meta-genes that
correspond to Treefam families [77] and measuring the hypergeometric overlap between sets of
meta-genes that are neighbors of a pair of genes across species in the respective species
network. Intersecting meta-genes identified through this approach revealed specific biological
processes underlying network similarities.

Other recent network-based approaches for finding agnologous genes take advantage of the
idea of node embedding. Methods such as MUNK [78], MUNDO [79], and ETNA [80] create a
joint network-based representation of genes by embedding the molecular networks in a pair of
species individually and then align the two embeddings based on sequence orthologs. MUNK
produces different joint embeddings based on the “source” species and the “target” species,
where the joint embedding is as large as the number of genes in the smaller network. ETNA
uses cross-training to align the two embeddings into a bidirectional compressed
(low-dimensional) space. MUNK, MUNDO and ETNA use the similarity of embedding vectors of
genes to estimate their functional similarity or to inform function or disease gene prediction.

Discovering agnologous gene sets across species

Going beyond gene pairs, it is also of interest to find functionally conserved gene sets across
species because sets of genes could represent concepts like pathways and molecular
mechanisms underlying conserved phenotypes. McGary et al. [81] introduced the concept of
orthologous phenotypes, i.e. “phenologs”, defined as phenotypes that are associated with
orthologs. Phenologs could include phenotype counterparts that are observably very different
from each other while being influenced by conserved molecular functions (e.g., significantly
overlapping sets of orthologous genes). Examples include a yeast model for angiogenesis
defects, a worm model for breast cancer, mouse models of autism, and a plant model for human
neural crest defects [81]. Phenologs serve as a valuable tool to quantitatively identify
non-obvious research organism phenotypes for studying human diseases, along with disease
gene candidates such as genes annotated to non-obvious phenotypes and which are not
orthologous to any known disease genes.

Discovering agnologous gene modules across species

Phenolog approaches rely on prior knowledge of functional and phenotypic annotations of
genes, which is often highly incomplete. Network-based methods have proven valuable in
overcoming this limitation by helping to find conserved gene sets, usually called gene modules,
while filling in knowledge gaps. This is because, in addition to capturing relationships between
pairs of genes, networks also capture higher-level organization between groups of genes in the
form of tight sub-networks. Consequently, similar sub-networks across species correspond to
homologous functional modules or pathways. CoCoCoNet [82] takes such a network-based
approach to test whether a given gene set in one species is involved in similar functions as
homologous gene sets in another species. If a subset of genes accurately predicts the



remaining genes in the gene set using neighbor voting in both species, that is taken as an
indication that the gene set corresponds to a conserved functional module.

Molecular networks can further refine comparisons of differential gene expression across
species to help identify functionally conserved “active modules” that comprise tightly connected
sub-networks of conserved genes that respond similarly to a given condition (e.g., disease,
perturbation). However, finding such modules is difficult because active modules in different
species are often not conserved across species, while conserved modules are not necessarily
active [83]. So, algorithms for finding conserved and active modules need to consider activity
plus conservation at the same time.

The neXus algorithm [84] was developed to meet this need. neXus identifies modules using a
greedy seed-and-extend algorithm. It begins with a pair of orthologous nodes as seeds and
iteratively extends both sub-networks by incorporating neighboring orthologous gene pairs.
ModuleBlast [85] works similarly to neXus with the added capability of distinguishing the
resulting modules based on the direction of the expression change. This separation allows
ModuleBlast to evaluate whether conserved active modules display expression patterns in the
same or opposite way. Both neXus and ModuleBlast limit the identification of modules to fully
conserved genes. xHeinz[83] relaxes this constraint by allowing users to define the proportion of
conserved nodes, offering a more flexible approach that leads to including functionally
conserved but non-homologous (even species-specific) genes in the final modules. xHeinz was
further applied to understand the regulatory mechanism of interleukin-17-producing helper T
(Th17) cell differentiation in humans and mice. The study revealed that key regulators of Th17
cells are conserved across species [83].

Measuring agnologous profiles between human and research
organisms

Beyond genes and gene modules, evaluating the ability of a research organism to mimic
specific human biological processes is crucial for functional studies and experimental design.
However, such evaluations are subjective, with researchers often using vague terms such as
“poorly” or “greatly” to indicate resemblances. Therefore, some recent methods have leveraged
functional genomics data to draw quantitative conclusions about the biological resemblance
between human and research organisms.

Congruence Analysis for Model Organisms (CAMO) [86] quantitatively measures the
congruence between human and research organisms by comparing the distribution of
differentially expressed gene (DEG) profiles under matching conditions. To improve the
accuracy of identifying DEGs, CAMO infers differential posterior probabilities of genes based on
p-values from conventional pipelines. The concordance level of differential gene expression
across species was summarized as concordance (c-scores) and discordance scores (d-scores),
which served as quantitative measures of congruence across species. CAMO was applied to
reconcile studies [87,88] that reached contradicting conclusions about whether mice are a
suitable model for studying human inflammatory diseases. By reanalyzing and comparing
inflammatory expression data within and across species, the authors concluded that burn- and
infection-induced inflammation in mice resembles human inflammation [86].



Comparing phenotypes provides another avenue to discover biological resemblance in research
organisms. Cross-species phenotypic ontologies can link phenotypes related to human
diseases to research organism phenotypes. Leveraging such connections, the Monarch
Initiative [72] provides tools, such as the Phenotype Explorer, to prioritize research organisms
based on phenotypic similarities, aiding in the discovery of relevant research organisms and
phenotypes.

How to infer perturbed transcriptomes across species
Bulk and single-cell transcriptome profiling have emerged as preeminent technologies for nearly
any organism to capture genome-wide molecular responses to a variety of developmental and
physiological states as well as treatments, perturbations, and other conditions. Transcriptome
profiling in research organisms has especially been valuable in studying perturbations that may
be impractical or ethically infeasible in humans. Further, comparing transcriptomic profiles
across species sheds light on conserved and distinct cellular states and gene responses, and
makes way for context-specific knowledge transfer. However, directly comparing expression
changes across species based on gene homology is challenging due to evolutionary divergence
in gene expression programs. This section describes several methods that have been
developed to utilize computational techniques to enable accurate comparisons of transcriptomic
profiles across species (Figure 4).

Figure 4: How to infer perturbed transcriptomes across species. (a) The objective is to infer
potential perturbed genes or gene sets in humans based on experimental perturbation results in
research organisms. (b) To infer DEGs across species, FIT [89] uses linear models to describe
relationships between the effect sizes of DEGs in humans and research organisms with
matching conditions. Other approaches develop ML models based on research organisms to
predict perturbed expression in humans. (c) To infer enriched gene sets across species, XGSEA
[90] aligns gene set representations across species, train models in research organisms, and
then infer enrichment scores of gene sets across species.



Determining differentially expressed genes across species

Identifying differentially expressed genes (DEGs) from transcriptome profiles has led to insights
into the impact of numerous diseases, perturbations, or experimental conditions. To
systematically capture the relationship of DEGs across species, a class of methods train ML
models using carefully constructed cross-species dataset pairs (CSDPs) with matching
conditions, offering curated examples of how expression changes correspond to phenotypic
outcomes across species, which can be further used for model training [89,91].

Found In Translation (FIT) [89] is a linear regression model that is used to understand
relationships of DEGs between human and mice for each orthologous gene pair. The authors
built models based on 170 mouse-human CSDPs across 28 conditions, which were pairs of
mouse and human experiments associated with the same disease or condition. The model was
then used to predict DEGs in humans under conditions analogous to those captured in novel
mouse data. FIT identified more human DEGs compared to simple transfers of DEGs from
research organisms to human based on orthology. For instance, using protein immunostaining,
the authors confirmed their prediction that the gene ILF3 is upregulated in the colon of patients
with inflammatory bowel diseases (IBD) even though the gene was not differentially expressed
in either human or mouse data [89].

The FIT approach is likely to be limited to diseases or drug perturbations with sufficient training
data from both human and research organisms. In contrast, Brubaker et al. [91] proposed a
semi-supervised method to predict DEGs across species that only requires phenotype
information in research organisms. Initial supervised models were built to predict mouse
phenotypes using mouse expression data, and then these models were iteratively augmented
with high-confidence human samples to predict the phenotypes of the remaining human
expression data. Finally, differential gene expression analyses were performed on human
samples with distinct predicted phenotypes. Transcomp-R [92] was proposed as an alternative
approach to predict DEGs across species when phenotype labels are available in only one
species. Its prominent application involved finding mouse genes that are predictive of infliximab
responses in chronic IBD patients when corresponding phenotype labels are not available in
mice. After representing murine expression data in a low-dimensional space using principal
component analysis (PCA) and projecting human expression data into the mouse PC space,
Transcomp-R identified murine PCs (and corresponding genes) most associated with infliximab
response by regressing the mouse PCs of the projected human data against the human
phenotype labels. This approach identified the activated integrin pathway signaling in IBD
patients with infliximab resistance. Single-cell sequencing on patient biopsies revealed
over-expression of one of the top genes, ITGA1, in immune cells, which probably mediates
infliximab resistance. The function of ITGA1 in immune cells was further experimentally
validated by treating anti-ITGA1 on patients’ peripheral blood mononuclear cell samples [92].

Finally, other recent work [93,94] includes treating the biological condition such as a tissue or a
disease as a “style” and then utilizing style transfer techniques to predict transcriptomic changes
across conditions within the same species. Though promising, it is important to note that genetic
differences across species are significantly larger and more complex than the condition changes
observed within a single species. As a result, applying style transfer techniques directly to



cross-species comparisons may face additional challenges and limitations that need to be
carefully considered and addressed.

Determining functionally enriched terms across species

Gene set analysis (GSA) has been widely used to identify predefined gene sets (e.g. Gene
Ontology biological processes) that are significantly enriched in a gene list of interest [95]. GSA
provides a powerful approach to gaining insights into enriched functional terms associated with
diseases, phenotypes, or perturbations. However, the discrepancy of genes across species
makes the definition of functionally equivalent gene set across species difficult, so directly
transferring enriched terms across species is impractical.

XGSEA [90] tackles the challenge of transferring enriched terms across species by using affine
mapping, which projects genes from humans and research organisms into the same space. In
this joint space, gene sets sharing more homologous genes will be closer to each other in the
transformed space. With the transformed gene set representations, logistic regression models
were built to characterize the relationship between the representation and enrichment metrics
from the research organism, including p-values and enrichment scores of gene sets. Finally, the
trained models are used to predict enrichment metrics for gene sets from humans. XGSEA
successfully estimates enrichment metrics in human gene sets based on metrics of homologous
gene sets in research organisms. For instance, XGSEA was able to train models based on
zebrafish data and predict enriched pathways associated with melanomas in human patients
[90].

How to map agnologous cell types and cell states
across species
The advent of single-cell and single-nucleus sequencing techniques has opened up new
avenues in biological research. This emerging frontier focuses on identifying and comparing cell
types and states across different species to better understand the cellular diversity and
species-specific cellular innovation arose from cell type evolution [96,97]. By transferring
insights from extensively studied organisms to less-explored ones, these cross-species
comparisons offer a powerful insight for cell type identification and discovery, thereby advancing
our understanding of cellular biology across different species.



Figure 5: How to map agnologous cell types and cell states across species. (a) The
objective is to align analogous cells (represented by points shaded in red and blue patches)
across species, given pairs of single-cell datasets or even multiple single-cell datasets from
different species. (b) The majority of methods align cells with similar expression patterns in
homologs across a pair of species. (c) SATURN [98] stands out as the only method capable of
aligning single-cell datasets from multiple species simultaneously. It first aggregates genes into
synthesized genes using PLM [99]. These synthesized genes are then utilized to align cells
across multiple species.

Cell mapping problems may be simply conceptualized as mapping transcriptionally similar cells
across species (i.e., based on homologous genes having similar expression levels). However,
cells of a particular type within a species are more alike than those of corresponding cell types
across different species. [100,101]. Therefore, effectively mapping cells across species requires
correcting for species-specific expression differences so that cells of homologous types are
mixed in irrespective of species origin, while cells of different types remain distinct from each
other. Additionally, methods must account for experiment-induced batch effects. Some tools
have been developed to reconcile heterogeneous single-cell RNA-seq (scRNA-seq) data from
multiple species [100,102,103,104,105]. These methods typically seek to project cells from
multiple species into a unified space, facilitating cross-species comparison. As a result, the cell
mapping problem can be viewed as a domain adaptation problem, i.e., aligning cells from
different species in a unified space (Figure 5).

Aligning cells across a pair of species based on homologs

Shafer [97] summarized various methods for cross-species scRNA-seq integration. Originally
designed to mitigate batch effects introduced by experimental variations, these methods may
not sufficiently correct for species differences, which are more pronounced than batch effects
[101]. When comparing human cells to those of anciently polyploid species like the teleost fish,
the abundance of gene duplicates results in fewer one-to-one gene matches, leading to a
reduced signal for alignment. Moreover, orthology does not necessarily imply similar functions



across species, and paralogs might exhibit more functional similarity than orthologs. For
instance, when an ortholog acquires a loss-of-function mutation, its function might be
compensated by the upregulation of a paralog, resulting in the paralog having a more similar
function to the ortholog in the other species [106,107]. Therefore, incorporating one-to-many or
many-to-many homology into the analyses could improve cross-species alignment performance
by accounting for functional similarity between paralogs.

In a benchmark study conducted by Song et al. [108], SAMap [109] was identified as the only
method that is capable of mapping divergent cell types. To account for the effect that expression
patterns may be divergent in homologous cell types, SAMap uses the full gene homology
information and incorporates neighboring cells within species into the calculation of similarity
between cells across species. Consequently, cells with differing expression profiles remain
closely associated if they are among the nearest cross-species neighbors to each other. Based
on this analysis, SAMap identified general alignment between gene expression patterns and
developmental relationships during embryogenesis in frogs and zebrafish. Interestingly, they
also detected a group of secretory cell types that have similar expression patterns while having
different developmental origins including arising from different germ layers [109].

Aligning cells among multiple species using all genes

Instead of using precalculated gene homology, a new framework SATURN [98] integrates cell
atlases from divergent species by harnessing the power of protein language models (PLMs) to
relate genes across species to each other and project all cells from multiple species into shared
cell embedding space. PLMs can learn informative representations of protein sequences that
can implicitly reflect similarity of function, protein structure, molecular characteristics [110], as
well as evolutionary relationships [104] between proteins. Using a neural network, SATURN first
projects scRNA-seq datasets to a joint space composed of “macrogenes” representing groups
of genes across species that have similar protein embeddings inferred from the PLM. The
neural network weights is used to define the importance of a gene to a macrogene. For each
macrogene, SATURN learns the cross-species cell embedding as a non-linear combination of
macrogenes, guided by an unsupervised objective function that simultaneously maximizes the
distance between distinct cells within the same species and minimizes the distance between
similar cells across species. This approach enables SATURN to integrate data from multiple
species (and not just perform pairwise comparisons), including divergent species where gene
homology relationships are hard to unravel. The output of SATURN also enables easy
cross-species comparison, such as finding differentially-expressed macrogenes across species,
which can then be traced back to actual genes based on the weight of connections to the
macrogenes in the neural network. SATURN’s application to a multi-species dataset of frog and
zebrafish embryogenesis shows success in aligning evolutionary-related cell types and
revealing differentially expressed genes in macrophage/myeloid progenitors and ionocytes
across these two remotely-related species [98].

Future perspective
The explosion of large-scale human biological data and accompanying analysis methods, while
seen as a prospect of a golden age for human genetics, has also raised the question of whether



it will diminish the significance of research organisms [7,111]. From the perspective of this
review, the answer is certainly “No”. In fact, the ocean of new data will lead to an increasing
number of candidate disease-related genes, dysregulated pathways, drugs, etc., that will require
validation and functional characterization, which can be carried out in completely in vivo settings
only in research organisms [7]. Therefore, the goal of increasingly better computational
strategies to effectively gain biological and biomedical insights from research organisms will
continue to remain significant. The landscape of current methods, summarized in this review,
demonstrates great promise towards this goal. Instead of solely relying on sequence similarity
and gene homology, these approaches utilize sophisticated inferential techniques and diverse
datasets, paving a promising path for effectively transferring knowledge between human and
research organisms. The next frontier in unlocking the full potential of research organisms and
the ever-growing datasets involves addressing some key challenges that still remain.

Capturing the specific facets of complex diseases

Complex human diseases exhibit staggering genetic and phenotypic heterogeneity. Despite this
complexity, much of the current focus is on identifying a single research organism that can fully
recapitulate an entire disease. Consequently, a major need in the field is to develop methods
that can identify optimal phenotypes, conditions, and genes for studying specific facets of
complex diseases.

Several approaches have been proposed to dissect diseases into molecular components. Given
that disrupted biological processes are often shared among diseases [112,113,114], even those
seemingly unrelated [115], it is promising to dissect diseases into dysregulated processes [116]
or modules [117,118]. Additionally, phenotype ontologies, such as Human Phenotype Ontology
(HPO) [119], are widely used tools for phenotype-driven disease analysis, enabling the
breakdown of diseases into related phenotypes [120,121].

By leveraging dissected processes, modules, or phenotypes, we can identify combinations of
research organisms that maximally capture the multifaceted nature of complex diseases. The
methods discussed in this review, particularly in the section “How to identify analogous
molecular components across species”, shed light on approaches for relating these dissected
components to suitable research organisms. However, there remains a critical need for future
approaches that can utilize analogous molecular components of complex diseases to guide the
strategic selection of the most appropriate research organisms for specific disease aspects.

From homology to agnology

Homology is widely used as the bridge to find functional similarities across species. However,
the definition of homology does not include nor does it guarantee functional similarity. Several
factors can lead to functional divergence between homologous genes. Examples include
changes in non-coding regulatory sequences [15], reciprocal gene loss [122], and
developmental system drift [123].

Moreover, homology restrains the power of predictive models to explore comprehensive
functional relationships across divergent species. For instance, research organisms like the



nematode C. elegans may not share a substantial number of gene orthologs with humans,
resulting in a scarcity of genes available for model training and testing. This limited orthologous
gene repertoire can hinder the ability of computational models to learn comprehensive
functional relationships across species. Furthermore, orthologs alone can only explain a fraction
of observed biological variations [97]. Therefore, it is crucial to incorporate
species-/taxon-specific genes, i.e. agnologs, to construct more comprehensive models. Relying
solely on homologous genes is limiting from the perspective of network biology, where species
evolve through gain or loss of interactions, indicating that species-/taxon-specific genes can
play a role in similar functional and regulatory programs [124].

While most methods discussed here suffer from the limitation of heavily relying on homology for
knowledge transfer, approaches such as FKT [36], GenePlexusZoo [38] and SATURN [98] show
how to include every gene in cross-species analyses, may they be homologous or not.

Networks in more species and more contexts

Molecular networks are one of the most widely applied data types in cross-species knowledge
transfer. Regardless of their representation (e.g., edgelists, adjacency matrices, or node
embeddings), networks capture interactions among neighboring genes and provide mechanistic
understanding to computational models. However, network-based methods also have
limitations.

Most networks generated using experimental approaches are for humans or popular research
organisms like mice. There is an urgent need to expand the repertoire of networks beyond these
species to include non-traditional research organisms. Current methods, such as STRING [125]
and those described in recent literature [126], use orthology information to infer “interologs”, i.e.,
conserved interactions between pairs of proteins that have interacting homologs in another
organism [127,128]. For example, STRING utilizes high-confidence networks in humans and
data-rich research organisms to derive protein-protein interaction (PPI) networks for over 1,000
species. However, the assumption that paired orthologous genes have conserved interactions
across species may not always hold true due to interaction rewiring during the course of
evolution. Additionally, limiting the scope to orthologous genes cannot infer interactions involving
taxon-specific genes. Other previously introduced methods like FKT/IMP [36,129] use functional
analogs to transfer knowledge across species, but these methods require experimental
functional genomics data as a prior to generate networks, limiting their application to popular
research organisms.

Another important future step in generating species-specific networks is the development of
context-specific networks, particularly those with tissue or cell-type specificity. Context specificity
plays a crucial role in biomedicine since disease-gene associations frequently arise from
disrupted interactions among tissue-specific and cell lineage-specific processes under particular
environmental conditions [51,130]. Unfortunately, the nuanced interactions that vary across
tissues may not be fully captured by experimentally generated large-scale networks such as
PPI. Coexpression networks have the potential to capture tissue specificity more effectively
[131], but they tend to be noisy [132]. To obtain robust signals, current studies often extract only
a small fraction of information for downstream analysis, such as the top 0.5% of co-expressed



gene pairs [133]. This approach, however, results in the loss of significant information. Limited
efforts have been made to build tissue-specific networks by integrating multi-modal functional
genomic data [47,51] or to contextualize network representations by incorporating
tissue-specific expression [134,135,136].

Recent advances in sequence-based deep learning models could help expand the repertoire of
species-specific and context-specific networks. For example, AlphaFold-Multimer [137] can
predict protein interactions based on sequences. ExPecto [138] and ExPectoSC [139] can
predict tissue-/cell- specific regulatory landscapes based on DNA sequences alone. Thanks to
the advancement of genome projects for non-model species, such as the Vertebrate Genomes
Project [140], genome sequence resources are much richer than other genomics types such as
transcriptomes or epigenomes. Leveraging the power of these sequence-based models and
transfer learning techniques poses a promising way to expand networks beyond popular
research organisms. However, we need to integrate phylogenetic information into transfer
learning to consider the taxonomic-specific logic of gene regulation or protein interactions.

Automated construction of ontologies and knowledge graphs

In this review, we have described the power of ontologies as a framework for transferring
knowledge across species. Furthermore, combining various ontologies and annotations into
knowledge graphs can provide new insights for translational biomedicine. The Monarch
Knowledge Graph exemplifies this approach, integrating knowledge from 33 biomedical
resources, including information from all major research organism databases [72]. Leveraging
such knowledge graphs, we can employ advanced techniques like graph deep learning [141] to
utilize information from research organisms and assist biomedical studies such as rare disease
variant prioritization [142]. Integrating knowledge graphs with large language models can also
help reduce “hallucinations” in AI-powered question-answering systems within the biomedical
field [143].

Despite the power of ontologies and knowledge graphs in cross-species knowledge transfer, the
generation of ontologies requires laborious curation by specialists. Manual curation may also
introduce biases towards popular research areas. For instance, since zebrafish is a widely used
research organism for developmental and embryogenic studies, GO terms annotated to
zebrafish might be skewed towards these areas. Such differences in term annotation frequency
could in turn bias downstream genomic analyses [144].

The capability of current large language models to effectively extract entities and relationships
from the literature offers an efficient method for automatically generating ontologies and
knowledge graphs. For example, SPIRE [145] can generate ontologies by processing text input
and a user-provided schema that describes the desired structure of the ontology. While more
effort is needed to maintain the quality and consistency of automatically generated ontologies,
this approach holds great potential for significantly enriching ontologies across a wide spectrum
of organisms, from well-studied to understudied research organisms and even non-model
organisms.



Better benchmarking studies for cross-species scRNAseq
analyses

Mapping single-cell and single-nuclei transcriptomics (scRNA-seq/snRNA-seq) data across
different species provides valuable insights into cell type evolution and facilitates cell type and
cell state annotation [96,97]. However, most existing cross-species cell mapping algorithms are
limited to closely related species and do not account for full homology [97], while considering all
homologous genes are crucial when comparing species involving gene duplication at their
common ancestors. For example, due to a genome duplication in the ancestor of teleost fishes,
considering full homology is essential for cross-species integration of cell types between human
and biomedical fish models such as zebrafish [146]. To overcome this limitation, algorithms such
as SAMap [109] and SATURN [98] have been developed. While recent benchmarking studies
highlight properties of these methods that are important for effective cross-species integration of
scRNA-seq data [108], most of these methods were originally designed for batch corrections.
Furthermore, since SAMap applied additional restrictions on within-species manifolds, SAMap
was not systematically compared to other methods in current benchmarking studies. Thus, it is
essential to conduct more comprehensive benchmarking of these methods to evaluate their
performance on different types of scRNA-seq datasets and species with varying degrees of
divergence and data curation. Additionally, the development of new methods for downstream
analyses is crucial to extract meaningful biological insights from the growing mountain of
single-cell/nuclei data.

Extracting and curating knowledge from non-traditional research
organisms

The majority of the organisms noted in this review are classic research organisms such as
mouse, zebrafish, and the nematode worm, with non-traditional and emerging research
organisms often being overlooked in biomedical studies. However, non-traditional research
organisms have significant contributions to translational research due to their unique
characteristics [147]. For instance, the axolotl (Ambystoma mexicanum), a neotenic salamander,
shows remarkable regenerative abilities, making it a crucial research organism for regenerative
medicine and developmental biology [148]. The spotted gar (Lepisosteus oculatus), a ray-finned
fish with a slow evolutionary rate, has proven valuable in facilitating genomic comparison
between teleost biomedical research organisms and the human genome [32]. The tunicate,
Ciona intestinalis, is a close invertebrate relative of vertebrates. Its unique evolutionary position,
simple body plan, and ease of manipulation make it highly suitable for studying embryonic
development and morphogenesis [149]. However, challenges such as polyploidy, large genome
sizes, genomic rearrangements, and taxon-specific cell types can make analyzing the genomic
data from such species more difficult than classic research organisms. It is necessary to explore
additional methods that can effectively transfer knowledge from and to non-traditional research
organism data sets.



Conclusions
In this review, we have discussed the current state of computational methods for cross-species
knowledge transfer. We emphasize that these methods surpass simple comparisons of
molecular profiles across species and highlight the utilization of orthogonal information sources
such as phenotypic ontologies and molecular networks to facilitate cross-species knowledge
transfer.

Our review provides valuable resources and insights into the advancements and challenges of
methods for cross-species knowledge transfer among various research organisms and human.
The resources summarized in this review will facilitate biomedical studies using research
organisms, including traditional and non-traditional research organisms, by leveraging
knowledge from human or extensively studied model systems.

There are still needs and plenty of room for further improvements and refinements of existing
approaches. More advanced computational approaches are needed to identify a range of
research organisms for studying different aspects of diseases. Instead of relying solely on
homology as a bridge, expanding analyses to agnologs can enhance the effectiveness of
cross-species knowledge transfer. To gain a more comprehensive understanding of diseases,
we need networks from more species, and also need to incorporate context specificity,
especially cell- and tissue-specificity, into networks, despite the inherent difficulties involved. To
fully unlock the power of ontology-based knowledge transfer, we need methods to automatically
generate high-quality and robust ontologies as well as knowledge graphs. As a rapidly growing
field, it is essential to establish more benchmarks for state-of-the-art cross-species cell mapping
between humans and evolutionary divergent research organisms. Currently, most methods are
focused on the few well-studied research organisms, but greater attention and analytical
methods should be employed to extract biomedical insights from non-traditional, emerging
research organisms.

We propose that with the application of comprehensive computational approaches, the field will
gain more exciting insights from big data of research organisms, ultimately enhancing our
understanding of human biology and diseases.
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