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N-methyl-p-aspartate receptors (NMDARs) play a pivotal role in synaptic
plasticity. While the functional role of post-synaptic NMDARs is well
established, pre-synaptic NMDAR (pre-NMDAR) function is largely
unexplored. Different pre-NMDAR subunit populations are documented
at synapses, suggesting that subunit composition influences neuronal
transmission. Here, we used electrophysiological recordings at Schaffer
collateral-CA1 synapses partnered with Ca* imaging and glutamate
uncaging at boutons of CA3 pyramidal neurones to reveal two populations
of pre-NMDARs that contain either the GIuN2A or GluN2B subunit.
Activation of the GluN2B population decreases action potential-evoked
Ca* influx via modulation of small-conductance Ca*-activated K+
channels, while activation of the GluN2A population does the opposite.
Critically, the level of functional expression of the subunits is subject
to homeostatic regulation, bidirectionally affecting short-term facilitation,
thus providing a capacity for a fine adjustment of information transfer.

This article is part of a discussion meeting issue ‘Long-term potentiation:
50 years on’.

1. Introduction

The N-methyl-p-aspartate receptor (NMDAR) is well established as play-
ing a critical role in synaptic plasticity and neural computation [1-3] with
its function extensively explored at the post-synaptic terminal [4-8]. The
presence of NMDARs at pre-synaptic terminals is well documented across
a variety of brain areas, with several functional roles ascribed to them [9-22].
However, their elusiveness towards experimental interrogation and detection
has hampered significant progress in understanding their role as modulators
of synaptic transmission [12].

NMDARs are diheteromers comprising two GluN1 subunits and two
GluN2 (GluN2A, GluN2B, GluN2C and GluN2D) or GluN3 (GluN3A and
GluN3B) subunits [23,24] with GluN2A and GluN2B being the predominant
subunits found in the mammalian forebrain [23,25,26]. NMDAR subunit
composition creates functional diversity through subunit-specific differen-
ces in ion permeability, channel gating and conductance and coupling
to accessory regulatory proteins [24,27-29]. At the post-synaptic termi-
nal, NMDAR subunit composition has been linked to distinct processing
pathways, often serving opposing roles. For example, GluN2 subunits within
hippocampal neurones selectively mediate the direction of plasticity through
the regulation of Ca* influx [30,31]. The inhibition of GluN2B-containing
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NMDARs prevents long-term depression (LTD), whereas blockade of GluN2A-containing NMDARs inhibits long-term n
potentiation (LTP) [26,32-35]. Additionally, NMDAR subunit composition plays a pivotal role in shaping the temporal
dynamics of synaptic responses [21,36-38].

Far less well explored is the differential role of NMDAR subunit composition at the pre-synaptic terminal, though its
importance in various forms of short- and long-term synaptic plasticity is established [9,18,19,39-41]. Previous efforts to
investigate the effects of pre-synaptic NMDAR (pre-NMDAR) subunit compositions suggest that pre-NMDARs containing the
GluN2B or GluN2C/D subunits at hippocampal CA3—-CA1 synapses can enhance glutamate release [42], though the mechanistic
details are unclear. Similarly, in cortical neurones, the GluN2B subunit exhibits a tonic facilitatory effect on spontaneous
glutamate release [43].

In this study, we identified two distinct pre-NMDAR populations at the pre-synaptic terminal of hippocampal CA3 neurones
that contain either GluN2A or GIuN2B subunits. The acute activation of these pre-NMDARs either increased (GluN2A) or
decreased (GluN2B) the Ca™ influx upon arrival of an action potential (AP) at the bouton. The modulation in Ca** dynam-
ics required small-conductance Ca*-activated K* channels (SK channels). Furthermore, we show that the composition of
pre-NMDAR is sensitive to global network activity and shifts from being GluN2B to GluN2A-dominant as network activity
increases. Finally, we show that the pre-NMDAR subunit composition impacts on short-term facilitation and sets the pre-synap-
tic integration time window and therefore the bandwidth of information transfer.

2. Material and methods

(a) Organotypic hippocampal slices

Transverse 350 um organotypic hippocampal slices were prepared from male Wistar rats (P7-P8). After dissection, slices were
cultured on Millicell CM membranes (polytetrafluoroethylene filter; pore size, 0.4 um; diameter, 12 mm) and maintained in
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culture media at 37°C for 7-14 days prior to use. Culture media comprised 78.8% minimum essential media, 20% heat-inacti-
vated horse serum, 30 mM HEPES, 26 mM D-Glu, 5.8 mM NaHCO3, 1 mM CaCly, 2 mM MgSO4 and 1% B-27. The media
was replaced every 2-3 days to ensure optimal and constant conditions for the slices. During the experiments, slices were
superfused with oxygenated (95% O2/5% CO,) artificial cerebrospinal fluid (ACSF; composition in mM: 145 NaCl, 2.5 KCl,
2 MgCly, 3 CaCly, 1.2 NaH2POy, 16 NaH2CO3 and 11 glucose). Each slice was used only for a single experiment owing to
extensive pharmacological manipulations.

(b) Pharmacology

In total, 200 nM NBQX was added to the ACSF to prevent hyperactivity in organotypic slices. In order to block pre-NMDARs,
50 uM AP5 was either washed in or included in the ACSF from the start. Ro 25-6981 (1 uM), PEAQX (100 nM) and DQP
1105 (50 pM) were used to specifically block NMDAR subunits. For SK-channel inhibition, slices were pre-incubated in 1 pM
apamin, which was maintained throughout the experiment. During electrophysiology experiments, slices were perfused with
Ro 25-6981 (1 uM) for at least 10 min to ensure reliable blocking of GluN2B. To manipulate global network activity and to
induce homeostatic plasticity, slices were incubated for 48-72 h with either gabazine (1 uM) or NBQX (10 uM)/AP5 (50 uM),
before imaging.

(c) Electrophysiology and imaging

Electrophysiological data were recorded in whole-cell patch clamp mode with WINWCP (Strathclyde Electrophysiology 851
software) and analysed using Clampfit (Axon Instruments). Cells were imaged with a LEICA DMLFSA microscope fitted with a
63x water-immersion objective (HCX APO L 63x/0.9W U-V-I; Leica) and a LEICA TCS SP2 confocal scan head. For Ca* imaging,
superficial CA3 pyramidal cells were patched with low-resistance patch electrodes (4-8 MQ) containing the Ca*-sensitive dye
Oregon green 488 BAPTA-1 (OGB-1; 0.5-1 mM) for 1-5 min. We waited at least 30—-45 min for the indicator to reach diffusional
equilibrium in the axon. We closely monitored signal intensity, and we did not see an increase in the basal fluorescence intensity
of the dye over the course of the experiments. Furthermore, dye saturation in the axon was examined by testing the summation
of Ca* responses of two APs given in quick succession. After successful identification of the axon and superficial boutons, cells
were repatched. Subsequently, line scans through boutons were performed and synchronized to intrasomatically stimulated
APs triggered by injecting step currents (0.5-2 pA) of 10 ms duration. We recorded 10-15 successive trials per condition. Ca*
responses were averaged within trials, and the peak response was extracted. Ca* transients in boutons were analysed using
ImacEe] and expressed as the fractional change in fluorescence (AF/F):

AF/F = (Ftransient - Fbaseline)/(Fbaseline - Fbackground) .

To elicit high-frequency AP bursts, a monopolar tungsten electrode encased in a glass pipette was positioned in stratum
radiatum to stimulate Schaffer collaterals. CA1 pyramidal cells were stimulated with five pulses at 50 Hz followed by a
single pulse given 100 ms from the end of burst. Patch electrodes contained 1 mM MK-801 to block post-synaptic NMDARSs.
Experiments were not conducted blind to experimental conditions.



(d) Glutamate uncaging

Before each experiment, we titrated the intensity of the uncaging laser (405 nm ultraviolet (UV) laser) to detect a robust rise in
Ca™ (0.5-1 AF/F) in distal dendritic spines (electronic supplementary material, figure S1). This calibration ensures the release of
glutamate at physiologically relevant concentrations and minimizes phototoxicity. After identification of superficial boutons, a
glass pipette (4-8 MQ)) filled with 4-methoxy-7-nitroindolinyl (MNI)-glutamate (10 mM) and connected to a picospritzer was
placed close to the boutons (within 20 um just above the surface of the slice) to ensure focal delivery of the MNI-glutamate.
Since intrasomatically induced APs take time to reach the pre-synaptic terminals and to release glutamate, we set the glutamate
uncaging to occur 0.5-5 ms after the induced AP (electronic supplementary material, figure S1).

(e) Statistical analysis

Imace] and GrapuPAD Prism 7 were used for analysis, graphing and statistical testing. Data were analysed with a two-tailed
Mann-Whitney U-test, Wilcoxon signed-rank test or Kruskal-Wallis with post hoc Dunn’s test for multiple comparisons. Data
are reported as mean * standard error of the mean (s.e.m.). Significance is denoted as follows: *p < 0.05, **p < 0.01 and ***p <
0.001.

3. Results

(a) Two distinct populations of pre-synaptic NMDARs bidirectionally modulate action potential-evoked Ca** influx

In order to measure the activation of pre-NMDARs, we bolus-loaded CA3 pyramidal neurones in hippocampal slices with
the Ca* indicator OGB-1, identified their axonal arbours and located superficial pre-synaptic terminals as visually distinct
varicosities (figure 1a; also see §2). We then locally perfused MNI-glutamate to photolytically release glutamate at targeted
boutons. To prevent the activation of post-synaptic NMDARs, we blocked the activation of AMPA receptors (10 pM NBQX),
which are required for the relief of the Mg* block at the post-synaptic terminal. The concentration of glutamate was titrated
prior to each experiment at spines located at a similar depth to match the Ca* transients observed during endogenous evoked
release of glutamate (figure 1b; also see §2). Consistent with the study of Carter and Jahr [44] in cortical neurones, glutamate
photolysis did not cause a significant rise in Ca*, even in conditions of low Mg* (figure 1c). We therefore considered whether
Ca™ entry may require additional membrane depolarization. To explore this, we paired glutamate photolysis with an AP
evoked by current injection via a patch pipette into the neurone under study. To our surprise, pairing an AP with glutamate
release between 0.5 and 5 ms following the onset of the AP resulted in a decrease in AP-evoked Ca™ transient (APCaT, n = 20
boutons/8 animals, AAPCaT = -0.347 + 0.049 AF/F; figure 1d,¢). This decrease was consistent over multiple trials (figure 1d(iii))
but was completely abolished by bath application of AP5 (50 uM; n = 6 boutons/3 animals, AAPCaT =-0.047 + 0.024 AF/F; figure
1le). This suggested the involvement of pre-NMDARs since the activation of post-synaptic NMDARs was probably prevented by
the global inhibition of AMPA receptors. Inhibition of metabotropic glutamate receptors (mGluRs) or GABA receptors did not
affect the reduction in AP-evoked Ca* influx (figure 1f). We also did not observe a decrease in APCaTs in the axon collaterals
(figure 1g). We further confirmed the pre-synaptic nature of NMDAR activation by loading the cell with MK-801 (‘iMK-801,
1 mM) through the patch pipette to specifically block pre-NMDARs within the cell under investigation. This also significantly
blocked the decrease in APCaTs (1 = 12 boutons/5 animals, AAPCaT =-0.137 + 0.043 AF/F; figure 1i).

The lack of direct Ca* entry following glutamate photolysis and the glutamate-induced decrease in APCaTs are outcomes
quite different from those seen for post-synaptic NMDARs. We hypothesized that this may reflect differences in subunit
composition. We repeated the experiment with subunit-specific NMDAR antagonists. Bath application of the GluN2B subunit
antagonist Ro 25-6981 (1 pM) led to an increase in APCaTs (n = 12 boutons/4 animals, AAPCaT = 0.157 + 0.02 AF/F; figure
1h,i). This increase was prevented by additionally bath application of either AP5 (50 uM) or intracellular MK-801 (1 mM;
figure 17). This indicates that the decrease in APCaTs was mediated by GluN2B-containing pre-NMDARs and, furthermore, that
there exists a second population of pre-NMDARs that do not contain the GluN2B subunit mediating an increase in APCaTs.
Incidentally, GluN2B inhibition unmasked a small but significant increase in pre-synaptic Ca* following glutamate photolysis
in low Mg* (electronic supplementary material, figure S1). Next, with GluN2B subunits blocked, we inhibited the GluN2A
subunit using PEAQX (100 nM). This completely abolished the increase in APCaTs (1 = 7 boutons/3 animals, AAPCaT = -0.029
+ 0.034 AF/F; figure 1h,i). Inhibition of the GluN2C/D subunits using DQP 1105 (50 uM) had no effect (n = 7 boutons/3 animals,
AAPCaT = 0.116 + 0.02 AF/F; figure 1i). PEAQX application alone did not result in a further decrease in APCaTs (figure 1/) and is
most probably owing to the lower specificity and partial inhibition of the GluN2B subunit [45,46].

These observations suggest that two populations of NMDARs are present at CA3 pre-synaptic terminals, one that contains
the GluN2A subunit and the other the GluN2B subunit. GluN2A-containing pre-NMDAR:s increase the Ca* influx following the
AP, whereas GluN2B-containing pre-NMDARs decrease it.

(b) Pre-synaptic NMDARs modulate action potential-evoked Ca** influx by the activation of SK channels

We next explored the mechanism by which pre-NMDARs modulate AP-evoked Ca* influx. At the post-synaptic terminal,
SK channels are known to form a Ca*-mediated negative feedback loop with NMDARs to reduce Ca* influx into synaptic
terminals [47-49]. Moreover, SK channels are well-established as shaping the AP waveform [50-54], impacting the dynamics of
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Figure 1. Two distinct populations of pre-NMDARs bidirectionally modulate AP-evoked Ca?* influx. (a(i)) Experimental set-up: CA3 cells were patched in whole-cell
mode to elicit APs via current injection. A glass pipette attached to a picospritzer enabled delivery of MNI-glutamate to the bouton. A 405 nm laser was used for focal
uncaging at single boutons. (a(ii)) Top: example CA3 neurone loaded with 0GB-1. The white box indicates pre-synaptic boutons along the Schaffer collaterals. Scale bar
= 20 pum. Bottom: enlarged image of the axon with several boutons. The dashed white line indicates the line scan through the bouton. Scale bar = 5 pm. (b) Left: an
example image of a dendrite from a CA3 neurone loaded with 0GB-1 (scale bar = 5 pm) and line scan through the spine indicated by the white dotted line. Orange
dashed line indicates photolysis pulse (scale bar = 125 ms). Right: the UV uncaging laser was titrated at small spines to elicit a response of approximately 0.5 AF/F.
(c) Left: example of an axon and bouton (scale bar = 10 pm) and example trace of a line scan through the bouton indicated by the white dotted line. Right: glutamate
uncaging in low Mg** did not elicit a Ca?* response at Schaffer collateral boutons. (d(i)) Line scans of APaTs with or without glutamate photolysis. Scale bar = 50 ms.
(d(ii)) Average APCaTs. Without glutamate = black, with glutamate = red. (d(iii)) Trial-by-trial peak APCaTs. (e) Average peak APCals in ACSF, n = 20 (left) or in the
presence of 50 uM AP5, n = 6 (right). (f) Inhibition of GABA receptors, n = 4, or mGluRs, n = 3, with picrotoxin (30 pM), CGP5845 (5 uM) and LY341495 (100 puM) did
not block the decrease in AP(als. (g) Photolysis experiments were performed at axon collaterals instead of boutons, n = 5. Scale bar = 10 um. No change in APCaTs
could be detected following glutamate photolysis at the collateral (bouton versus collateral p = 0.004; Mann—Whitney U-test). (h) Average peak APCaTs in 1 uM Ro
25-6981, n = 14 (left), 1 uM Ro 25-6981 with 100 nM PEAQX, n = 7 (centre), or 100 nM PEAQX alone, n = 10 (right), to block specific pre-NMDAR subunits. GluN2B
block diminished the decrease in APCaTs and unmasked an increase in APCals. PEAQX blocked the increase in APCaTs. PEAQX alone did not affect the decrease in APCals.
(i) The difference in the peak amplitude between trials with and without glutamate (AAPCaT) is shown for control experiments, experiments with 50 uM AP5 or 1 mM
intracellular MK-801 ('iMK-801'). Experiments in which GluN2B was blocked with Ro 25-6981 are highlighted in the grey box (AP5 versus vehicle p < 0.001, n =6,
MK-801 versus vehicle p = 0.008, n = 12, AP5 versus vehicleg, p < 0.003, n = 6, MK-801 versus vehicleg, p = 0.005, n = 6, PEAQX versus vehicleg, p = 0.006, n =7,
DQP 1105 versus vehicleg, p > 0.99, n = 7; Kruskal-Wallis with post hoc Dunn’s test).



pre-synaptic voltage-gated Ca** channels (VGCCs). We hypothesized that the NMDAR/SK-channel pathway is also present in [ 5 |
CA3 pre-synaptic terminals, where it is able to modulate AP-evoked Ca* influx.

Bath application of the selective SK-channel blocker apamin (1 uM) abolished both the glutamate photolysis-induced
decrease (n = 13 boutons/4 animals, AAPCaT = —0.097 + 0.037 AF/F; figure 2a,d) and increase in APCaTs (n = 9 boutons/3
animals, AAPCaT = —0.046 + 0.035 AF/F; figure 2b,d), observed following the application of Ro 25-6981. This suggests that both
GluN2A- and GluN2B-containing pre-NMDARs act via SK channels to modulate pre-synaptic Ca** dynamics. We also thought
it important to assess whether intracellular stores formed part of the pathway and so applied cyclopiazonic acid (CPA, 15 uM)
and ryanodine (20 uM); however, these did not affect the increase in APCaTs (1 = 8 boutons/3 animals, AAPCaT = 0.144 + 0.029
AF/F; figure 2¢,d).

We conclude from these observations that following the release of glutamate, two populations of pre-NMDARs become
activated, each triggering a cascade of intracellular signalling events that converge upon SK channels (figure 2¢). The SK
channels influence the duration of the AP and, consequently, the opening of VGCCs. Whether an increase or a decrease in the
AP-evoked Ca* influx occurs reflects the dominance of one pathway over the other.

(c) Network activity shifts the functional balance between the GIuN2A and GIuN2B sub-populations

What determines the dominant pre-NMDAR sub-population at a given synapse? We reasoned that the composition of pre-
NMDARs might be able to modulate pre-synaptic neurotransmitter release given its strong dependence on the dynamics of
Ca* influx. We hypothesized that the balance between sub-populations may be modified by global network activity, perhaps
in a homeostatic manner. We tested this by globally increasing (1 uM gabazine) or decreasing (10 uM NBQX and 50 uM AP5)
network activity for 48-72 h (figure 3a), an established protocol for induction of homeostatic plasticity [55]. We then measured
the modulation of APCaTs.

Increased network activity resulted in an overall decrease in APCaTs (n = 9 boutons/4 animals, AAPCaT = -0.2 + 0.034 AF/F;
figure 3c), which was not significantly different from control experiments (gabazine versus CTR p > 0.99; Kruskal-Wallis with
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post hoc Dunn'’s test; figure 3b,c,g). By contrast, decreasing network activity resulted in a substantial increase in APCaTs (n = 14
boutons/4 animals, AAPCaT = 0.144 + 0.021 AF/F; figure 3d,g) following photolysis of glutamate. We verified that this increase
is caused by an increase in GluN2A-containing pre-NMDARs via intracellular MK-801 (n = 9 boutons/4 animals, AAPCaT =
-0.019 + 0.024 AF/F; figure 3¢,g) and application of PEAQX (n = 13 boutons/4 animals, AAPCaT = -0.057 + 0.023 AF/F; figure
3f,2). Application of PEAQX did not unmask a decrease in APCaTs (figure 3g), suggesting that the extensive silencing of
network activity has caused a shift in the dominant sub-population expression such that far fewer GluN2B-containing receptors
remained.

(d) Pre-synaptic NMDAR modulation of action potential-evoked Ca** influx results in use-dependent modulation of
short-term facilitation

Does the change in Ca* influx modulate neurotransmitter release? Changes in pre-synaptic Ca* signalling predomi-
nantly impact neurotransmitter release and short-term plasticity (STP). In particular, the accumulation of intracellular
Ca* within the bouton following APs is largely associated with short-term facilitation, a transient increase in release
probability [56]. Since pre-NMDARs modulate the amount of Ca* entering the bouton, we hypothesized that pre-
NMDARs act to modify short-term facilitation.

The requirement of glutamate for the activation of the pre-NMDARs adds an additional use-dependent component
to short-term facilitation, i.e. it is not solely influenced by the clearance rate of Ca™. Figure 4a illustrates the potential
outcomes of use-dependent modulation of short-term facilitation. The activation of the GluN2A dominant pathway
forms a positive feedback loop in which the release of glutamate will augment neurotransmitter release during a
train of APs. This mechanism ensures that multiple release events occur for an AP burst, increasing the robustness
of information transmission, by extending the impact of the burst in time, thereby increasing the integration time
window at the post-synaptic neurone (figure 4a, left). By contrast, the GluN2B-dominant pathway forms a negative
feedback loop that reduces the increase in P, during bursts of APs. For this pathway to be active, neurotransmit-
ter release must of course first occur, a condition that ensures that some neurotransmitter is always released. This
use-dependent ‘clamping’ of short-term facilitation prevents excessive vesicle depletion (i.e. short-term depression) and
resets the synapse for subsequent AP trains (figure 44, middle). This will enhance information transfer within short
integration time windows. The precise balance between GIuN2A and GIuN2B sub-populations can therefore set the
optimal transmission mode for a given synapse.

We tested whether pre-NMDAR subunit populations differentially regulate short-term facilitation. To do so, we
recorded from CAl neurones in response to bursts of APs (five pulses at 50 Hz) elicited at the Schaffer collateral
inputs. We also included a single recovery pulse 100 ms after the burst (figure 4b, top) to examine the speed of
recovery from short-term depression. In total, 1 mM MK-801 was included in the patch electrode to block post-synaptic
NMDARs.

AP trains elicited short-term facilitation, followed by a slow decline (figure 4b,c) as previously reported for these
synapses [57-61]. As we have previously shown, the GluN2B pathways are dominant in the basal state of the network.
Application of the GIuN2B subunit blocker Ro 25-6981 (1 pM) significantly increased short-term facilitation of the
second pulse and enhanced short-term depression of subsequent pulses (figure 4b). STP remained unchanged when
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Figure 2. Pre-NMDARs modulate AP-evoked Ca** influx via the activation of SK channels. (a) Top left: line scans of APCaTs following SK-channel inhibition with 1 pM
apamin. Scale bar = 50 ms. Bottom left: trial-by-trial peak APCaTs. Without glutamate = black, with glutamate = red. Right: average peak APCals in 1 yM apamin.
The decrease in peak APCals was diminished after SK-channel inhibition, n = 13. (b,¢) Similarly, the Ro 25-6981-dependent increase in peak APCaTs was abolished
after application of 1 M apamin, n = 9. Inhibition of intracellular Ca** stores using CPA (15 uM) and ryanodine (20 pM) did not affect the increase, n = 8. (d) The
difference in the peak amplitude of APCals is shown for experiments in ACSF, n = 20 (from figure 1) and experiments with 1 M apamin. Experiments in which GluN2B
was blocked with Ro 25-6981 are highlighted in the grey box (apamin versus vehicle p < 0.001, apamin versus vehicleg, p = 0.001, CPA and ryanodine versus vehiclep,
p > 0.99; Kruskal-Wallis with post hoc Dunn’s test). Error bars represent s.e.m. (e) Proposed molecular mechanism for pre-NMDAR and SK-channel-mediated boutonal
Ca** dynamics. The release of glutamate activates two different pre-NMDAR populations, containing either GIluN2A or GIuN2B, which causes local Ca** influx and leads
to the modulation of SK channels, resulting in an increase or a decrease in Ca** influx, respectively, probably through VG(Cs.

ACSF alone was perfused (figure 4c). Basal P, is a key determinant of the short-term behaviour of a synapse. We
therefore wished to rule out the possibility that the application of Ro 25-6981 caused a change in P,. For this, we
compared the magnitude of the first pulse in each burst (Ro 25-6981: n = 15 cells/5 animals, p = 0.09; vehicle: n =
11 cells/5 animals, p > 0.99; Wilcoxon signed-rank test; figure 4d). We did not find a significant difference. We next
examined the recovery from short-term depression. The magnitude of the single recovery pulse given 100 ms after
the burst was significantly decreased when GIluN2B activity was inhibited with Ro 25-6981 (Ro 25-6981: n = 15 cells/5
animals, p < 0.001; vehicle: n = 11 cells/5 animals, p = 0.34; Wilcoxon signed-rank test; figure 4e), but not in control
vehicle experiments (Ro 25-6981 versus vehicle: p = 0.01;, Mann-Whitney U-test; figure 4f).

Consistent with our hypothesis, the results show that pre-NMDARs can regulate short-term facilitation in a use-
dependent manner. This mechanism allows for fine adjustment of the information transfer properties of the terminal.

4. Discussion

Here, we showed that the activation of two pre-NMDAR populations, each with a distinct subunit composition, regulates Ca*
dynamics and STP at Schaffer collateral boutons. Pre-NMDARs containing the GluN2B subunit form a negative feedback loop,
via SK channels, which decreases the Ca* influx that occurs during an AP, leading to a reduction in short-term facilitation
during high-frequency firing. Pre-NMDARs containing the GluN2A subunit increase the AP-driven Ca* influx into the bouton,
which results in the reinforcement of short-term facilitation during burst firing.
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We show that the GluN2B signalling dominates in conditions of high network activity, as commonly observed in hippocam-
pal slice preparations [62], whereas GluN2A signalling dominates when network activity is low. This may explain why the
detection of glutamate-evoked Ca* influx through pre-NMDARs has proved challenging [63-65] including in our own study
(figure 1c). However, when GluN2B subunits were blocked, we were able to observe a small but significant increase in Ca*,
even in the absence of APs (electronic supplementary material, figure S1). Hence, our data support the idea that synaptic
terminals can adjust the balance between GluN2A and GIuN2B sub-populations depending on the activity level in the network.
Whether this balance can be influenced by local activity, i.e. the level of pre- and post-synaptic activity experienced by an
individual synapse, remains to be explored, although this appears possible as synapse-specific differences in the expression
of pre-NMDARs within the same neurone have been reported in cortex [13]. This result would also add support to a recently
proposed model for pre-synaptic computation [66]. Whether the upregulation of GluN2A-containing pre-NMDARs during
phases of low network activity results from local translation [67,68] or membrane trafficking [69-71] also remains to be
investigated.

Within the hippocampus, a large variety of NMDAR subunits and isoforms can be found, though the extent to which
organotypic slice preparations recapitulate the expression profile of the intact, adult animal is unclear. Furthermore, only
male rats were used in this study, and potential sex differences remain to be determined. However, pre-NMDARs have been
observed in several immunolabelling studies [72,73], and pre-NMDARs have been implicated in pre-synaptic LTD in acute
slice preparations [19] and modulation of axon excitability [74]. Next, a receptor’s functional performance is thought to be
primarily determined by the GluN2 subunit [23,24,27,29]. In our study, we focused on GluN2A and GIuN2B as they are
the predominantly expressed isoforms in the adult hippocampus. By contrast, GluN2C and GIuN2D expression levels in the
adult brain are considerably lower and most prominent in the cerebellum and the brainstem [23,24,29,37,75] or astrocytes [76].
Although the majority of studies have focused on diheteromeric GluN1/GluN2 receptors, the importance of triheteromeric
NMDARSs is also recognized [28,77-80], raising the possibility for even broader functional diversity. Here, our observations for
the pre-NMDAR sub-population involved in the negative feedback loop (containing GluN2B) are consistent with both a GluN1/
GluN2B diheteromer and a GluN1/GluN2A/GIuN2B triheteromer and therefore require a more detailed pharmacological and
genetic dissection of subunit composition.

It is well established that SK channels are activated by Ca* influx through NMDARs [81-83], which reduces Ca* influx
through VGCCs [25,48,52]. The negative feedback between NMDARs and SK channels has been carefully studied at the
post-synaptic terminal [47-49], but not at the pre-synaptic terminal, even though SK channels and NMDARs are known to
be colocalized there [49,84]. In this study, we confirm the presence of the negative feedback interaction at the pre-synaptic
terminal and link it specifically to the GluN2B subunit of the NMDAR. Additionally, we have shown that the GluN2A subunit
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is required for the formation of a positive feedback loop with SK channels. This subunit-dependent bidirectional signalling is
analogous to the well-characterized roles of post-synaptic NMDARs in LTP and LTD [30,31,33,34].

How do the two pre-NMDAR populations produce their differential effects on the SK channels? While GluN2A and GluN2B
show similar characteristics for Ca* permeability, sensitivity to Mg> blockade and channel conductance, GluN2A-containing
receptors are coupled to distinct downstream signalling networks [24,29]. SK channels are part of large protein complexes
and are co-assembled with protein kinase CK2 and phosphatase PP2A, which have opposing effects on SK-channel activity
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[85-87]: while CK2 phosphorylates SK-channel-bound calmodulin (CaM) resulting in faster channel deactivation and reduced
Ca™ sensitivity, PP2A dephosphorylates CaM causing enhanced Ca* sensitivity [87]. Therefore, it is likely that activation of
GluN2A receptors increases CK2 activity within the bouton, leading to an inhibition of SK channels thus prolonging membrane
depolarization and consequently Ca* influx [48,49], whereas activation of the GluN2B-containing sub-population engages the
PP2A signalling pathway, leading to a reduction in the depolarization caused by the AP.

Finally, the differential expression patterns of pre-NMDAR subunits and the resulting functional heterogeneity we have
identified may account for some of the inconsistencies in the literature. Functional and anatomical evidence for pre-NMDARs
has been available for a number of years [18,88-90]; however, the existence of functional receptors has been challenged as some
studies report NMDAR-dependent Ca* transients in boutons [13,18] while others do not [63-65]. Here, we are only able to
detect a pre-NMDAR-dependent modulation of Ca** when activation was paired with APs. Furthermore, only after isolating the
GIuN2A subunit is Ca* influx through the pre-NMDARs unmasked (electronic supplementary material, figure S1). It therefore
seems prudent to review the data with careful oversight of pre-NMDAR subunit composition.
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