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					Higher-order	cognitive	and	affective	functions	are	supported	by	large-scale	networks	in	the	brain.	
Dysfunction	 in	 different	 networks	 is	 proposed	 to	 associate	 with	 distinct	 symptoms	 in	 neuro-
psychiatric	 disorders.	 However,	 the	 specific	 networks	 targeted	 by	 current	 clinical	 transcranial	
magnetic	 stimulation	 (TMS)	 approaches	 are	unclear.	While	 standard-of-care	TMS	 relies	 on	 scalp-
based	 landmarks,	 recent	 FDA-approved	TMS	protocols	 use	 individualized	 functional	 connectivity	
with	the	subgenual	anterior	cingulate	cortex	(sgACC)	to	optimize	TMS	targeting.	Leveraging	previous	
work	 on	 precision	 network	 estimation	 and	 recent	 advances	 in	 network-level	 TMS	 targeting,	 we	
demonstrate	that	clinical	TMS	approaches	target	different	functional	networks	between	individuals.	
Homotopic	scalp	positions	(left	F3	and	right	F4)	target	different	networks	within	and	across	indi-
viduals,	 and	 right	 F4	 generally	 favors	 a	 right-lateralized	 control	 network.	 We	 also	 modeled	 the	
impact	of	targeting	the	dorsolateral	prefrontal	cortex	(dlPFC)	zone	anticorrelated	with	the	sgACC	and	
found	that	the	individual-specific	anticorrelated	region	variably	targets	a	network	coupled	to	reward	
circuitry.	Combining	individualized,	precision	network	mapping	and	electric	field	(E-field)	modeling,	
we	further	illustrate	how	modeling	can	be	deployed	to	prospectively	target	distinct	closely	localized	
association	 networks	 in	 the	 dlPFC	 with	 meaningful	 spatial	 selectivity	 and	 E-field	 intensity	 and	
retrospectively	assess	network	engagement.	Critically,	we	demonstrate	the	feasibility	and	reliability	
of	 this	approach	in	an	independent	cohort	of	participants	(including	those	with	Major	Depressive	
Disorder)	who	 underwent	 repeated	 sessions	 of	 TMS	 to	 distinct	 networks,	 with	 precise	 targeting	
derived	from	a	low-burden	single	session	of	data.	Lastly,	our	findings	emphasize	differences	between	
selectivity	and	maximal	intensity,	highlighting	the	need	to	consider	both	metrics	in	precision	TMS	
efforts.	

	
					Higher-order	cognitive	and	affective	functions	are	supported	by	distributed	cortical	association	networks	
(Geschwind,	1965;	Goldman-Rakic,	1988;	Mesulam,	1990;	1998).	Over	the	past	few	decades,	human	systems	
neuroscience	approaches	have	yielded	important	insights	into	the	organization	and	functional	properties	of	
association	networks	with	recent	focus	on	within-individual	mapping	(e.g.,	Fedorenko	et	al.,	2010;	Laumann	
et	 al.,	 2015;	Braga	 and	Buckner,	 2017;	Gordon	et	 al.,	 2017;	 Somers	 et	 al.,	 2021).	 Leveraging	 the	 tools	 of	
precision	neuroimaging	to	preserve	idiosyncratic	anatomical	details	in	the	individual,	we	recently	reported	
on	the	intricate	pattern	of	networks	across	the	cortical	mantle	(and	within	prefrontal	cortex)	that	subserve	
diverse	higher-order	cognitive	and	affective	functions	(Du	et	al.,	2024).	What	was	striking,	and	consistent	
with	a	growing	number	of	reports	(e.g.,	Mueller	et	al.,	2013;	Seitzman	et	al.,	2019),	is	how	variable	functional	
anatomy	is	between	individuals.	This	variability	is	unlikely	methodological	noise	as	individual	estimates	of	
network	organization	predict	the	topography	of	 functional	responses	in	 independent	task	data.	Thus,	the	
between-individual	 differences	 arise	 from	meaningful	 idiosyncratic	 differences	 in	 organization	 between	
people	and	therefore	should	be	considered	in	precision	approaches	to	neuromodulation.	
					Neuropsychiatric	 disorders	 have	 been	 associated	 with	 dysfunction	 in	 large-scale	 cortical	 association	
networks	(Menon,	2011;	Kaiser	et	al.,	2015;	Williams,	2016;	Sha	et	al.,	2019;	Tozzi	et	al.,	2021;	Grot	et	al.,	
2024).	 Moreover,	 specific	 patterns	 of	 connectivity	 based	 on	 group-level	 network	 estimates	 have	 been	
variably	linked	to	neuropsychiatric	symptoms	(Menon,	2011;	Downar	and	Daskalakis,	2013;	Xia	et	al.,	2018);	
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e.g.,	autonomic	and	interoceptive	symptoms	to	the	Salience	network	(Uddin,	2015),	ruminative	symptoms	to	
the	Default	network	(Chen	et	al.,	2020;	Zhou	et	al.,	2020),	and	affect	dysregulation	symptoms	to	the	Control	
network	(Joormann	and	Vanderlind,	2014;	Williams,	2016;	Xia	et	al.,	2018).	Given	the	clinical	heterogeneity	
of	neuropsychiatric	disorders,	neuromodulation	of	symptom-specific	networks	may	yield	better	therapeutic	
gains	for	certain	indications	(Eldaief	et	al.,	2023;	Siddiqi	et	al.,	2020;	Siddiqi	and	Fox,	2023).	Importantly,	
traditional	 characterizations	 of	 functional	 networks	 have	 used	 estimates	 derived	 at	 the	 group	 level,	
averaging	 across	many	 individuals	 to	boost	 signal,	which	underrepresent	 idiosyncrasies	observed	 in	 the	
individual	patient	(Cash	et	al.,	2021;	Moreno-Ortega	et	al.,	2020).	As	such,	targeting	of	one	network	based	on	
group-level	estimates	may	actually	stimulate	a	different	network	in	a	given	individual	or	multiple	networks.		
					Transcranial	Magnetic	Stimulation	 (TMS)	 is	 an	FDA-approved	 treatment	 for	multiple	neuropsychiatric	
disorders,	 including	 Major	 Depressive	 Disorder	 (MDD),	 Obsessive	 Compulsive	 Disorder	 (OCD),	 and	
migraines	(e.g.,	Fox	et	al.,	2012;	Eldaief,	Press,	and	Pascual-Leone,	2013;	see	Perera	et	al.,	2016	and	Trevizol	
et	al.,	2016	for	reviews	of	TMS	studies	applied	to	MDD	and	OCD,	respectively).	Standard	clinical	targeting	
currently	 relies	 on	 anatomical	 landmarks,	 e.g.,	 4-5	 cm	 anterior	 to	 the	 site	where	 the	motor	 threshold	 is	
obtained	(Pascual-Leone	et	al.,	1996);	or	modified	EEG	landmarks,	e.g.,	left	F3	and	right	F4	from	the	10-20	
coordinate	system	(Herwig,	Satrapi,	and	Schönfeldt-Lecuona,	2003;	Okamoto	et	al.,	2004)	or	the	Beam	F3	
method	(Beam	et	al.,	2009).	As	such,	standard	clinical	approaches	do	not	account	 for	between-individual	
differences	in	functional	network	anatomy.		
					Increasingly,	efforts	have	focused	on	establishing	TMS	targets	based	on	functional	neuroimaging	(Hoffman	
et	al.,	2007;	Mantovani	et	al.,	2010;	Eldaief	et	al.,	2011;	Fox	et	al.,	2012;	Wang	et	al.,	2014;	Santarnecchi	et	al.,	
2018;	Nilakantan	et	al.,	2019;	Momi	et	al.,	2020;	Bagattini	et	al.,	2021;	Cash	et	al.,	2021),	as	this	has	been	
hypothesized	to	improve	clinical	efficacy	(Fox	et	al.,	2012;	Weigand	et	al.,	2018).	For	instance,	the	accelerated	
Stanford	Neuromodulation	Therapy	(SNT)	TMS	protocol	employs	a	personalized	targeting	strategy.	The	SNT	
protocol,	which	was	recently	approved	by	the	FDA	for	the	treatment	of	MDD	(Cole	et	al.,	2020;	2022),	targets	
a	region	of	dorsolateral	prefrontal	cortex	(dlPFC)	anticorrelated	to	the	subgenual	cingulate	cortex	(sgACC).	
A	 recent	 study	 suggests	 that	 SNT	 alters	 connectivity	 within	 a	 group-level	 atlas-based	 estimate	 of	 the	
distributed	network	commonly	referred	to	as	the	Default	network	(Gajawelli	et	al.,	2024).	An	open	question	
is	how	networks	defined	within	individuals	relate	to	the	precision	targeting	approach	deployed	in	the	SNT	
protocol.	That	is,	does	defining	targets	based	on	anticorrelation	with	the	sgACC	consistently	target	a	specific	
association	network	and,	if	so,	which	one?	
					We	recently	mapped	and	validated	a	precision	network	estimation	approach	using	a	novel	Multi-Session	
Hierarchical	Bayesian	Model	(MS-HBM)	in	15	healthy	individuals	(Du	et	al.,	2024).	Here,	we	leverage	this	
work	and	recent	advances	in	precision	network-level	TMS	targeting	(Lynch	et	al.,	2022)	to	evaluate	which	
networks,	 defined	 at	 the	 individual	 level	 with	 precision	 functional	 MRI	 (fMRI),	 are	 stimulated	 across	
individuals	when	two	of	the	available	clinical	protocols	are	used:	(1)	scalp-based	landmarking	(e.g.,	left	F3	
and	 right	 F4)	 and	 (2)	 sgACC	 anticorrelation	 targeting	 (e.g.,	 as	 used	 in	 the	 SNT	 protocol).	 Further,	 we	
integrated	a	protocol	for	characterizing,	at	the	individual	level,	the	spatial	selectivity	and	E-field	intensity	of	
personalized	 TMS	 network	 targets	 in	 the	 dlPFC.	 To	 do	 so,	 we	 combined	 tools	 from	 individualized	
preprocessing,	precision	network	mapping,	and	electric	 field	(E-field)	modeling	 in	an	automated	pipeline	
aimed	to	guide	clinical	neurostimulation	decisions.	The	precision	TMS	pipeline	was	first	implemented	in	a	
cohort	of	15	intensively	sampled	healthy	participants	to	gain	insights	on	the	functional	network	impact	of	
existing	 clinical	 TMS	 protocols	 and	 demonstrate	 the	 potential	 for	 network-specific	 TMS	 targeting.	 The	
pipeline	was	then	applied	on	an	independent	cohort	of	participants	(including	those	with	MDD)	with	fMRI	
data	 acquired	 in	 a	 single	 session	 to	 prospectively	 target	 distinct	 networks	 and	 retrospectively	 estimate	
network	engagement.	The	impact	of	this	work	lies	in	its	potential	to	tailor	neurostimulation	to	individual	
brain	 networks,	 assess	 the	 network-level	 effects	 of	 TMS	 protocols,	 and	 improve	 functional	 precision	 of	
neuromodulation	in	both	research	and	therapeutic	settings.	

	
Materials	and	Methods	

	

Study	Design	
					This	 study	 used	 neuroimaging	 data	 from	 two	 cohorts	 of	 participants.	 The	 first	 cohort	 included	 15	
intensively	sampled	participants	enrolled	as	part	of	a	broader	study	of	network	topography	and	functional	
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mapping	within	the	individual	(Du	et	al.,	2024;	Kosakowski	et	al.,	2024).	Participants	completed	scanning	
across	8-11	sessions.	For	each	participant,	networks	were	estimated	within	the	individual	and	the	results	
run	 through	 the	 openly	 available	 Targeted	 Functional	 Network	 Stimulation	 (TANS)	 protocol	 for	 E-field	
modeling	 and	 target	 optimization	 (Lynch	 et	 al.,	 2022).	 Pertinent	 visualizations	 and	 results	 were	
automatically	compiled	into	a	comprehensive	TMS	planning	report	for	each	participant.	From	these	precision	
modeling	results,	we	gleaned	insights	into	the	networks	impacted	by	common	clinical	TMS	strategies	as	well	
as	the	potential	to	distinctly	target	side-by-side	networks.	The	same	precision	TMS	modeling	approach	was	
applied	on	an	independent	cohort	of	8	participants,	including	4	participants	with	MDD.	These	participants	
completed	one	scanning	session	(less	 than	one	hour	of	 fMRI	data	collected)	and	received	repetitive	TMS	
(rTMS;	see	TMS	protocol)	to	the	modeled	sites.	

	

Participants	
					A	first	cohort	of	15	healthy	right-handed	adults	aged	18-34	yr	(mean	=	22.1	yr,	SD	=	3.9	yr,	9	female),	and	
a	second	cohort	of	4	healthy	adults	aged	26-45	yr	(mean	=	34.8	yr,	SD	=	7.8	yr,	1	female)	and	4	adults	with	
MDD	 aged	 24-39	 yr	 (mean	 =	 33.0	 yr,	 SD	 =	 7.0	 yr,	 2	 female),	 representing	 diverse	 racial	 and	 ethnic	
backgrounds	(12	non-White	or	Hispanic	in	total),	participated	for	payment.	The	first	cohort	of	participants	
are	labeled	P1-P15.	Participants	provided	informed	consent	using	a	protocol	approved	by	the	Institutional	
Review	Board	at	Harvard	University	(first	cohort	of	participants)	and	Mass	General	Brigham	(second	cohort	
of	participants).	
	

MRI	Data	Acquisition	
					For	the	jirst	cohort,	details	of	the	methods	have	been	reported	previously	(Du	et	al.,	2024)	and	relevant	
aspects	are	repeated	here.	For	the	second	cohort,	details	of	the	methods	were	largely	the	same,	with	minor	
differences	noted	below.	All	neuroimaging	data	were	collected	at	the	Harvard	Center	for	Brain	Science	using	
a	 3-T	 Prisma-fit	 MRI	 scanner	 and	 32-channel	 head	 coil	 (Siemens	 Healthineers,	 Erlangen,	 Germany).	
Participants	 were	 monitored	 closely	 for	 motion	 using	 Framewise	 Integrated	 Real-time	 MRI	 Monitoring	
(FIRMM;	Dosenbach	et	al.,	2017)	and	for	alertness	using	the	EyeLink	1000	Core	Plus	with	Long-Range	Mount	
(SR	Research,	Ottawa,	ON,	Canada).		
					fMRI	data	were	acquired	with	a	custom	multiband	gradient-echo	echo-planar	pulse	sequence	provided	by	
the	University	of	Minnesota	sensitive	to	blood	oxygenation	level-dependent	(BOLD)	contrast	(e.g.,	Feinberg	
et	al.,	2010;	Xu	et	al.,	2013):	voxel	size	=	2.4	mm,	TR	=	1,000	ms,	TE	=	33.0	ms,	flip-angle	=	64°,	matrix	92	x	
92	x	65	(FOV	=	221	x	221),	65	slices,	anterior-to-posterior	(AP)	phase	encoding,	multislice	5x	acceleration.	
17-24	resting-state	fixation	runs	were	collected	for	each	participant,	during	which	they	fixated	on	a	central	
black	 crosshair.	 Each	 run	 was	 7	 min	 2	 s,	 with	 422	 frames;	 the	 first	 12	 frames	 were	 removed	 for	 T1	
equilibration.	To	mitigate	spatial	distortions,	dual-gradient-echo	B0	field	maps	were	acquired	at	each	session	
(TE=4.45,	6.91ms	with	slices	matched	to	the	BOLD	sequence).		
					For	P1-P15	(first	cohort),	high-resolution	T1-weighted	(T1w)	and	T2-weighted	(T2w)	structural	images	
were	acquired	based	on	the	Human	Connectome	Project	(HCP)	sequences	(Harms	et	al.,	2018).	T1w	MPRAGE	
parameters:	voxel	size	=	0.8	mm,	TR	=	2,500	ms,	TE	=	1.81,	3.60,	5.39,	and	7.18	ms,	TI	=	1,000	ms,	flip	angle	
=	8°,	matrix	300	x	320	x	208,	208	slices,	in-plane	GRAPPA	acceleration	=	2.	T2w	SPACE	parameters:	voxel	
size	=	0.8	mm,	TR	=	3,200	ms,	TE	=	564	ms,	matrix	=	300	x	320	x	208,	208	slices,	in-plane	GRAPPA	acceleration	
=	2.	As	backup,	rapid	T1w	structural	scans	were	also	collected	using	a	multi-echo	MPRAGE	sequence	(van	
der	Kouwe	et	al.,	2008):	voxel	size	=	1.2	mm,	TR	=	2,200	ms,	TE	=	1.57,	3.39,	5.21,	and	7.03	ms,	TI	=	1,100	ms,	
flip	angle	=	7°,	matrix	192	x	192	x	144,	144	slices,	in-plane	GRAPPA	acceleration	=	4.		
					For	 the	 second	 cohort,	 high-resolution	 T1-weighted	 (T1w)	 and	 T2-weighted	 (T2w)	 structural	 images	
were	acquired	using	FreeSurfer	sequences.	T1w	MPRAGE	parameters:	voxel	size	=	1.0	mm,	TR	=	2,530	ms,	
TE	=	1.69,	3.55,	5.41,	and	7.27	ms,	TI	=	1,100	ms,	flip	angle	=	7°,	matrix	256	x	256	x	192,	192	slices,	in-plane	
GRAPPA	acceleration	=	2.	T2w	SPACE	parameters:	voxel	size	=	1.0	mm,	TR	=	3,200	ms,	TE	=	564	ms,	matrix	
=	256	x	256	x	192,	192	slices,	in-plane	GRAPPA	acceleration	=	2.	Backup	T1w	structural	scans	were	collected	
using	a	multi-echo	MPRAGE	sequence	with	the	same	parameters	as	for	the	first	cohort.	One	participant	in	
the	second	cohort	had	the	same	T1w	and	T2w	sequence	as	used	for	the	first	cohort,	and	another	participant	
had	the	same	T2w	sequence	as	used	for	the	first	cohort.	Due	to	artifacts	in	acquisition	for	one	participant,	
the	backup	1.2mm	T1w	image	was	used	for	preprocessing	and	modeling.	
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Data	Quality	Control	
					Raw	 images	 were	 uploaded	 into	 an	 instance	 of	 the	 eXtensible	 Neuroimaging	 Archive	 Toolkit	 (XNAT;	
Marcus	et	al.,	2007),	an	open-source	data	management	and	quality	control	(QC)	platform.	Automated	QC	was	
run	including	motion	traces,	slope	images	of	drift,	estimates	of	mean	and	absolute	motion,	and	calculation	of	
voxel	and	slice-based	signal-to-noise	ratio	(SNR).	MRI	images	were	manually	checked	for	incomplete	head	
coverage,	 ringing,	 and	 ghosting.	 Exclusion	 criteria	 for	 resting-state	 fixation	 runs	 included:	 maximum	
absolute	motion	>1.8	mm	and	slice	SNR	<130.	In	the	first	cohort,	on	a	case-by-case	basis,	runs	with	SNR	<130	
but	>100	were	inspected	and	kept	if	motion	traces	and	visual	inspection	showed	adequate	quality.	In	the	
second	cohort,	all	included	runs	had	SNR	>130,	and	one	borderline	rest	run	was	included	with	motion	of	1.86	
mm.	 Data	 exclusions	were	 finalized	 before	 any	 further	 analysis,	 and	 there	were	 a	 total	 of	 15-24	 usable	
resting-state	fixation	runs	(105-169	min	of	data)	in	each	participant	in	the	first	cohort,	and	5-8	runs	(35-56	
min	of	data)	in	each	participant	in	the	second	cohort.	
	

Automated	Network	Mapping	and	TMS	Targeting	Pipeline	in	the	Individual	
					An	automated	pipeline	that	integrates	each	step	from	MRI	preprocessing	to	TMS	planning	was	constructed	
and	is	made	available	as	an	open-source	toolkit.	The	toolkit	uses	openly	available	software	packages	for	MRI	
data	processing	and	TMS	E-field	modeling,	The	steps	in	the	processing	pipeline	were	as	follows.	
						(1)	MRI	 Preprocessing.	 Raw	 neuroimaging	 data	were	 preprocessed	with	 an	 openly	 available	 pipeline	
(“iProc”),	 which	 minimizes	 spatial	 blur	 and	 preserves	 individual	 idiosyncratic	 anatomy	 with	 a	 single	
interpolation	step	for	BOLD	data	(see	detailed	description	in	Braga	et	al.,	2019),	using	tools	from	FreeSurfer	
(Fischl,	2012),	FSL	(Jenkinson	et	al.,	2012),	and	AFNI	(Cox,	2012).	For	the	first	cohort,	preprocessed	data	
were	taken	directly	from	Du	et	al.	(2024).	For	the	second	cohort,	data	were	preprocessed	as	follows:	high-
resolution	T1w	and	T2w	images	were	used	for	pial	and	white	matter	boundary	estimation	with	FreeSurfer	
recon-all.	 Brain	 extraction	was	 performed	 using	 FSL	BET.	 A	within-individual	mean	BOLD	 template	was	
calculated	by	taking	the	average	of	the	field	map-unwarped,	upsampled	to	1.2	mm	middle	volumes	of	all	runs	
that	were	registered	to	an	unwarped,	upsampled	middle	volume	from	a	single	run.	For	each	BOLD	run,	4	
matrices	were	calculated	to	1)	align	all	volumes	in	a	run	to	the	middle	volume	of	that	run	(FSL	FLIRT,	12	
Degrees	of	Freedom;	DOF),	2)	correct	for	geometric	distortions	caused	by	susceptibility	gradients	using	a	
session-specific	B0	field	map	to	unwarp	(FSL	FUGUE),	3)	register	the	unwarped	BOLD	volume	to	the	within-
subject	mean	BOLD	template	(FSL	FLIRT,	12	DOF),	and	4)	register	data	from	the	mean	BOLD	template	to	the	
T1w	native-space	 template,	 resampled	 to	1.0	mm	(FreeSurfer	bbregister,	6	DOF).	These	4	matrices	were	
composed	into	a	single	transform	that	was	applied	to	raw	BOLD	volumes	in	a	single	interpolation	to	reduce	
spatial	blur.	A	QC	dashboard	with	the	resampled	T1w	and	interpolated	BOLD	images	was	generated,	allowing	
for	extensive	checking	for	registration	errors	through	web-based	viewing	and	capture	in	an	encapsulated	
PDF	report.		
					After	 the	single	 interpolation	step,	 confounding	variables	 including	6	head	motion	parameters,	whole-
brain	signal,	ventricular	signal,	deep	cerebral	white	matter	signal,	and	temporal	derivatives	as	well	as	the	
quadratic	term	were	calculated	from	the	data	(36	parameters;	Ciric	et	al.,	2017).	In	addition,	volumes	with	
high	framewise	displacement	(defined	as	>0.4mm	or	>3	standard	deviations	above	the	mean)	were	flagged	
in	each	run	and	added	to	the	36-parameter	nuisance	regression	matrix.	These	signals	were	regressed	out	
(AFNI	3dTproject),	 then	data	were	bandpass	 filtered	at	0.01–0.1-Hz	 (AFNI	3dBandpass),	 projected	 to	 the	
fsaverage6	cortical	surface	mesh	using	trilinear	interpolation,	and	then	smoothed	using	a	2-mm	full-width	
at	half-maximum	Gaussian	kernel	along	the	cortical	surface	(FreeSurfer	mri_vol2surf	and	mri_surf2surf).		
						(2)	Within-Individual	Cortical	Network	Estimation.	Within-individual	cortical	networks	were	estimated	
with	a	15-network	MS-HBM	(see	Kong	et	al.,	2019;	Du	et	al.,	2024).	For	this	study,	network	estimates	were	
used	directly	from	Du	et	al.	(2024),	and	the	steps	are	summarized	here.		
					Using	 the	 available	 resting-state	 fixation	 runs	 for	 each	 individual	 as	 input,	 the	MS-HBM	 allocated	 all	
fsaverage6	cortical	surface	vertices	to	one	of	15	networks.	For	each	run,	the	model	calculated	correlations	
between	the	time	series	at	each	of	the	40,962	surface	vertices	and	1,175	regions	of	interest	uniformly	spread	
across	the	surface.	An	initial	functional	connectivity	profile	was	defined	as	a	binarized	map	of	the	top	10%	
of	these	correlations.	The	MS-HBM	was	then	initialized	with	a	15-network	group-level	prior	derived	from	
the	HCP	S900	data	 release	and	used	parameters	derived	 from	an	expectation-maximization	algorithm	to	
estimate	network	assignments	from	the	functional	connectivity	profiles	of	the	individuals	to	be	mapped.	The	
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MS-HBM	 was	 run	 in	 groups	 of	 5	 participants	 to	 yield	 network	 assignments	 for	 all	 15	 participants.	 A	
dashboard	 /	 PDF	 of	 8	 views	 including	 frontal,	 lateral,	 parietal,	 and	 medial,	 in	 both	 hemispheres	 was	
generated	for	QC	and	visualization.	
					Critically,	to	ensure	that	network	estimates	were	not	overly	driven	by	model	assumptions,	a	model-free	
seed	region-based	control	check	was	performed	(see	Du	et	al.,	2024).	Seed	region	correlation	utilized	a	Fisher	
r-to-z	transformed	81,924	x	81,924	correlation	matrix	composed	from	all	pairwise	correlations	between	the	
fMRI	time	courses	at	each	surface	vertex	during	each	resting-state	fixation	run,	averaging	across	all	runs.	In	
addition,	cortical	network	estimates	derived	from	the	MS-HBM	showed	high	reliability	across	sessions	(on	
average	>	80%	correspondence	of	networks	estimated	using	independent	data	sets	within	individuals),	as	
demonstrated	in	Fig.	2-4	of	Du	et	al.	(2024).		The	correspondence	of	network	estimates	improved	with	longer	
scanning	times	(see	Supplemental	Fig.	S14	of	Du	et	al.,	2024).	
					The	surface-based	network	estimates	were	projected	back	to	the	native-space	surface	using	a	series	of	
Connectome	Workbench	(Marcus	et	al.,	2011;	v1.3.2)	commands.	First,	the	spherical	registration	file	for	each	
hemisphere	(e.g.,	lh.sphere.reg)	from	FreeSurfer	was	converted	to	a	Geometry	Interchange	Format	(GIFTI)	
surface	file	with	wb_shortcuts	-freesurfer-resample-prep	(e.g.,	lh.sphere.reg.surf.gii).	Next,	using	the	spherical	
registration	GIFTI	file,	network	estimates	in	each	hemisphere	were	resampled	to	a	high-resolution	native	
space	surface	file	with	the	“ADAP_BARY_AREA”	method	in	wb_command	-label-resample.	With	this	method,	
native-space	network	estimates	in	each	hemisphere	were	then	resampled	to	the	fsLR-32k	space	(FreeSurfer,	
left-right-symmetric,	~32k	vertices;	Van	Essen	et	al.,	2012),	which	preserves	individual	cortical	details	while	
reducing	computational	burden	with	32,492	vertices	per	hemisphere.		
						(3)	dlPFC	Search	Space.	A	custom	dlPFC	search	space,	wherein	individualized	stimulation	targets	were	
ultimately	defined,	was	created	separately	in	both	hemispheres.	Starting	from	published	atlas	coordinates	
for	the	approximate	location	of	Brodmann	Area	46	(Fox	et	al.,	2012;	Rajkowska	and	Goldman-Rakic,	1995),	
a	30mm-radius	spherical	region	of	interest	(ROI)	centered	at	(-44,	40,	29)	in	Montreal	Neurological	Institute	
(MNI)	space	was	created	on	the	left,	as	well	as	its	homolog	on	the	right,	centered	at	(44,	40,	29).	The	sphere	
was	then	shifted	dorsally	to	allow	for	targeting	of	more	networks,	with	a	final	center	of	(-34,	40,	36)	on	the	
left	and	(34,	40,	36)	on	the	right.	These	ROIs	were	projected	to	the	surface,	regions	in	the	insula	and	on	the	
midline	were	removed,	and	final	ROIs	were	resampled	to	fsLR-32k	space	for	use	in	each	individual.	See	Fig.	
4B	for	the	left	dlPFC	search	space	in	one	example	participant.	Note	that	this	pipeline	can	be	used	with	other	
search	spaces.	
						(4)	E-field	Modeling	of	Precision	Targeting.	The	TANS	pipeline	developed	by	Lynch,	Liston	and	colleagues	
(Lynch	et	al.,	2022)	was	adapted	and	applied	to	derive	optimal	coil	positions	and	orientations	to	target	each	
network	set.	Prior	to	TANS,	all	individual	surface	data,	including	network	estimates,	search	spaces,	pial	and	
white	matter	surfaces,	and	sulcal	depth	maps	were	resampled	to	fsLR-32k	space	(Van	Essen	et	al.,	2012).	
					To	begin,	a	tetrahedral	head	model	including	tissue	segmentations	was	created	using	each	participant’s	
T1w	structural	image	(SimNIBS	charm;	Puonti	et	al.,	2020).	Next,	a	target	region	was	identified	within	the	
left	dlPFC	search	space.	The	target	network(s)	were	masked	within	the	search	space,	and	vertices	in	the	sulci	
were	removed	(thresholded	at	0	using	the	.sulc	files	created	by	FreeSurfer	recon-all)	so	that	only	the	gyral	
crowns	remained.	The	surface	area	of	each	remaining	contiguous	cluster	was	calculated,	and	the	final	target	
region	was	selected	as	the	cluster	with	the	largest	surface	area.	After	the	target	region	was	identified,	a	search	
grid	was	constructed	on	 the	scalp	above	 the	 target	 region	centroid.	This	search	grid	was	 then	uniformly	
subsampled.		
					At	each	point	 in	 the	subsampled	search	grid,	an	E-field	 simulation	was	 run	with	SimNIBS	 (Thielscher,	
Antunes,	and	Saturnino,	2015)	using	a	standardized	stimulation	intensity	(1	A/μs)	and	coil	to	scalp	distance	
(2	mm),	with	 a	MagVenture	 Cool-B70	 coil	model	 (MagVenture,	 Inc.,	 Farum,	 Denmark).	 At	 this	 step,	 the	
standardized	stimulation	intensity	from	TANS	was	used,	as	E-field	strength	varies	linearly	with	stimulation	
intensity;	thus,	it	would	not	affect	the	optimal	coil	position	(see	Supplemental	Fig.	S2C	of	Lynch	et	al.,	2022).	
The	optimal	coil	position	was	selected	from	these	simulations,	based	on	an	adapted	form	of	the	“on-target	
value”	specified	in	Lynch	et	al.	(2022).	In	brief,	the	on-target	value	was	defined	as	the	surface	area	of	the	
target	network(s)	in	the	E-field	thresholded	at	99.0-99.9%	(top	0.1-1%	of	non-zero	values	averaged	across	
thresholds)	divided	by	the	total	surface	area	of	the	thresholded	E-field.	At	the	optimal	coil	position,	angles	at	
5°	increments	were	tested,	and	the	optimal	orientation	angle	was	identified	to	further	maximize	the	“on-
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target	value”.	The	final	coil	position	(represented	as	the	x,y,z	coordinates	where	the	coil	center	should	be)	
and	orientation	(represented	as	the	x,y,z	coordinates	toward	which	the	coil	handle	should	point)	were	saved.	
					Finally,	 to	characterize	optimal	“dose,”	a	range	of	stimulation	intensities	was	tested	at	the	optimal	coil	
placement.	 Assuming	 a	 neural	 activation	 threshold	 of	 100	 V/m,	 suprathreshold	 E-field	 values	 were	
quantified	 for	 each	 network	 at	 each	 intensity	 level,	 and	 the	 level	 with	 the	 highest	 on-target	 value	 was	
recorded.		
						(5)	Spatial	Selectivity.	For	each	E-field	map,	the	spatial	selectivity	for	networks	was	calculated	at	various	
thresholds	ranging	from	99.0-99.9%	(0.1%	increments).	For	example,	at	threshold	99.5%,	the	top	0.5%	of	
the	non-zero	E-field	values	are	kept,	and	the	network	assignment	for	each	vertex	in	this	thresholded	map	is	
pooled	into	a	bar	plot	representing	the	%	of	vertices	in	the	E-field	map	that	belong	to	each	network.	For	
example	selectivity	plots,	see	Fig.	1C.	Each	row	in	the	plot	represents	a	different	threshold,	and	each	color	
represents	a	different	network.	This	selectivity	measure	is	adapted	from	Lynch	et	al.	(2022).	
						(6)	 E-field	 Intensity.	 One	 novel	 contribution	 of	 this	 effort	 is	 a	 systematic	measure	 of	 E-field	 intensity	
supplied	to	networks.	This	was	calculated	for	each	non-thresholded	E-field	map	by	applying	an	empirical	
cumulative	density	 function	(using	R	ecdf)	to	the	E-field	values	and	quantifying	the	 intensity	distribution	
within	each	network.	This	measure	was	motivated	by	work	demonstrating	high	variability	in	TMS-induced	
neuronal	activation	in	nearby	neurons	with	maximal	stimulation	directly	under	the	coil	(Romero	et	al.,	2019)	
and	 a	 positive	 relationship	 between	 electric	 field	 strength	 and	 the	 likelihood	 of	 TMS-induced	 evoked	
potentials	(Wang	et	al.,	2024).	
					Fig.	1D	shows	example	intensity	plots.	Each	row	in	the	plot	represents	a	different	network.	In	this	study,	
the	E-field	was	calibrated	to	120%	of	the	average	motor	threshold	(MT)	for	our	center’s	studies	(mean	MT	=	
29.2%,	SD	=	5.9%	Machine	Standard	Output;	MSO).	Thus,	the	E-field	was	calibrated	to	35%	MSO,	dI/dt	=	48	
A/μs	for	a	MagVenture	Cool-B70	coil.		
					The	following	sections	describe	how	the	steps	above	were	applied	to	characterize,	in	terms	of	selectivity	
and	 intensity,	 the	 networks	 targeted	 by	 scalp-based	 landmarking	 (left	 F3	 and	 right	 F4)	 and	 by	 sgACC	
anticorrelations,	as	well	as	to	prospectively	target	side-by-side	association	networks	in	dlPFC.	
	

Left	F3	and	Right	F4	
					To	 estimate	 network	 engagement	 at	 the	 scalp	 landmarks	 used	 in	 current	 clinical	 TMS	 protocols,	 the	
“eeg_positions”	output	from	the	SimNIBS	charm	function,	left	F3	and	right	F4	coil	positions,	were	estimated	
in	each	participant	based	on	the	EEG	10-20	Okamoto	coordinate	system	(Okamoto	et	al.,	2004;	Thielscher,	
Antunes,	and	Saturnino,	2015).	SimNIBS	v4.0.1	coil	orientations	were	calculated	by	rotating	the	position	45°	
along	the	sagittal	plane	(Janssen,	Oostendorp,	and	Stegeman,	2015)	to	approximate	what	is	used	in	the	clinic.	
E-field	 simulations	 were	 performed	 using	 these	 coil	 position	 /	 orientation	 vectors	 (step	 4).	 Network	
engagement	at	left	F3	and	right	F4	was	then	characterized	with	the	precision	TMS	pipeline	(steps	5	and	6).		
	

Within-Individual	sgACC	Correlations	
					Within	each	participant,	a	bilateral	sgACC	ROI	was	constructed	using	published	coordinates	in	MNI	space	
(Fox	et	al.,	2012).	The	ROI,	defined	as	a	10	mm	radius	sphere	centered	at	(6,	16,	-10),	was	reflected	along	the	
sagittal	plane	to	yield	a	bilateral	ROI,	and	projected	to	the	fsaverage6	surface	(Wu	et	al.,	2018).	The	ROI	was	
then	masked	to	exclude	vertices	with	SNR	<	20	using	individual-specific	SNR	maps	(Du	et	al.,	2024),	as	the	
sgACC	falls	within	a	region	highly	vulnerable	to	susceptibility	artifacts	(Ojemann	et	al.,	1997).	This	ROI	was	
used	to	generate	an	sgACC	functional	connectivity	map	of	the	cerebral	cortex	for	each	individual.	Pearson’s	
correlations	between	the	fMRI	time	series	at	the	sgACC	ROI	and	each	cortical	surface	vertex	were	computed	
for	each	fMRI	run,	resulting	in	a	1	x	81,924	matrix	(40,962	vertices	per	hemisphere).	The	matrices	were	r-
to-z	 transformed	and	averaged	across	 runs	 to	yield	a	mean	matrix	with	high	 stability.	These	maps	were	
resampled	to	fsLR-32k	space	and	used	to	 identify	regions	that	were	negatively	(z(r)<0)	correlated	to	the	
sgACC.	Then,	 an	anticorrelation	 threshold	was	defined	as	 the	 top	40%	of	negatively	 correlated	voxels	 in	
dlPFC.	Thresholded	sgACC	anticorrelations	in	example	participants	are	shown	in	the	first	row	of	Fig.	S2.	The	
anticorrelated	regions	were	used	in	the	E-field	modeling	of	precision	targeting	step	of	the	precision	TMS	
pipeline	(step	4),	and	characterization	of	network	engagement	was	performed	(steps	5	and	6).		
					Critically,	multiple	methods	and	thresholds	were	tested,	with	little	impact	on	results.	For	example,	a	liberal	
approach	was	tested	whereby	all	negatively	correlated	regions	in	dlPFC	were	considered	anticorrelated	(z(r)	
<	0),	 as	well	 as	a	 strict	variant	of	 this	approach	 in	which	only	 the	 top	100	vertices	were	 selected	as	 the	
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anticorrelated	target	region	(Fig.	S3).	Both	methods	yielded	similar	modeling	outcomes	as	the	40%	method.	
In	addition,	several	thresholds	–	20%,	40%,	and	60%	–	were	tested	for	defining	anticorrelations,	and	this	
also	did	not	markedly	change	the	pattern	of	results	(Fig.	S4).	That	is,	the	results	presented	are	robust	to	a	
range	of	parameter	choices.	
	

Prospective	Network	Targeting	
					The	precision	TMS	pipeline	was	applied	to	prospectively	target	individual-specijic	side-by-side	networks	
in	dlPFC.	In	this	study,	we	modeled	the	targeting	of	jive	association	networks,	grouped	into	three	distinct	sets:	
Default	 Network-A	 &	 Default	 Network-B	 (DN-A	 &	 DN-B),	 Salience	 &	 Cingulo-Opercular	 (SAL	 &	 CG-OP)	
Networks,	and	Frontoparietal	Control	Network-A	(FPN-A).	See	Fig.	4A	and	4C	for	example	networks	in	one	
participant.	These	networks	were	selected	for	their	relevance	to	MDD	(e.g.,	Chen	et	al.,	2020;	Joormann	and	
Vanderlind,	 2014;	 Menon,	 2011;	 Uddin,	 2015),	 and	 individual	 networks	 were	 grouped	 based	 on	
topographical	 and	 functional	 properties.	 DN-A	&	DN-B	 are	 closely	 interdigitated	 networks	 implicated	 in	
internal	mentation	and	together	show	“anticorrelation"	to	networks	involved	in	external	orienting	(Du	et	al.,	
2024;	see	Buckner	and	DiNicola,	2019	for	review).	Within	dlPFC,	DN-A	&	DN-B	tend	to	occupy	more	dorsal	
and	medial	regions.	Moving	ventrally,	SAL	&	CG-OP	are	tightly	interwoven	networks	that	are	linked	to	limbic	
reward	circuitry	and	respond	preferentially	to	salient	targets	(Du	et	al.,	2024;	Gordon	et	al.,	2022;	Seeley,	
2019).	 Finally,	 FPN-A,	 which	 tends	 to	 be	 ventral	 to	 SAL	 &	 CG-OP,	 is	 implicated	 in	 cognitive	 control	 and	
recruited	by	cognitively	demanding	tasks	in	a	domain-jlexible	manner	(Fedorenko,	Duncan,	and	Kanwisher,	
2013;	DiNicola,	Sun,	and	Buckner,	2023;	Du	et	al.,	2024).	E-jield	modeling	of	precision	targeting	(step	4)	and	
network	engagement	characterization	(steps	5	and	6)	were	performed	for	each	target	network	set	with	the	
precision	TMS	pipeline.	
	

TMS	Protocol	
					Repetitive	 TMS	 (rTMS)	 was	 administered	 to	 the	 modeled	 network	 sites	 in	 the	 second	 cohort	 of	 8	
participants	as	part	of	a	broader	study	to	assess	the	effects	of	stimulating	distinct	networks	in	participants	
with	and	without	MDD.	The	broader	study	included	administering	rTMS	to	the	left	SAL	&	CG-OP,	left	FPN-A,	
and	left	DN-A	&	DN-B	sites,	with	one	site	stimulated	during	3	sessions	in	one	day.	All	stimulation	sessions	
used	a	neuronavigation	system	(Localite)	to	guide	stimulation	of	the	individualized	targets	(Localite	GmbH,	
Bonn,	 Germany).	 First,	 the	modeled	 coil	 orientation	 and	 position	 were	 inputted	 into	 Localite.	 Next,	 the	
participant’s	anatomical	landmarks	were	co-registered	to	their	T1w	image.	The	MagVenture	Cool-B70	coil	
was	 then	 placed	 at	 the	modeled	 site	 and	 secured	with	 the	MagVenture	 Flex	 Arm.	When	 needed,	minor	
adjustments	were	made	to	the	coil	position	to	maximize	contact	with	scalp.	In	cases	where	the	modeled	coil	
orientation	 had	 the	 coil	 handle	 pointing	 anteriorly	 (towards	 the	 participant’s	 face),	 the	 orientation	was	
flipped	180°	and	the	current	direction	was	reversed	to	achieve	the	equivalent	E-field.	rTMS	was	administered	
from	the	MagPro	X100	stimulator	with	an	intermittent	theta	burst	protocol	using	the	following	parameters:	
120%	resting	motor	threshold	(determined	during	the	first	MRI	visit),	3	biphasic	waveform	pulses	of	50Hz	
stimulation	at	a	rate	of	5Hz	for	a	total	of	1800	pulses	per	session,	8s	inter-train	interval,	570s	total	duration	
of	each	session.	In	cases	of	discomfort,	the	stimulation	intensity	was	reduced	to	accommodate	participants’	
comfort	 on	 a	 case-by-case	basis.	 Each	 target	network	was	 stimulated	over	3	 sessions,	with	 each	 session	
separated	 by	 45-50	 minutes.	 Stimulation	 markers	 including	 the	 exact	 position	 of	 the	 coil	 center	 and	
orientation	as	well	as	the	delivered	dose	were	recorded	by	Localite.	For	each	session,	the	average	position,	
orientation,	and	dose	were	calculated	and	carried	forth	to	E-field	modeling	using	SimNIBS	to	retrospectively	
assess	the	reliability	of	the	TMS	coil	placement	and	to	estimate	achieved	network	selectivity	and	intensity.	
	

Software	and	Statistical	Analysis	
					Neuroimaging	data	storage	and	initial	data	quality	assessment	were	conducted	on	XNAT	(Marcus	et	al.,	
2007;	https://www.xnat.org/).	Preprocessing	(iProc)	used	tools	from	FSL	v5.0.4,	FreeSurfer	v6.0.0,	and	AFNI	
v16.3.13.	 Functional	 connectivity	 values	 were	 computed	 with	 MATLAB	 v2019a.	 The	 MS-HBM	 was	
implemented	from:	
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong2019_MS
HBM.	 The	 TANS	 pipeline	 was	 implemented	 and	 adapted	 from:	 https://github.com/cjl2007/Targeted-
Functional-Network-Stimulation.	Head	models	and	E-field	simulations	were	calculated	with	SimNIBS	v4.0.1.	
Visualizations	of	networks,	 correlation	maps,	 target	 regions,	 and	E-field	maps	 in	 fsLR-32k	 space	utilized	
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Connectome	Workbench	v1.3.2.	Selectivity	and	intensity	plots	were	created	using	R	ggplot2	(v4.2.2),	and	
statistical	analyses	were	conducted	using	R.		

	
Results	

	

					We	 first	 show	 how	 scalp	 landmark-based	 and	 sgACC	 anticorrelation-based	 TMS	 targeting	 influence	
distinct	 and	multiple	 networks	with	 variability	 between	 individuals.	 Then	we	present	 the	TMS	planning	
report	from	the	automated,	integrated	pipeline	that	can	be	used	to	optimize	coil	positions	to	target	specific	
networks	within	the	brain	of	an	individual.	Finally,	we	present	the	results	of	applying	this	pipeline	to	target	
association	networks	that	are	near	to	one	another	within	dlPFC	to	illustrate	the	potential	of	precision	TMS	
targeting	 of	 networks,	 and	 further	 demonstrate	 that	 this	 targeting	 is	 feasible	 and	 reliable	 in	 a	 cohort	 of	
participants	 (including	 those	with	MDD)	 receiving	 real-world	TMS	with	 less	 than	one	hour	of	 fMRI	data	
acquired	in	a	single	session.	

	

Homotopic	Scalp	Landmark-Based	dlPFC	TMS	Coil	Placements	Target	Different	Sets	of	Networks	Within	
and	Across	Individuals	
					Left	 F3	 and	 right	 F4	 scalp	 positions	 are	 routinely	 used	 as	 dlPFC	 targets	 to	 treat	MDD	 in	 TMS	 clinics.	
Precision	mapping	shows	that	the	homotopic	left	F3	and	right	F4	TMS	coil	placements	target	different	sets	
of	networks	to	various	extents	within	each	participant.	Fig.	1A	shows	network	estimates	 in	one	example	
participant,	and	Fig.	1B	shows	the	E-field	from	placing	the	coil	at	left	F3	and	right	F4	with	a	45°	angle	(relative	
to	the	sagittal	plane).	Fig.	1C	quantifies	the	proportion	of	overlap	between	the	E-field	map,	thresholded	to	
the	top	1%	to	0.1%,	for	each	network	as	a	measure	of	spatial	selectivity	(Lynch	et	al.,	2022).	Further,	as	a	
measure	 of	 E-field	 intensity	 (Fig.	 1D),	 the	 distribution	 of	 the	 E-field	magnitude	within	 each	 network	 is	
shown.		
					In	 this	 example	 participant,	 described	 in	 detail	 to	 make	 clear	 the	 challenges	 and	 opportunities	 of	
personalized	modeling,	no	single	network	is	selectively	targeted.	The	top	0.5%	of	the	left	F3	E-field	overlaps	
with	the	Salience	(SAL)	Network	at	21.2%,	and	the	Frontoparietal	Control	Network-B	(FPN-B)	at	8.4%.	By	
contrast,	at	right	F4,	the	top	0.5%	of	the	E-field	overlaps	with	SAL	at	13.8%	and	FPN-B	at	39.1%.	The	intensity	
plots	 suggest	 that	 the	 networks	 that	 received	 the	 highest	 stimulation	 intensity	were	 the	 Frontoparietal	
Control	Network-A	(FPN-A)	and	the	Cingulo-Opercular	(CG-OP)	Network	at	left	F3,	and	FPN-A	and	FPN-B	at	
right	F4,	with	overall	less	high	intensity	stimulation	on	the	right	than	the	left.	While	the	top	0.5%	of	the	E-
field	at	left	F3	targeted	SAL	and	the	Default	Network-B	(DN-B)	to	similar	extents	as	FPN-A	and	CG-OP,	only	
FPN-A	and	CG-OP	were	exposed	to	the	highest	stimulation	intensity.	At	right	F4,	FPN-B	and	FPN-A	were	the	
networks	that	overlapped	the	most	with	the	top	0.5%	of	the	E-field	and	were	also	the	networks	that	received	
the	highest	stimulation	intensity.	

	

-------------------------------------------------------	
Insert	Figure	1	About	Here	

-------------------------------------------------------	
	

					On	 average	 across	 the	 15	 participants	 in	 the	 first	 cohort,	 at	 the	 top	 0.5%	 of	 the	 E-field,	 left	 F3	most	
selectively	targeted	SAL	(23.6%)	and	CG-OP	(18.2%)	and	right	F4	most	selectively	targeted	SAL	(26.3%)	and	
FPN-B	(22.1%).	Notably,	FPN-B	was	targeted	with	twice	as	much	selectivity	on	the	right	(22.1%)	versus	the	
left	(9.1%).	Fig.	2	shows	that	SAL	is	targeted	similarly	in	terms	of	selectivity	(at	top	0.5%	of	the	E-field)	and	
maximal	intensity	(average	of	top	25	vertices)	regardless	of	the	hemisphere	stimulated.	However,	FPN-B	is	
generally	targeted	to	a	larger	extent	when	the	coil	is	positioned	at	right	F4	compared	to	left	F3.	

	

-------------------------------------------------------	
Insert	Figure	2	About	Here	

-------------------------------------------------------	
	

The	sgACC	Anticorrelation	Strategy	Targets	Different	Networks	Across	Participants	
					Within-individual	precision	modeling	revealed	several	 insights	about	 the	zone	of	 impact	and	potential	
therapeutic	targets	of	the	sgACC	anticorrelation	strategy.	The	sgACC	correlation	maps	are	consistent	with	
previous	 findings	 showing	 that	 externally-oriented	networks	 including	Dorsal	 Attention-A	 (dATN-A)	 are	
anticorrelated	 to	 higher-order	 association	 networks	 involved	 in	 various	 aspects	 of	 internal	 mentation	
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including	DN-A	&	DN-B	(Fox	et	al.,	2005;	Buckner	and	DiNicola,	2019).	In	general,	within	left	dlPFC,	CG-OP,	
SAL,	and	dATN-A	were	most	strongly	anticorrelated	to	the	sgACC.	FPN-A	and	LANG	were	neutral	or	modestly	
anticorrelated.	On	the	other	hand,	DN-A,	DN-B,	and	FPN-B	were	positively	correlated	to	the	sgACC	(see	Fig.	
S1A).	That	is,	the	correlated	and	anticorrelated	regions	(Fig.	S1B)	each	contained	representations	of	multiple	
distinct	association	networks.	
					Fig.	S2	demonstrates	the	sgACC	anticorrelation	strategy	and	networks	in	the	anticorrelated	target	region	
for	 three	 example	 participants.	 The	 first	 row	 shows	 thresholded	 sgACC	 anticorrelations.	 The	 sgACC	
anticorrelated	target	region	was	defined	as	the	largest	contiguous	anticorrelated	patch	on	gyral	crowns	in	
dlPFC	(Fig.	S2	second	row).	The	networks	falling	within	the	anticorrelated	target	region	were	variable	across	
participants,	as	shown	in	Fig.	3A	and	Fig.	S2	(third	row).	On	average	across	participants,	SAL	composed	
29.8%	 of	 this	 target	 region,	with	 CG-OP	 at	 32.7%,	 FPN-A	 at	 18.6%,	 and	 dATN-A	 at	 12.6%	 (Fig.	 3A).	 In	
contrast,	DN-A,	DN-B,	and	FPN-B	each	composed	<1.0%	of	the	anticorrelated	target	region.	Thus,	while	the	
sgACC	 anticorrelation	 approach	 avoids	 positively	 correlated	 networks	 (DN-A,	 DN-B,	 FPN-B),	 it	 does	 not	
consistently	target	a	specific	network	in	each	individual.	
					The	spatial	selectivity	and	E-field	intensity	at	the	optimal	coil	placement	for	the	anticorrelated	target	was	
examined.	For	all	15	participants	in	the	first	cohort,	the	network	targeted	with	the	highest	selectivity	(at	top	
0.5%	of	E-field)	was	determined:	for	8/15,	it	was	SAL	(range:	25.9	–	52.2%),	for	5/15,	FPN-A	(range:	23.0	–	
49.8%),	and	for	2/15,	CG-OP	(range:	19.5	–	42.8%).	Overall,	across	participants,	the	networks	targeted	with	
the	 highest	 selectivity	 were	 SAL	 (mean:	 25.2%),	 FPN-A	 (mean:	 23.0%),	 and	 CG-OP	 (mean:	 18.8%).	 In	
addition,	 the	network	 targeted	with	 the	highest	 intensity	 (average	of	 top	25	vertices)	was	 SAL	 for	6/15	
participants	(range:	54.3	–	69.7	V/m),	FPN-A	for	4/15	participants	(range:	59.4	–	67.4	V/m),	CG-OP	for	3/15	
participants	(range:	59.3	–	81.2	V/m),	and	dATN-A	for	2/15	participants	(range:	62.0	–	65.0	V/m).	Across	
participants,	the	networks	targeted	with	the	highest	intensity	were	CG-OP	(mean:	59.2	V/m),	SAL	(mean:	
58.0	V/m),	and	FPN-A	(mean:	57.5	V/m).		

	

-------------------------------------------------------	
Insert	Figure	3	About	Here	

-------------------------------------------------------	
	

					Fig.	3B	shows,	for	all	15	participants	in	the	first	cohort,	the	relative	proportion	of	SAL	and	FPN-A	in	the	E-
field	thresholded	at	top	0.5%	and	the	maximal	intensity	in	these	networks.	Five	participants	are	highlighted	
across	 the	 plots.	 In	 this	 sample,	 the	 degree	 of	 selectivity	 at	 the	 top	 0.5%	of	 the	 E-field	 does	 not	 always	
correspond	with	 the	maximal	 stimulation	 intensity	 received	 by	 each	 network.	 For	 example,	 highlighted	
participants	1	and	2	show	selectivity	for	SAL	(52.2%	for	participant	1	and	41.1%	for	participant	2)	versus	
FPN-A	 (11.1%	 for	 participant	 1	 and	13.1%	 for	 participant	 2),	 but	 a	 narrower	 difference	 in	 the	maximal	
intensity	received	by	each	network	(participant	1:	SAL	=	60.1	V/m,	FPN-A	=	50.4	V/m;	participant	2:	SAL	=	
60.1	V/m,	FPN-A	=	46.3	V/m).	Participants	4	and	5	show	the	opposite	network	pattern	but	a	similar	contrast	
between	 selectivity	 and	maximal	 intensity.	 These	 two	participants	 demonstrate	moderate	 selectivity	 for	
FPN-A	and	a	narrower	difference	in	maximal	intensity	received	by	FPN-A	versus	SAL	&	CG-OP.	Participant	3	
has	low	selectivity	at	the	top	0.5%	E-field	(10.4%	for	SAL,	20.5%	for	FPN-A)	and	a	relatively	high	maximal	
intensity	in	both	networks	(64.4	V/m	for	SAL,	69.3	V/m	for	FPN-A).		
					Overall,	these	plots	suggest	a	higher	separation	between	networks	in	terms	of	their	exposure	to	the	top	
0.5%	of	the	E-field	(i.e.,	selectivity)	but	a	lower	separation	in	the	maximal	intensity	received	by	each	network,	
with	some	individuals	showing	a	low	degree	of	specificity	across	both	measures.		
	

	Automated	Within-Individual	Network	Mapping	and	TMS	Planning	Report	
					To	support	precision	network	targeting	in	the	clinic,	we	integrated	individualized	preprocessing,	MS-HBM	
network	 estimation,	 TANS	 E-field	 optimization	 (Lynch	 et	 al.,	 2022),	 and	 characterization	 of	 network	
engagement	 into	 a	 cohesive	 pipeline.	 Critically,	 in	 this	 pipeline,	 pertinent	 results	 and	 visualizations	 are	
automatically	compiled	into	a	comprehensive	TMS	planning	report.	An	example	report	 is	available	 in	the	
Supplemental	Materials	(Figs.	S7-S12).	This	specific	report	presents	precision	targeting	results	for	left	FPN-
A,	left	SAL	&	CG-OP,	left	DN-A	&	DN-B,	and	right	SAL	&	CG-OP,	but	can	be	adapted	to	other	network	targets	
or	combinations	of	networks.		
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					An	 adapted	 view	 of	 the	 first	 page	 of	 the	 report	 is	 displayed	 in	 Fig.	 4.	 This	 page	 includes	 network	
parcellations,	coordinates	for	the	optimal	coil	position	and	orientation,	target	regions,	E-field	maps	at	the	
optimal	coil	placement,	selectivity	plots,	and	intensity	plots	(Fig.	S7).	The	second	page	of	the	report	includes	
scalp	views	 showing	 selectivity	 for	 the	 target	within	 the	 full	 search	grid,	 and	at	 each	orientation	 for	 the	
optimal	coil	position	(Fig.	S8).	This	allows	TMS	operators	to	make	adjustments	due	to	real-world	constraints	
such	as	participant	comfort	and	coil	contact	with	scalp.	The	third	page	of	the	report	shows	bilateral	medial	
and	lateral	views	of	the	E-field	maps	for	each	target,	allowing	for	visualization	of	the	spread	of	the	E-field	
across	cortex	(Fig.	S9).	The	fourth	page	shows	how	the	target	regions	are	selected	on	the	inflated	pial	surface,	
with	 intermediate	 steps	 including	 search	 space	masking,	 sulcal	 depth	 thresholding,	 and	 selection	 of	 the	
target	network	patch	(Fig.	S10).	This	allows	for	quality	control	of	the	target	region	as	well	as	visualization	
of	alternative	targets	should	the	primary	region	not	be	feasible	or	ideal.	The	fifth	and	sixth	pages	of	the	report	
display	the	optimal	dose	for	each	target	network,	assuming	a	neural	activation	threshold	of	100	V/m	(Figs.	
S11-S12).		

	

Distinct	Juxtaposed	Functional	Networks	Can	be	Targeted	Within	dlPFC	Using	Precision	Modeling	
					Precision	TMS	targeting	of	three	sets	of	these	networks,	interdigitated	within	the	left	dlPFC	and	thought	
to	be	involved	in	MDD,	was	initially	tested	in	a	cohort	of	15	participants	with	extensive	fMRI	data	collected	
over	multiple	sessions.	The	real-world	applicability	of	this	modeling	approach	was	further	demonstrated	in	
an	independent	cohort	of	8	participants	with	less	than	one	hour	of	fMRI	data	acquired	in	a	single	session,	
including	4	participants	with	MDD.	In	both	cohorts,	the	modeled	selectivity	of	the	stimulation	for	each	target	
network	(%	On	Target	for	the	top	1%	to	0.1%	of	the	E-field)	and	the	distribution	of	the	intensity	within	each	
network	 were	 estimated.	In	 the	 second	 cohort,	 which	 received	 TMS	 to	 the	 modeled	 network	 sites,	 the	
achieved	selectivity	and	intensity	were	measured	across	multiple	TMS	sessions	per	target.	
					Precision	targeting	of	the	three	network	sets	of	interest	is	illustrated	in	Fig.	4	in	one	example	participant.	
After	the	networks	were	estimated	for	this	participant	(Fig.	4A),	the	largest	contiguous	cluster	of	the	target	
network	on	the	gyral	crowns	of	the	left	dlPFC	(entire	ROI	shown	in	Fig.	4B)	was	identified	for	each	of	the	
three	target	network	sets	(Fig.	4C).	The	E-field	at	the	optimal	coil	placement	for	each	target	is	displayed	(Fig.	
4D).	The	proportion	of	overlap	between	the	E-field	map	thresholded	at	various	levels	(top	1%	to	0.1%)	and	
each	 network	 was	 then	 estimated	 as	 a	 measure	 of	 selectivity	 (Fig.	 4E).	 The	 distribution	 of	 the	 E-field	
magnitude	was	quantified	within	each	network	as	a	measure	of	intensity	(Fig.	4F).	
					The	simulations	in	this	participant	showed	a	high	degree	of	selectivity	across	the	three	network	sets	of	
interest.	 Each	 target	 network	 set	 comprised	more	 of	 the	 top	 values	 of	 the	 E-field	map	 relative	 to	 other	
networks,	regardless	of	the	threshold.	The	alignment	between	the	top	0.5%	of	the	E-field	map	and	the	target	
network	was	49.5%	for	FPN-A,	79.8%	for	SAL	&	CG-OP,	and	83.2%	for	DN-A	&	DN-B	(Fig.	4E).	Further,	when	
considering	 intensity	(Fig.	4F),	 the	distribution	of	the	E-field	magnitude	within	each	network	shows	that	
each	target	network	set	would	receive	the	highest	E-field	strength	among	the	higher-order	networks.	It	is	
important	to	note	that	there	is	still	uncertainty	about	the	E-field	magnitude	required	to	activate	neurons	in	
different	 regions	 of	 association	 cortex.	 As	 a	 result,	 network-specific	 targeting	 needs	 to	 consider	 both	
selectivity	and	intensity.	In	this	example,	at	the	same	stimulation	dose,	despite	higher	selectivity	at	the	SAL	
&	CG-OP	and	DN-A	&	DN-B	optimized	coil	placements,	network	engagement	may	be	higher	at	 the	FPN-A	
optimized	 coil	 position	 because	 its	 location	 exposes	 it	 to	 a	 higher	 intensity	 compared	 to	 the	 other	 two	
network	sets.	

	

-------------------------------------------------------	
Insert	Figure	4	About	Here	

-------------------------------------------------------	
	

					Among	the	first	cohort	of	15	intensively	sampled	participants,	differential	targeting	of	at	least	two	distinct	
network	sets	was	possible	in	most	participants.	The	left	column	of	Fig.	5	shows	the	relative	proportion	of	
each	pair	of	network	sets	in	the	E-field	map	thresholded	at	the	top	0.5%.	For	each	individually	optimized	coil	
placement,	the	top	0.5%	of	the	E-field	predominantly	overlaps	with	the	target	network	set.	Specifically,	the	
estimated	degree	of	selectivity	(i.e.,	%	On	Target)	was	>50%	for	15/15	participants	for	the	DN-A	&	DN-B	
networks,	8/15	 for	 the	SAL	&	CG-OP	networks,	and	4/15	 for	 the	FPN-A	network	 (Fig.	5	 left).	The	mean	
proportion	of	the	E-field	map	thresholded	at	the	top	0.5%	overlapping	with	the	target	network	was	76.0%	
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(SD	=	11.8%)	for	DN-A	&	DN-B,	53.2%	(SD	=	16.3%)	for	SAL	&	CG-OP,	and	38.8%	(SD	=	15.1%)	for	FPN-A.	
The	 mean	 proportion	 of	 the	 E-field	 map	 thresholded	 at	 the	 top	 0.5%	 overlapping	 with	 the	 non-target	
networks	(e.g.,	FPN-A	and	DN-A	&	DN-B	when	the	target	is	SAL	&	CG-OP)	was	4.1%	for	DN-A	&	DN-B,	24.5%	
for	SAL	&	CG-OP,	and	22.1%	for	FPN-A.			
					While	network-specific	stimulation	was	estimated	to	be	possible	in	most	participants,	various	degrees	of	
selectivity	 were	 found	 across	 network	 sets	 and	 participants.	 This	 suggests	 that	 variations	 in	 cortical	
geometry	may	lead	to	different	capacities	for	precision	TMS	targeting.	Notably,	the	degree	of	selectivity	was	
significantly	correlated	with	the	target	cluster	size	for	FPN-A	(r	=	0.81,	p	<	0.001)	and	SAL	&	CG-OP	(r	=	0.87,	
p	<	0.001),	but	not	for	DN-A	&	DN-B	(r	=	0.45,	p	=	0.09).	This	is	likely	the	result	of	the	FPN-A	and	SAL	&	CG-
OP	 target	 clusters	 being	 smaller	 and	 more	 interdigitated	 than	 the	 corresponding	 DN-A	 &	 DN-B	 target	
clusters.	 These	 results	 thus	 indicate	 the	 necessity	 of	 large	 accessible	 network	 regions	 in	 the	 dlPFC	 for	
maximal	selectivity	in	network	targeting.	
					Further,	motivated	by	findings	from	single-cell	neurophysiology	(Romero	et	al.,	2019),	which	suggest	that	
the	effect	of	TMS	stimulation	is	focal	to	the	neurons	receiving	the	highest	intensity	stimulation	under	the	coil,	
we	quantified	the	highest	intensity	delivered	to	target	versus	non-target	network	sets	(Fig.	5	right).	In	this	
sample,	at	a	pre-defined	TMS	dose	of	35%	MSO	(dI/dt	=	48	A/μS),	when	the	coil	placement	was	individually	
optimized	to	target	DN-A	&	DN-B,	the	average	maximal	intensity	(top	25	vertices)	was	60.1	V/m	for	DN-A	&	
DN-B,	29.0	V/m	for	FPN-A,	and	36.7	V/m	for	SAL	&	CG-OP.	These	results	indicate	a	clear	separation	between	
the	 target	 and	 non-target	 network	 sets	 in	 their	 simulated	 exposure	 to	 E-field	 energy.	 However,	 the	
differential	intensity	received	was	less	when	the	coil	was	optimized	to	target	the	other	two	network	sets	of	
interest.	When	SAL	&	CG-OP	was	the	target,	the	average	maximal	intensity	(top	25	vertices)	was	64.1	V/m	
for	SAL	&	CG-OP,	48.5	V/m	for	FPN-A,	and	48.2	V/m	for	DN-A	&	DN-B.	When	the	coil	position	was	optimized	
to	target	FPN-A,	the	maximal	intensity	was	on	average	67.3	V/m	for	FPN-A,	55.6	V/m	for	SAL	&	CG-OP,	and	
47.1	V/m	for	DN-A	&	DN-B.	Therefore,	while	in	most	participants	the	three	network	sets	could	be	targeted	
with	relatively	high	selectivity	(within	the	limits	of	TMS	resolution),	this	targeting	may	still	expose	regions	
of	the	non-target	networks	to	similar	magnitudes	of	intensity	in	some	participants.		

	

-------------------------------------------------------	
Insert	Figure	5	About	Here	
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					Precision	network	estimation	in	the	second	cohort	of	8	participants	(N	=	4	MDD)	was	feasible	with	less	
than	one	hour	of	fMRI	data.	Mirroring	Fig.	4,	precision	targeting	of	the	three	network	sets	of	interest	is	
illustrated	in	Fig.	6	in	one	example	participant	with	MDD.	In	this	participant,	each	individualized	target	
demonstrated	preferential	selectivity	for	the	intended	networks	(Fig.	6E).	In	addition,	each	target	network	
set	was	modeled	to	receive	the	highest	E-field	intensity	among	the	higher-order	networks	(Fig.	6F).	
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Insert	Figure	6	About	Here	
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					Importantly,	these	modeled	target	sites	were	achievable	during	real-world	TMS	sessions,	with	preserved	
selectivity	and	intensity.	Across	all	participants	of	the	second	cohort,	separable	degrees	of	selectivity	were	
observed	during	actual	TMS	administration	to	modeled	individualized	targets	(Fig.	7	left).	This	separation	
was	consistent	across	multiple	TMS	sessions	within	each	participant.	These	achieved	results	mirror	the	
hypothetical	estimates	from	the	first	cohort	(Fig.	5),	which	underwent	more	intensive	multi-session	fMRI	
sampling.	However,	selectivity	was	lower	in	some	individuals	for	FPN-A	and	SAL	&	CG-OP	due	to	more	
interdigitated	representations	of	these	networks	in	dlPFC	or	discomfort	during	TMS	at	the	prescribed	
targets.	For	the	latter,	coil	placement	was	adjusted	in	the	vicinity	of	the	initial	coil	placement	on	a	case-by-
case	basis	to	reduce	discomfort	while	maintaining	maximal	network	engagement,	guided	by	the	selectivity	
metrics	of	the	automated	report	(Fig.	S8).		
					Further,	at	120%	of	each	participant’s	motor	threshold,	the	maximal	intensity	(top	25	vertices)	received	
by	the	target	and	non-target	network	sets	demonstrated	a	clear	separation	in	their	estimated	exposure	to	
E-field	energy	during	actual	TMS	sessions	(Fig.	7	right).	In	addition,	the	achieved	degree	of	network	
selectivity	and	intensity	remained	consistent	across	repeated	TMS	sessions,	with	intensity	showing	slightly	
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higher	inter-session	variability	than	selectivity.	This	is	illustrated	in	Fig.	7,	where	the	symbols	represent	
repeated	sessions	within	individuals.			

	

-------------------------------------------------------	
Insert	Figure	7	About	Here	

-------------------------------------------------------	
	

Discussion	
	

					The	present	study	advances	our	understanding	of	TMS	targeting	by	combining	individualized	precision	
network	 mapping	 and	 E-field	 modeling.	 Our	 findings	 first	 characterize	 potential	 therapeutic	 targets	 in	
current	clinical	TMS	protocols	at	the	network	level	within	individuals.	We	then	demonstrate	the	feasibility	
and	reliability	of	using	precision	TMS	targeting	to	preferentially	engage	distinct	functional	networks	within	
the	dlPFC,	even	when	the	networks	are	near	to	one	another	and	variable	between	individuals.	Precision	TMS	
targeting	 can	 potentially	 be	 applied	 in	 the	 clinic	 to	 assess	 both	 the	 prospective	 and	 the	 retrospective	
functional	 network	 engagement	 of	TMS	 targets	within	 individuals,	which	 can	be	used	 to	 guide	decision-
making	and	TMS	efficacy	assessment.		
	

Within-	and	Between-Individual	Variability	in	Standard	Clinical	Scalp	Landmark-Based	TMS	
					The	present	within-individual	analyses	converge	with	prior	group-based	network	estimates	to	show	that	
multiple	networks	are	engaged	by	using	standard	clinical	targets	(Harita	et	al.,	2022;	Cardenas	et	al.,	2022).	
Our	results	extend	beyond	these	analyses	of	average	target	engagement	to	reveal	the	variability	between	
individuals	 and	 hemispheres.	 For	 example,	 several	 clinics	 employ	 left	 versus	 right	 scalp-based	 targets	
depending	 on	 whether	 a	 patient’s	 presenting	 symptoms	 are	 predominantly	 anhedonic	 or	 anxiosomatic,	
respectively	 (Cirillo	et	 al.,	 2019;	Diefenbach	et	 al.,	 2016;	Siddiqi	 et	 al.,	 2020;	Zwanzger	et	 al.,	 2009).	Our	
analysis	 of	 two	 standard	 homotopic	 scalp	 landmark-based	 targets	 (left	 F3	 and	 right	 F4)	 revealed	
considerable	variability	in	the	networks	engaged	within	and	across	individuals.	There	was	no	clear	dominant	
network	targeted	by	F3	in	the	left	hemisphere	nor	by	F4	in	the	right	hemisphere,	but	some	patterns	emerged.		
					First,	at	both	sites	the	SAL	network,	a	network	linked	to	reward	circuitry,	had	the	highest	spatial	selectivity	
at	 the	 top	0.5%	of	 the	E-field,	 albeit	modestly.	 Second,	 at	 right	F4,	 FPN-B,	 a	 right-lateralized	 association	
network	which	tends	to	be	positively	correlated	with	the	sgACC	(see	Fig.	S1),	is	targeted	to	a	greater	extent	
than	at	left	F3,	in	terms	of	both	selectivity	and	intensity.	While	the	specific	function	of	FPN-B	remains	elusive,	
its	position	suggests	a	role	in	cognitive	control	possibly	aligned	to	affective	domains	(Du	et	al.,	2024).	It	is	
thus	 of	 interest	 that	 preferential	 targeting	 of	 FPN-B	 in	 the	 right	 hemisphere	 is	 the	main	 difference	 we	
observed	between	F3	and	F4	coil	positions	and	warrants	further	investigation.	Therefore,	the	variability	in	
network	 engagement	 incurred	 by	 standard	 clinical	 TMS	 based	 on	 scalp	 landmarks	 across	 hemispheric	
allocations	may	contribute	to	the	heterogeneous	clinical	responses	observed	in	TMS	treatment.				
Networks	Impacted	by	the	sgACC	Anticorrelation	Strategy	
					The	sgACC	anticorrelation	strategy	showed	variability	in	the	networks	targeted	across	participants.	While	
this	 approach	 consistently	 avoided	 DN-A,	 DN-B,	 and	 FPN-B,	 the	 network	 preferentially	 targeted	 and	
receiving	the	most	intense	stimulation	varied	between	SAL	and	FPN-A	across	individuals.	When	considering	
both	selectivity	and	 intensity,	 SAL	appeared	 to	be	 the	dominant	network	 targeted	by	 the	anticorrelation	
approach.	This	is	a	particularly	interesting	finding	in	light	of	evidence	that	the	SAL	network	(1)	is	coupled	to	
regions	 in	 the	 ventral	 striatum	consistent	with	 a	 role	 in	 reward	processing	 (Gordon	et	 al.,	 2022;	 Seeley,	
2019),	 	(2)	may	be	topographically	expanded	in	depressed	individuals	as	demonstrated	by	precision	MRI	
mapping	(Lynch	et	al.,	2024),	and	(3)	is	comprised	of	regions	(e.g.,	the	anterior	and	ventral	insula)	densely	
anatomically	 interconnected	 to	 circuits	 implicated	 in	 autonomic	 and	 interoceptive	 processing	 (e.g.,	
Benarroch,	 2019;	 Evrard,	 2019;	 Seeley,	 2019;	 Craig,	 2002;	 Fischer	 et	 al.,	 2016).	 	 Our	 findings	 raise	 the	
possibility	that	the	antidepressant	mechanism	of	anticorrelation-based	strategies	like	SNT	is	the	stimulation	
of	specific	canonical	networks	such	as	the	Salience	network—rather	than	a	more	generalized	modulation	of	
anticorrelated	dlPFC	regions.	Future	studies	could	empirically	test	this	hypothesis	by	using	the	present	(or	
similar)	methodology	 to	 examine	 the	 relations	 between	 clinical	 efficacy	 and	 the	 network	 (or	 networks)	
targeted.		
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Differential	Precision	Targeting	of	Juxtaposed	Functional	Networks	in	the	Individual	
					Our	results	show	that	it	is	possible	to	differentially	target	functional	networks	that	are	closely	juxtaposed	
within	dlPFC	with	high	selectivity	and	intensity	in	the	individual.	This	precision	may	be	important	given	the	
role	different	networks	serve	in	different	neuropsychiatric	symptom	profiles	(e.g.,	Williams,	2016)	and	given	
that,	in	practice,	many	neuropsychiatric	disorders	are	clinically	heterogeneous	(Drysdale	et	al.,	2017).	For	
example,	in	patients	with	internally	oriented	ruminative	symptoms,	it	may	be	beneficial	to	target	DN-A	&	
DN-B	with	TMS.	By	contrast,	in	patients	with	symptoms	related	to	threat	dysregulation	and	anxiety,	SAL	&	
CG-OP	could	be	targeted.	Similarly,	patients	experiencing	symptoms	related	to	deficits	in	cognitive	control,	
such	as	emotion	dysregulation,	may	benefit	from	TMS	targeting	FPN-A.	Indeed,	prior	work	suggests	that	TMS	
can	induce	network-specific	changes	in	functional	connectivity	and	metabolism	(Eldaief	et	al.,	2011;	2023).	
Taken	together,	our	targeting	approach	could	be	used	to	preferentially	stimulate	different	networks	in	dlPFC	
in	different	patients	depending	on	 their	presenting	 symptom	profiles.	The	clinical	utility	of	 symptom-to-
target	matching	is	unknown	at	this	time,	and	the	main	driver	of	efficacy	may	be	more	predicted	by	effective	
dose	than	network-specific	targeting.	The	present	methods	provide	a	way	to	test	specific	alternative	targets	
in	head-to-head	comparisons.	Alternatively,	to	the	degree	clinical	outcomes	are	available	along	with	fMRI	
and	recorded	coil	positions,	it	may	be	possible	to	correlate	outcomes	and	targets	to	gain	insights	into	what	
matters	and	what	is	possible.	
					It	is	important	to	note	that	individual	anatomy	and	cortical	geometry	may	limit	the	ability	to	selectively	
target	certain	networks	in	certain	individuals.	We	found	that	target	size	is	an	important	factor,	with	larger	
target	regions	for	FPN-A	and	SAL	&	CG-OP	predicting	higher	degrees	of	selectivity.	As	such,	our	methodology	
may	be	less	useful	in	individuals	who	have	smaller	representations	of	relevant	networks	in	dlPFC.	Relatedly,	
an	 individual’s	 network	 organization	 in	 dlPFC	 may	 be	 such	 that	 certain	 networks	 are	 preferentially	
represented	deeper	within	the	fundus	of	a	sulcus	and	therefore	less	accessible	to	TMS.	Importantly,	in	these	
cases	our	precision	network	modeling	approach	could	ostensibly	be	used	to	target	network	representations	
outside	of	dlPFC	but	nevertheless	anatomically	situated	closer	to	the	scalp	(e.g.,	portions	of	parietal	cortex	
or	the	cerebellum).			 	

Importance	of	Spatial	Selectivity	and	E-field	Intensity	in	Precision	TMS	
					The	 present	 approach	 allows	 for	 the	 identification	 of	 optimal	 coil	 placements	 and	 estimation	 of	 two	
measures	 to	 assess	 the	 effect	 of	 network-specific	 targeting:	 spatial	 selectivity	 and	 E-field	 intensity.	
Selectivity,	or	the	proportion	of	overlap	between	the	target	network	and	the	top	values	of	the	E-field,	is	the	
primary	measure	 used	 by	 TANS	 to	 optimize	 coil	 placement	 (Lynch	 et	 al.,	 2022).	While	 this	measure	 is	
critically	 important,	 it	 relies	 on	 an	 arbitrary	 cutoff	 looking	 at	 the	 top	 percentage	 of	 values	 without	
considering	 the	 maximal	 intensity	 received	 in	 different	 parts	 of	 the	 cortex	 (Numssen	 et	 al.,	 2024).	
Neurophysiological	work	that	combines	TMS	with	invasive	intracranial	recordings	suggests	that	the	effects	
of	TMS	may	be	more	focal	than	E-field	spread	suggests	(Romero	et	al.,	2019)	and	neurons	receiving	a	higher	
E-	field	are	more	likely	to	exhibit	intracranial	TMS	evoked	potentials	(Wang	et	al.,	2024).	Thus,	it	is	important	
to	also	consider	the	maximal	and	overall	intensity	of	the	E-field	supplied	to	target	networks.	Our	results	show	
that	high	selectivity	does	not	necessarily	correspond	to	maximal	intensity	(e.g.,	Fig.	3B).	Further	experiments	
are	needed	to	discern	how	these	factors	predict	TMS	efficacy,	and	toward	this	end,	we	provide	a	tool	to	assess	
both	network-level	selectivity	and	intensity.	
	

Limitations	and	Future	Directions	
					While	 our	 study	 demonstrates	 the	 potential	 for	 precision	 network	 TMS	modeling,	 several	 limitations	
should	be	noted.	As	mentioned	above,	the	importance	of	selectivity	versus	intensity	in	TMS	targeting	remains	
unclear	 and	 cannot	 be	 addressed	 with	 our	 present	 methodology.	 For	 instance,	 clinical	 efficacy	 could	
ostensibly	be	achieved	by	stimulating	the	network	mediating	clinical	benefits	with	sufficient	intensity,	even	
if	 adjacent	 but	 less	 clinically	 relevant	 networks	 are	 also	 stimulated.	 Alternatively,	 unwanted	 off-target	
network	effects	could	limit	efficacy,	mandating	a	high	level	of	network	selectivity.	As	another	possibility,	the	
effective	dose	may	be	different	between	sites	with	maximal	stimulation	being	the	primary	driver	of	efficacy	
without	a	relation	to	network	composition.	Our	modeling	approach	could	be	used	to	resolve	these	questions	
by	relating	clinical	outcomes	to	the	degree	of	selectivity	versus	maximal	intensity	achieved.		
					Active	 translational	efforts	 in	our	 lab	are	 focused	on	modeling	and	modulating	 functional	networks	 in	
individuals	 with	 treatment-resistant	 depression.	 Results	 presented	 in	 this	 study	 suggest	 that	 precision	
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network	TMS	is	feasible	in	such	patients	and	under	conditions	where	a	single	one-hour	session	of	functional	
data	is	acquired	to	estimate	networks	(rather	than	the	multi-session	acquisitions	utilized	in	the	first	cohort	
of	this	study).	In	addition,	validation	experiments	will	be	needed	to	demonstrate	that	stimulating	distinct	
networks	yields	distinct	behavioral	and	clinical	outcomes.	The	present	precision	TMS	pipeline	is	constructed	
to	assist	 studies	 that	seek	 to	 test	 the	effects	of	network-specific	TMS	on	different	cognitive	domains	and	
symptoms.	
					Another	limitation	arises	from	our	use	of	E-field	models.	The	results	from	this	study	are	model	estimates	
and	are	thus	limited	by	the	accuracy	of	the	parameters	used	in	the	computational	models,	and	the	general	
assumption	 that	 the	models	 appropriately	 capture	 all	 relevant	biophysical	properties.	These	parameters	
include	the	TMS	coil	model,	 tissue	segmentation	and	estimated	conductivity.	More	subtle	aspects	such	as	
anisotropy	of	the	conductivity	in	the	white	matter	and	meninges	(Weise	et	al.,	2022),	for	example,	are	not	
considered.	
					When	executing	precision	TMS	in	the	real	world,	several	practical	factors	must	also	be	considered.	Given	
the	complexity	of	 the	pipeline,	checks	were	performed	to	ensure	adequate	data	quality,	 registration,	and	
model	 quality.	 These	 checks	 are	 enabled	 by	 the	 QC	 outputs	 of	 the	 precision	 TMS	 pipeline	 and	 include	
visualization	of	the	registration	of	structural	and	functional	images,	which	is	necessarily	imperfect	given	the	
distortion	 inherent	 to	 functional	 neuroimaging.	 In	 addition,	 precise	 coil	 positioning	may	 be	 affected	 by	
discomfort,	 physical	 constraints	 to	 optimize	 contact	 between	 the	 coil	 and	 the	 scalp,	 or	 head	movements	
during	 longer	 TMS	 sessions.	 Further,	 robotic	 TMS	 systems	may	 offer	 an	 interesting	 solution	 to	 improve	
precision	targeting	accuracy.	These	practical	considerations	will	impact	the	degree	to	which	model	estimates	
of	TMS	stimulation	effects	will	translate	to	the	actual	practice	of	clinical	TMS.	
	

Conclusions	
						We	characterize	the	within-individual	network	engagement	of	current	clinical	TMS	strategies,	present	an	
integrated	pipeline	for	precision	network	TMS	targeting,	and	demonstrate	the	feasibility	and	reliability	of	
differentially	targeting	specific	networks	with	meaningful	selectivity	and	intensity.	This	work	provides	a	path	
towards	 relating	 clinical	 outcomes	 to	 individual-specijic,	 systems-neuroscience	 informed	 functional	
anatomy.		
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Figure	 1.	 Left	 F3	 versus	 right	 F4	 TMS	 coil	
positions	 target	 distinct	 networks	 in	 a	
representative	 participant.	 Simulation	 results	
from	one	participant	are	shown	with	positioning	of	
the	TMS	coil	at	left	F3	and	right	F4	sites	(homotopic	
scalp	 locations	 based	 on	 the	 Okamoto	 10-20	 EEG	
coordinate	 system).	A)	 Network	 estimates	 on	 the	
left	and	right	hemispheres	of	the	cerebral	cortex	are	
presented.	 The	 network	 composition	 within	 the	
association	 zones	 varies	 between	 hemispheres	
including	within	dlPFC.	The	legend	below	labels	the	
networks:	 SMOT-A,	 Somatomotor-A;	 SMOT-B,	
Somatomotor-B;	 PM-PPr,	 Premotor-Posterior	
Parietal	 Rostral;	 CG-OP,	 Cingulo-Opercular;	 SAL,	
Salience;	 dATN-A,	 Dorsal	 Attention-A;	 dATN-B,	
Dorsal	Attention-B;	FPN-A,	Frontoparietal	Network-
A;	FPN-B,	Frontoparietal	Network-B;	DN-A,	Default	
Network-A;	 DN-B,	 Default	 Network-B;	 LANG,	
Language;	 VIS-C,	 Visual	 Central;	 VIS-P,	 Visual	
Peripheral;	 AUD,	 Auditory.	 B)	Maps	 of	 the	 E-Field	
effects	 are	 displayed	 for	 the	 left	 F3	 and	 right	 F4	
sites.	 Blue	 colors	 represent	 lower	 and	 red	 colors	
higher	E-field	(V/m)	values.	C)	Overlap	between	the	
maps	 of	 the	 E-field	model	 and	 network	 estimates	
quantified	at	various	E-field	thresholds	are	plotted.	
At	 left	 F3,	 the	 top	 1%	 to	 0.1%	 (99.0%-99.9%)	 E-
field	 includes	 multiple	 networks	 without	 a	 clear	
predominant	 network.	 At	 right	 F4,	 there	 is	
relatively	 more	 FPN-B	 in	 the	 E-field,	 at	 each	
threshold.	D)	Distribution	of	E-field	intensity	values	
across	 the	 estimated	 networks	 with	 the	 E-field	
calibrated	 to	dI/dt	=	48	A/μS.	Compared	 to	other	
networks,	 there	 is	 higher	 stimulation	 intensity	
supplied	to	FPN-A	and	CG-OP	on	the	left,	and	FPN-A	
and	 FPN-B	 on	 the	 right.	 The	 left	 hemisphere	
receives	 higher	 overall	 intensity	 than	 the	 right	
hemisphere.		
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.08.15.24311994doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.15.24311994
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 21	

		
Figure	 2.	 Selectivity	 and	 intensity	 for	 left	 F3	 versus	 right	 F4	 TMS	 coil	 positions	 quantified	 in	 15	
participants.	Plots	of	selectivity	and	intensity	illustrate	the	difference	between	the	effects	of	scalp	landmark-
based	left	F3	and	right	F4	stimulation	on	the	FPN-B	versus	SAL	networks.	Each	participant	is	represented	by	
one	pair	of	connected	symbols	corresponding	to	the	TMS	coil	placements:	left	F3,	gray	circle;	right	F4,	black	
triangle.	The	left	panel	displays	the	selectivity	corresponding	to	the	relative	%	of	SAL	and	FPN-B	in	the	top	
0.5%	of	the	E-field.	The	right	panel	displays	the	intensity	of	the	highest	25	vertices	for	FPN-B	and	SAL	(each	
point	is	the	mean	of	the	highest	25	vertices).	While	the	pairs	of	connected	dots	show	an	overall	horizontal	
pattern	 reflecting	 that	 SAL	 is	 similarly	 targeted	 across	hemispheres,	 the	 rightward	 shift	 for	 the	 right	 F4	
estimates	indicates	that	FPN-B,	a	right-lateralized	candidate	control	network,	is	targeted	more	by	positioning	
the	 TMS	 coil	 on	 the	 right	 hemisphere.	 Note	 also	 that	 the	 degree	 of	 SAL	 selectivity	 and	 intensity	 varies	
between	participants	considerably	for	both	sites.	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.08.15.24311994doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.15.24311994
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 22	

	
Figure	 3.	 The	 sgACC	 anticorrelation	 strategy	 targets	multiple	 networks	with	 variability	 between	
individuals.	Plots	illustrate	two	facets	of	the	sgACC	anticorrelation	targeting	strategy.	A)	The	region	targeted	
by	the	sgACC	anticorrelation	contains	subregions	linked	to	multiple	distinct	networks.	The	plot	displays	the	
%	 of	 vertices	 in	 each	 network	within	 the	 anticorrelated	 target	 region	 in	 15	 participants,	 with	 each	 bar	
representing	the	mean	for	a	single	network	and	the	symbols	representing	individual	participants.	The	sgACC	
anticorrelated	 target	 region	 variably	 includes	 SAL,	 CG-OP,	 FPN-A,	 and	 dATN-A	 network	 regions.	 Note	
specifically	the	marked	variability	between	individuals	in	the	degree	to	which	the	SAL	network	is	included.		
B)	 Selectivity	 and	 intensity	 at	 the	 individualized	 sgACC	 anticorrelated	 target	 are	 quantified	 and	plotted.	
Symbols	represent	the	15	individual	participants.	The	left	panel	shows	selectivity	of	the	anticorrelated	target,	
quantified	as	relative	%	of	FPN-A	versus	SAL	within	the	thresholded	E-field	(top	0.5%	of	values).	The	right	
panel	shows	the	maximal	intensity	(mean	of	the	25	highest	values)	at	the	anticorrelated	target	for	FPN-A	
versus	SAL.	The	five	highlighted	participants	(1-5)	demonstrate	that	the	degree	of	selectivity	does	not	always	
predict	the	values	for	maximal	intensity.		
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Figure	4.	Precision	network	mapping	and	E-field	modeling	can	be	prospectively	applied	 to	 target	
networks	 in	 individuals.	Adapted	 views	 from	 the	 report	 generated	 by	 the	 precision	 TMS	 pipeline	 are	
displayed	for	one	typical	participant.	A)	Network	estimates	are	displayed	on	the	native-space	surface	with	
colors	denoting	distinct	networks.	The	network	colors	are	the	same	as	in	Figure	1.		B)	The	dlPFC	region	used	
to	constrain	the	search	space	for	target	selection	is	displayed	in	green.	Note	that	the	region	overlaps	with	
many	 distinct	 networks	 in	 panel	 A.	C)	 The	 largest	 continuous	 cluster	 on	 a	 gyral	 crown	within	 dlPFC	 is	
selected	for	each	of	the	targets	(highlighted	in	black)	on	top	of	the	target	network	estimates	shown	in	color.	
Note	that	an	isolated	network	(e.g.,	FPN-A,	 left)	or	network	pairs	(e.g.,	DN-A	&	DN-B,	right)	can	be	set	as	
targets,	which	illustrates	the	flexibility	of	this	approach.	D)	The	E-field	map	corresponding	to	the	best	coil	
placement	for	each	target	is	shown.	Blue	colors	represent	lower	and	red	colors	higher	E-field	(V/m)	values.	
E)	The	overlap	between	the	E-field	map	and	estimated	networks	is	quantified	at	multiple	thresholds	(99.0%-
99.9%).	This	participant	demonstrates	high	spatial	selectivity	for	each	of	the	targets	that	increases	as	the	
thresholds	 increase.	 F)	 Plots	 show	 the	 distribution	 of	 E-field	 values	 within	 networks,	 with	 the	 E-field	
calibrated	to	dI/dt	=	48	A/μS.	Values	on	the	right	of	the	plot	 indicate	high	intensity	stimulation,	which	is	
supplied	 to	 FPN-A	 in	 this	 participant,	 but	 not	 SAL	 &	 CG-OP	 or	 DN-A	 &	 DN-B.	The	 E-field	 intensity	 plot	
considers	 all	 vertices	 in	 the	 cortex	 including	 those	 at	 depth	 and	 those	 outside	 the	 search	 space.	 It	 thus	
represents	the	estimated	stimulation	effect	for	the	coil	site	and	is	independent	of	search	space	and	target	
selection	assumptions.	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.08.15.24311994doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.15.24311994
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 24	

	

Figure	 5.	Hypothetical	 spatial	 selectivity	 and	 E-field	 intensity	 achievable	 in	 15	 participants.	Plots	
display	 the	modeled	 spatial	 selectivity	 and	E-field	 intensity	 that	 is	 achieved	by	optimizing	 coil	 positions	
within	individuals.	Each	pair	of	connected	symbols	represents	one	participant,	and	colors	correspond	to	the	
optimal	 TMS	 coil	 placement	 for	 distinct	 networks:	 FPN-A,	 orange;	 SAL	 &	 CG-OP,	 purple;	 DN-A	 &	 DN-B,	
maroon.	Left	panels	show	the	selectivity	(relative	%	in	the	E-field	at	the	top	0.5%	of	values);	right	panels	
show	the	maximal	intensity	of	the	highest	25	vertices	(each	point	is	the	mean	of	the	highest	25	vertices).		The	
top	row	compares	FPN-A	versus	SAL	&	CG-OP;	the	middle	row	compares	FPN-A	versus	DN-A	&	DN-B,	and	
the	bottom	row	compares	SAL	&	CG-OP	versus	DN-A	&	DN-B.	Overall,	there	is	clear	separation	in	selectivity	
between	the	optimized	coil	positions,	such	that	the	coil	placed	at	the	target	network(s)	is	more	selective	for	
the	target	than	non-target	network(s).	This	is	also	observed	for	maximal	intensity,	though	the	separation	is	
narrower	again	reminding	that	the	effects	of	selectivity	and	 intensity	can	be	distinct,	and	both	should	be	
taken	into	account.			
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Figure	6.	Precision	network	mapping	and	E-field	modeling	prospectively	applied	to	target	networks	
using	single-session	data	in	a	participant	with	MDD.	Mirroring	the	structure	of	Figure	4,	using	a	single	
session	of	resting-state	data	(~1	hr),	the	precision	TMS	pipeline	was	used	to	prospectively	target	distinct	
networks	in	a	participant	with	MDD.	A)	Network	estimates	shown	on	the	native-space	surface.	B)	The	dlPFC	
search	space	used	for	target	selection.	C)	The	network	target	regions	(highlighted	in	black),	overlayed	on	
network	estimates	in	color.	D)	The	E-field	map	corresponding	to	the	best	coil	placement	for	each	target.	Blue	
colors	represent	lower	and	red	colors	higher	E-field	(V/m)	values.	E)	The	overlap	between	the	E-field	map	
and	 estimated	 networks	 quantified	 at	 multiple	 E-field	 thresholds	 (99.0%-99.9%).	 This	 participant	
demonstrates	preferential	spatial	selectivity	for	each	of	the	targets	that	increases	as	the	thresholds	increase.	
F)	Distribution	of	E-field	values	within	networks,	with	the	E-field	calibrated	to	120%	of	this	participant’s	
resting	motor	threshold	(dI/dt	=	49	A/μS).	Values	on	the	right	of	the	plot	indicate	high	intensity	stimulation,	
which	is	supplied	to	FPN-A	and	SAL	&	CG-OP	in	this	participant,	but	not	DN-A	&	DN-B.		
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Figure	7.	Achieved	spatial	selectivity	and	E-field	intensity	in	8	participants.	Mirroring	the	structure	of	
Figure	5,	 these	plots	 display	 the	 achieved	 spatial	 selectivity	 and	E-field	 intensity	 during	 real-world	TMS	
sessions.	Each	symbol	represents	one	participant,	each	pair	of	connected	symbols	represents	the	same	TMS	
session	number	in	the	sequence	of	3	TMS	sessions	administered	per	target,	and	colors	correspond	to	the	
optimal	 TMS	 coil	 placement	 for	 distinct	 networks:	 FPN-A,	 orange;	 SAL	 &	 CG-OP,	 purple;	 DN-A	 &	 DN-B,	
maroon.	Left	panels	show	the	selectivity	(relative	%	in	the	E-field	at	the	top	0.5%	of	values);	right	panels	
show	the	intensity	of	the	highest	25	vertices	(each	point	is	the	mean	of	the	highest	25	vertices).	Overall,	there	
is	clear	separation	in	selectivity	and	maximal	intensity	between	the	optimized	coil	positions,	such	that	the	
coil	placed	at	the	target	network(s)	is	more	selective	and	achieves	higher	intensity	for	the	target	than	non-
target	network(s).		
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