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Abstract

Our lab has built a next-generation tomosynthesis (NGT) system utilizing scanning motions with 

more degrees of freedom than clinical digital breast tomosynthesis systems. We are working 

toward designing scanning motions that are customized around the locations of suspicious 

findings. The first step in this direction is to demonstrate that these findings can be detected 

with a single projection image, which can guide the remainder of the scan. This paper develops 

an automated method to identify findings that are prone to be masked. Perlin-noise phantoms 

and synthetic lesions were used to simulate masked cancers. NGT projections of phantoms were 

simulated using ray-tracing software. The risk of masking cancers was mapped using the ground-

truth labels of phantoms. The phantom labels were used to denote regions of low and high risk of 

masking suspicious findings. A U-Net model was trained for multiclass segmentation of phantom 

images. Model performance was quantified with a receiver operating characteristic (ROC) curve 

using area under the curve (AUC). The ROC operating point was defined to be the point closest 

to the upper left corner of ROC space. The output predictions showed an accurate segmentation 

of tissue predominantly adipose (mean AUC of 0.93). The predictions also indicate regions of 

suspicious findings; for the highest risk class, mean AUC was 0.89, with a true positive rate of 

0.80 and a true negative rate of 0.83 at the operating point. In summary, this paper demonstrates 

with virtual phantoms that a single projection can indeed be used to identify suspicious findings.
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1. INTRODUCTION

Women with radiographically dense parenchyma are usually associated with having an 

increased risk of cancer.1,2 Breast density can limit the sensitivity of screening exams and 

potentially result in missed detections (known as masked cancers) or mischaracterizations of 

lesions.3 Personalized screening programs recommend additional or supplemental imaging 

for women with dense or complex mammary parenchyma to detect more cancers at early 

stages.3–8 However, for those who receive supplemental imaging, the current imaging 

methods lack specificity.9–12 Currently, no direct quantitative criterion exists to identify 

women for supplemental or triaged imaging, resulting in a greater number of false-positive 

(FP) findings.

A prototype next-generation tomosynthesis (NGT) system was built at the University of 

Pennsylvania (Penn) to improve the detection and characterization of breast lesions and the 

discrimination of glandular (dense) from adipose tissue.13 The NGT design incorporates 

in the x-ray source scanning an additional component of motion in the posteroanterior 

direction, reducing out-of-focus structures when compared with conventional imaging 

systems.13,14 Our ultimate goal is to integrate fast and intelligent methods into the NGT 

engine (and future designs) to identify suspicious areas and to improve the image quality 

in regions that are prone to mask cancers. In this paper, we investigate how a single 2D 

projection image can be used to identify regions that are prone to masking. Our long-term 

goal is to design more complex scanning motions that are directed specifically around these 

regions. This paper represents the first step in that direction by demonstrating the feasibility 

of real-time image analysis using a single 2D projection image, which could be used to 

guide the choice of x-ray source locations in the remainder of the scan.

Virtual clinical trial (VCT) methods have been used to evaluate, optimize, and validate 

the acquisitions of the NGT design.15–17 VCTs are usually targeted toward specific 

clinical tasks, requiring computational simulations of human anatomy (anthropomorphic 

phantoms).15 To simulate clinical tasks that require a risk assessment of masked cancers or 

characterization of breast lesions, anthropomorphic phantoms should realistically simulate 

the anatomic noise seen in images of the mammary parenchyma.18 Just a few studies 

have been reported in the literature about VCT methods for assessing and estimating the 

risk of masking cancers.19,20 Mainprize et al. developed a masking index that locally 

assesses the signal-to-noise ratio of synthetic images using noise spectrum, modulation 

transfer function, and a task function that represents the psycho-visual model for lesion 

detectability.19 However, nonlinear imaging modalities, such as digital breast tomosynthesis 

(DBT), complicate the use of these traditional metrics of image quality.21 In addition, the 

simulation of complex mammary parenchyma is required to validate the use of objective 

metrics proposed for estimating the risk of masking cancers.18

Computer simulations of Perlin noise can improve substantially the realism of mammary 

parenchyma of virtual breast phantoms.18 Perlin noise22 uses gradient values that are 

smoothly connected by an interpolation function that is used to generate complex textures 

and patterns in medical imaging.18,23 Dustler et al. have proposed the use of a variation of 

Perlin noise called fractal noise (or fractional Brownian motion) to simulate realistic small-
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scale breast structures that improve the complexity of simulated mammary parenchyma of 

phantoms.24,25

In this study, we used a Graphics Processing Unit (GPU) based library to accelerate 

simulations of Perlin-noise phantoms.18 We developed an automated method to identify 

suspicious regions that are prone to mask cancers in Perlin- noise phantoms. These 

suspicious regions are considered “hotspots” for masking cancers. A U-Net architecture26 

was trained for multiclass segmentation of hotspot areas in breast images simulated using 

the NGT acquisition geometry. The central aim of this study is to demonstrate that hotspots 

can be detected in a single projection image, as this is motivated by our long-term goal of 

designing scanning motions that are customized around the locations of these findings.

2. MATERIALS & METHODS

2.1 Data Simulation

2.1.1 Breast Outline and Mammary Parenchyma—Breast outlines were simulated 

using software that models breasts under mammography compression using the principal 

component analysis (PCA) method.27,28 The PCA software characterizes and models 

realistically the compressed breast curvature between the support table and the compression 

paddle. In total, 20 outlines of 0.2 mm3 voxel size were modeled under craniocaudal (CC) 

compression (Figure 1A). The outlines were created using 30, 40, and 50 mm of compressed 

breast thickness (CBT). The chest-wall to nipple distance (CND) varied from 50 to 110 mm.

Recursive partitioning software29 was used to simulate coarse tissue within the binary 

outline (adipose, glandular, and Cooper’s ligaments shown in Figure 1B). The coarse 

phantoms were simulated using 25–45% overall volumetric breast density. Note that only 

dense phantoms were simulated to represent breast anatomies with an increased likelihood 
of masked lesions. An erosion morphology operation was applied to the binary volumes to 

simulate the breast skin. The skin thickness was varied randomly in a [0.2, 2.4] mm interval 

using ball structuring elements.30,31

Finally, 3D fractal noise (also known as Perlin noise)22 was simulated within the internal 

region of each outline to represent the anatomy of breast parenchyma (Figure 1C).18,32 The 

fractal noise parameters known as lacunarity, persistence, and octaves were varied using 

the values {2, 3}, {0.75, 1.00}, and 6, respectively. These parameters were previously 

reported by Dustler et al.24,25 The noise frequencies were normalized between [0.0001, 1] 

interval, and the loge was applied to the voxel distribution, resulting in frequencies that are 

proportional to the linear x-ray attenuation of the materials in the log scale.33 The voxel 

values were normalized within a 6-bit (unsigned) resolution (where materials 0 and 63 

represent air and skin, respectively). The output of this normalization is known as the “Perlin 

phantom” (Figure 1D).18,32 The Perlin phantoms were simulated using the open-source 

Perlin-CuPy methods (developed in-site).18,32

2.1.2 Lesions—Soft-tissue lesions (ellipsoidal and spiculated) were simulated and 

embedded in the Perlin-noise phantoms (Figure 2). Two lesions were embedded in each 

phantom using a random position in the posteroanterior (x) and chest-wall (y) direction 
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but always in the center of the phantom in the craniocaudal direction (z). The spiculated 

models were segmented and scaled from contrast-enhanced magnetic resonance images in 

three orthogonal views (sagittal, coronal, and transverse).34 A voxel additive method35 was 

used to insert the lesion models in the phantoms. The attenuation of lesions is controlled by 

varying a weighting factor35 (wl) of the partial volume of voxels. In this study, wl was set to 

0.20 and 0.35 for lesions simulated using the ellipsoidal and spiculated models, respectively. 

The lesion dimensions were 7×7×7 mm3 for both models.

2.1.3 X-ray Images and Risk Maps—Each voxel from the simulated breasts 

represents a composite material that consists of a complementary mixture of adipose and 

glandular tissue (partial volume).18 For the 61 materials used to simulate Perlin noise (breast 

tissue and lesions), the composition of the partial volume of voxels decreases linearly from 

99% to 1% of adipose tissue and increases linearly from 1% to 99% of glandular tissue.18 

These composite materials vary the x-ray attenuation of the images.18

The OpenVCT framework36 was used to simulate DBT projections of the breast phantoms. 

The projection algorithm uses a fast GPU implementation of the Siddon method for 

ray-tracing.37 The DBT projections were simulated assuming the conventional acquisition 

geometry of the NGT system, following a left-to-right scanning motion along the chest 

wall (Table 1). For the purpose of this study, only the central projection image was used 

to train the U-Net model (more details in the next section). We want to demonstrate the 

feasibility of modifying the subsequent x-ray source locations from the NGT default scan. 

The acquisition exposure settings were simulated using the automatic exposure control 

data.14 The attenuation coefficient data of the materials used to simulate phantoms come 

from the International Commission on Radiation Units & Measurements (ICRU) Report 

44.38

The maximum intensity projection (MIP) of the coarse phantoms (Figure 1B) was used to 

create “risk maps” (Figure 3A). MIP projects the coarse voxels from the phantoms with 

the maximum intensity (i.e., maximum risk) that falls in the way of parallel rays traced 

from the source to the plane projected at the x-ray detector. The maps were categorized 

into different classes: background+skin (risk 0), breast tissue predominantly adipose (risk 

1), predominantly dense (risk 2), and lesion (risk 3). The maps were used to train a U-Net 

model along with the corresponding central DBT projection (Figure 3B). The purpose of 

training the U-Net model in this manner is to demonstrate the feasibility of using a single 

projection image to identify hotspots, as this could ultimately be applied to designing a 

system capable of real-time image analysis for task- directed scanning motions.

2.2 Multiclass Segmentation

The U-Net architecture26 was used to predict risk maps from DBT projections ([0,1] 

normalization). The images were cropped to reduce the excessive background and the 

burden of processing. The cropped region corresponds to the max of CND size of 

the thickest phantom. The U-Net consists of 4-encoder layers that down-sample the 

reconstructed images and 4-decoder layers that up-sample the segmented regions of the 

risk maps (Figure 4). Two convolutions (3×3 kernel) and one max-pooling (2×2 kernel) with 

da Nobrega et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



leaky rectified linear unit (ReLU) activation are performed in each encoder layer. Padded 

kernels were used to maintain the aspect ratio of the input images. Batch normalization (BN) 

was used after each convolution. The final convolution (conv 1×1) maps a feature vector 

(feature maps) to the number of classes.

A U-Net model was trained for multi-class segmentation using four classes (Figure 3). 

The model was trained on two NVIDIA Quadro P5000 GPUs with 32 GB of RAM. We 

used a batch size of 22, 12 workers (sub-processes used for loading images), learning 

rate of 1×10−5, and Adam optimizer. Early stopping was used to optimize the number 

of epochs of each training model (max of 250 epochs) and to avoid poor generalization 

performance. Weighted cross-entropy was used as the loss function (weights 1, 1, 2, 2). The 

hyperparameters multiplicator (weights) and learning rate were optimized using weights and 

bias sweeps (wandb, version 0.12). The model was built using PyTorch 1.10 and Python 

3.9.9.

In total, 168, 48, and 24 input images (360×600 pixels) were used for training, validation, 

and testing, respectively (ratio 70:20:10%, respectively). For each set, the input images were 

randomly selected but equally distributed by volumetric breast density, lesion type, Perlin 

parameters, and breast thickness to avoid bias in the training models. The predictions of 

the test set were obtained, and the predictions for each class (softmax) were used to create 

hotspot maps (Figure 4).

The performance of the models was evaluated using the area under the pooled receiver 

operating characteristic (ROC) curve (AUC). The R libraries “pROC” (version 1.17) and 

“auctestr” (version 1.0) were used to collect the ROC statistics. The operating point of the 

ROC curve was defined to be the point that minimizes Euclidean distance relative to the 

upper left corner of ROC space; at this operating point, we calculated the true positive rate 

(TPR), true negative rate (TNR), positive predictive value (PPV), and negative predictive 

value (NPV). Finally, the segmentation metrics Jaccard (Jac) and Dice coefficients were 

calculated using the 4-class predictions.

3. RESULTS

Our preliminary results have shown that the developed software is capable of precisely 

segmenting regions with the lowest risk of lesions (risk class 0, Figure 5B) in the 

central projection (Figure 5A). The software predictions (Figure 5C) indicate efficient 

differentiation between tissue predominantly adipose (risk class 1) and predominantly dense 

(risk class 2). In addition, regions with lesions are segmented by the U-Net models and 

classified with the highest risk (risk class 3). Note that the “hottest spots” (i.e., peaks of 

confidence) show the highest peaks of regions with lesions in the confidence images (Figure 

5D). For future work, we will use the hotspot images to reduce the number of false positives 

from the predictions.

The multiclass model shows an ideal segmentation for risk class 0 (Figure 6B). Thus, the 

classification metrics were calculated without considering the predicted values for this class. 

For risk class 1, the ROC (Figure 6A) resulted in an AUC value of 0.93, demonstrating an 
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effective segmentation of predominantly adipose tissue. Risk class 3 resulted in the lowest 

values of Dice (0.11) and Jaccard (0.06) due to a large number of false positives. However, 

this class shows a high TPR (0.80), which is comparable to risk class 2 (0.81). This result 

is consistent with the hotspots (i.e., peaks of confidence) found in the confidence images 

(Figure 5B).

The weighted cross-entropy loss maximizes the accuracy of the learning model, avoiding 

overfitting due to imbalanced data between the four classes. Based on these results, the 

sweeping of hyperparameters penalizes the segmentation of predominantly dense tissue to 

improve the segmentation of lesions, improving the accuracy of locating hotspot regions.

4. DISCUSSION AND CONCLUSION

The sensitivity of cancer detection by screening mammography is reduced in women with 

dense breasts, resulting in masked cancers and mischaracterizations of lesions. In this work, 

we have developed an automated method to identify suspicious areas in breast phantoms 

with a single 2D projection image. Our future work will apply this method to designing a 

DBT system capable of identifying suspicious areas in real time and dynamically calculating 

the scanning motion that optimizes visualization of these areas, potentially improving the 

sensitivity of cancer detection and the characterization of suspicious findings. It is important 

to mention that the ultimate goal of the software is not to be used as a computer-aided 

diagnosis (CAD) system. Instead, the software should be used to indicate regions with a 

higher likelihood of cancer.

This study has some limitations. Spiculated lesions have sharp ramifications on the tumor 

that can vary greatly in density and length, from a few millimeters to several centimeters 

(Figure 2). These ramifications complicate the segmentation, reducing the performance of 

the model shown in the segmentation metrics (Figure 5B). In addition, the linear attenuation 

coefficient of the lesions composed of soft tissue is very close to the dense tissue, which 

compromises the differentiation between risk class 2 and 3. However, the ultimate goal 

of this study is not the perfect segmentation of lesions (or dense tissue). Instead, we will 

use this software to indicate the locations of suspicious findings to improve the NGT 

acquisitions.

Another limitation of this study is that the U-Net model for identifying hotspots was 

developed with virtual breast phantoms as opposed to clinical images. Future work will 

explore alternate strategies for training the U-Net model using clinical images with known 

findings. In addition, we will increase the number of images for the test and validation set, 

use cross-validation during the training process, and investigate the use of alternative focal 

loss functions to improve the segmentation of the U-Net.
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Figure 1. 
(A) Example of PCA-based breast outline, (B) simulation of coarse tissue, (C) parenchyma 

simulation, and (D) volume view resulting from Perlin noise-based breast phantom (CC 

compression).
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Figure 2. 
Volume view of breast lesion models: (A) ellipsoidal, and (B-D) spiculated masses.35
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Figure 3. 
Central slice (craniocaudal) of (A) mask using 4-class masks (background, predominantly 

adipose, predominantly dense, and diseased tissue) and (B) central DBT projection (for 

processing - contrast levels modified with window level settings) with highlighted breast 

curvature (dark gray). Spherical masses embedded in simulated tissue predominantly dense 

(red) and predominantly adipose (yellow) are shown.
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Figure 4. 
U-Net architecture implemented for multiclass segmentation of risk maps.
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Figure 5. 
Examples of multi-class segmentation using U-Net model: (I) central projection, (II) risk 

masks, (III) predictions and (IV) hotspot map.
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Figure 6. 
(A) Receiver operating characteristic curves (operating point in black) and (B) summary of 

segmentation and classification metrics.
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Table 1.

Summary of DBT acquisition parameters.

X-Ray Imaging

Number of Projections 15

Medio-lateral (ML) Distance of Projections (max, mm) 180

Posterior-anterior (PA) Distance of Projections (max, mm) 0

Anode and Filter Materials Tungsten and Aluminum

Filter Thickness (mm) 0.7

Angular Range ML (°) ±7.5

Tube Motion Step-and-Shoot

Detector

X-Ray Converter Material Amorphous Selenium (a-Se)

Detector Element Size (width × height, mm) 0.085 × 0.085

Number of Elements (width × height, #) 3584 × 2816

Detector Size (width × height, mm) 304.64 × 239.36

Source-to-Image Distance in central projection (mm) 722.0
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