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Abstract

Background

Inflammation has been implicated in driving the morbidity associated with subarachnoid

hemorrhage (SAH). Despite understanding the important role of inflammation in morbidity

following SAH, there is no current effective way to modulate this deleterious response.

There is a critical need for a novel approach to immunomodulation that can be safely, rap-

idly, and effectively deployed in SAH patients. Vagus nerve stimulation (VNS) provides a

non-pharmacologic approach to immunomodulation, with prior studies demonstrating VNS

can reduce systemic inflammatory markers, and VNS has had early success treating inflam-

matory conditions such as arthritis, sepsis, and inflammatory bowel diseases. The aim of

the Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAV-

SaH) trial is to translate the use of non-invasive transcutaneous auricular VNS (taVNS) to

spontaneous SAH, with our central hypothesis being that implementing taVNS in the acute

period following spontaneous SAH attenuates the expected inflammatory response to hem-

orrhage and curtails morbidity associated with inflammatory-mediated clinical endpoints.

Materials and methods

The overall objectives for the NAHSaH trial are to 1) Define the impact that taVNS has on

SAH-induced inflammatory markers in the plasma and cerebrospinal fluid (CSF), 2) Deter-

mine whether taVNS following SAH reduces radiographic vasospasm, and 3) Determine

whether taVNS following SAH reduces chronic hydrocephalus. Following presentation to a

single enrollment site, enrolled SAH patients are randomly assigned twice daily treatment

with either taVNS or sham stimulation for the duration of their intensive care unit stay. Blood

and CSF are drawn before initiation of treatment sessions, and then every three days during
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a patient’s hospital stay. Primary endpoints include change in the inflammatory cytokine

TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic

vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt.

Secondary outcomes include exploratory analyses of a panel of additional cytokines, num-

ber and type of hospitalized acquired infections, duration of external ventricular drain in

days, interventions required for vasospasm, continuous physiology data before, during, and

after treatment sessions, hospital length of stay, intensive care unit length of stay, and modi-

fied Rankin Scale score (mRS) at admission, discharge, and each at follow-up appointment

for up to two years following SAH.

Discussion

Inflammation plays a central role in morbidity following SAH. This NAVSaH trial is innovative

because it diverges from the pharmacologic status quo by harnessing a novel non-invasive

neuromodulatory approach and its known anti-inflammatory effects to alter the pathophysi-

ology of SAH. The investigation of a new, effective, and rapidly deployable intervention in

SAH offers a new route to improve outcomes following SAH.

Trial registration

Clinical Trials Registered, NCT04557618. Registered on September 21, 2020, and the first

patient was enrolled on January 4, 2021.

Introduction

Background and rationale

Intracranial aneurysms are common, with 3–5% of all adults harboring at least one. The result-

ing subarachnoid hemorrhage (SAH) from ruptured aneurysms accounts for 5–10% of all

strokes worldwide, culminating in a total of 600,000 new cases per year [1]. SAH is a major

driver of mortality and morbidity, with 10–25% of patients dying following SAH and an addi-

tional 30% of patients suffering permanent disability [2]. While the immediate sequelae of

SAH can include risk for re-rupture, elevated intracranial pressure, and acute hydrocephalus,

secondary injury is a major driver of morbidity as mediated by early brain injury, cerebral

vasospasm, delayed cortical ischemia, and chronic hydrocephalus [3]. Targeting the post-hem-

orrhage period with the goal of reducing these secondary sequelae from SAH is an important

mechanism for improving outcomes in SAH patients.

There is growing evidence that systemic and local inflammation may promote aneurysm

formation and rupture as well as lead to poorer outcomes following aneurysmal rupture. Fol-

lowing SAH, blood within the subarachnoid space triggers both local, as measured by inflam-

matory markers in the cerebrospinal fluid (CSF), and systemic inflammatory responses, as

measured by inflammatory markers in the blood. Prior work has identified increased cytokines

including IL-1β, IL-4, IL-8, IL-10, IL-18, and IL-33, following SAH in animal [4–7] and

human [8–13] studies. Key drivers of SAH-induced inflammation are the cytokines IL-6 and

TNF-α. Studies in canine and rabbit models of SAH demonstrate increased rates of vasospasm

correlated with expression of IL-6 in the basilar artery [6] and CSF [14], respectively. Work

performed in humans reveals elevated IL-6 in the blood [11] and CSF [9, 11, 15–17] following
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SAH. In several studies, elevated IL-6 in the CSF was significantly correlated with development

of vasospasm [9, 16], delayed cortical ischemia [17], chronic hydrocephalus [18, 19], and

poorer overall outcome [9, 11] following SAH. Similarly, studies in rodent [20] and rabbit [21]

models of SAH found increased TNF-α was associated with vasospasm. In humans, elevated

TNF-α in the blood [22, 23] and CSF [8, 9, 24, 25] have been demonstrated following SAH.

Elevated TNF-α has been associated with vasospasm [8, 9, 24], hydrocephalus [8], and poor

outcome [8, 22].

Numerous anti-inflammatory interventions have been trialed in humans to better under-

stand, and eventually target, inflammatory pathways to improve outcomes after SAH [26–29].

In smaller enrollment studies, there was promise of outcome improvement with Cyclosporine

A [30, 31] and steroids like methylprednisolone [32, 33], hydrocortisone [34], and dexametha-

sone [35]. Other medications demonstrated no impact on overall outcomes, like Clazosentan

[36, 37], Cilostazol [38], and IL-1 antagonists [39, 40]. In several meta-analysis studies looking

at groups larger than 1000 patients, Simvastatin [41], Aspirin, non-steroidal anti-inflammatory

medications, and thienopyrindines [42] all demonstrated no improvement in outcomes. In

summary, while some pathway-targeted pharmacological approaches have led to changes in

secondary outcomes of vasospasm and delayed cerebral ischemia in clinical trials [37, 38],

these approaches have failed to produce an effective intervention that reliably improves out-

comes in SAH patients. Thus, there is an urgent need to find a novel approach to more globally

and meaningfully reduce inflammation in SAH to reduce patient morbidity.

Vagus nerve stimulation (VNS) has been studied as a novel method of reducing inflamma-

tion. Substantial work has demonstrated that products of infection or injury activate sensory

neurons traveling to the brainstem in the vagus nerve [43, 44]. The arrival of these incoming

signals generates action potentials that travel from the brainstem to the spleen and other

organs. This culminates in T cell release of acetylcholine, which interacts with α7 nicotinic ace-

tylcholine receptors (α7 nAChR) on immunocompetent cells to inhibit cytokine release in

macrophages [45]. This neural-immunomodulatory circuit, referred to as the “cholinergic

anti-inflammatory pathway”, presents opportunities for developing novel therapeutic strate-

gies to treat inflammatory diseases. It has been successfully implemented in models of inflam-

matory conditions like induced neuroinflammation [46], cerebral ischemia/reperfusion [47],

rheumatoid arthritis [48], sepsis [49], and inflammatory bowel diseases [50, 51] or colitis [52].

Harnessing its anti-inflammatory effects, VNS has been used in a mouse model of cerebral

aneurysms and SAH [53]. In this study, pre-treatment with VNS not only reduced the rupture

rate of intracranial aneurysms, but also reduced the grade of hemorrhage if rupture occurred

and improved survival and outcome after SAH [53]. There has not been any published work

implementing VNS following SAH in humans.

Historically, VNS was performed exclusively by surgical cervical neck dissection and place-

ment of a cuff electrode directly around the nerve within the carotid sheath. Alternatively,

VNS can be accomplished non-invasively by stimulating the auricular branch of the vagus

nerve as it courses through the external ear, obviating the morbidity of a surgical procedure

and allowing rapid deployment of the intervention in critically ill patients. The external ear is

an ideal target for non-invasive stimulation of the vagus nerve, where the auricular branch

travels in the concha of the ear [54]. This transcutaneous auricular approach has demonstrated

good efficacy, with minimal morbidity [54, 55].

Taken together, there is substantial evidence that VNS is an emerging tool to mitigate

inflammation, but there is a dearth of understanding on its effects on SAH in humans.
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Objectives

Our long-term goal is to translate the use of non-invasive transcutaneous auricular VNS

(taVNS) to reduce morbidity and improve outcomes in patients following spontaneous SAH.

The overall objectives for the NAVSaH trial in pursuit of achieving this goal are to (i) demon-

strate the impact taVNS has on inflammatory markers in the blood and CSF in patients follow-

ing SAH, and (ii) determine if taVNS reduces the incidence of inflammation-mediated

sequelae of SAH by performing a prospective, randomized controlled trial. Our central

hypothesis is that implementing taVNS in the acute period following spontaneous SAH will

attenuate the expected inflammatory response to hemorrhage and will curtail morbidity asso-

ciated with inflammatory-mediated clinical endpoints (i.e., vasospasm & hydrocephalus). By

pursuing this project, we expect to demonstrate the important role that neuromodulation can

play in SAH. More specifically, we expect this work will create the foundation of knowledge

for advancing non-invasive taVNS to enable further research to translate this as an established

clinical intervention in the future.

Materials and methods

Trial design

NAVSaH is a prospective, triple-blinded (patient, care team, and outcomes assessor), random-

ized-control trial to assess superiority of intervention with vagus nerve stimulation following

spontaneous subarachnoid hemorrhage compared to standard of care with respect to inflam-

matory markers in the blood and CSF, rate of radiographic vasospasm, and rate of develop-

ment of chronic hydrocephalus. Treatment and sham assignments are made with a 1:1

allocation. Figs 1 and 2 represents an overview of the trial design. This protocol manuscript

was written in accordance with the Standard Protocol Items: Recommendations for

Fig 1. SPIRIT schedule of enrollment, interventions, and assessments.

https://doi.org/10.1371/journal.pone.0301154.g001
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Interventional Trials (SPIRIT) guidelines [56] and the Consolidated Standards of Reporting

Trials (CONSORT) statement [57].

Methods: Participants, interventions and outcomes

The Washington University institutional review board reviewed and approved this study.

Written informed consent was obtained for all participants.

Study setting. The NAVSaH trial is being conducted at a single center, a tertiary care aca-

demic hospital center, Barnes Jewish Hospital/Washington University in St. Louis (St. Louis,

MO, USA).

Eligibility criteria. Participants include all individuals who present with a spontaneous

subarachnoid hemorrhage, aged>18 years old. Exclusion criteria includes traumatic etiology

for hemorrhage, negative vascular imaging for aneurysm (CT angiogram or cerebral angio-

gram), ongoing cancer therapy, ongoing use of an immunomodulating or suppressive medica-

tion, sustained bradycardia on arrival with a heart rate< 50 beats per minute for > 5 minutes,

implanted pacemaker or other electrical device, current pregnancy, or a positive test for the

Covid-19 virus.

Who will take informed consent? Patients provide written consent for themselves when

able. For patients who are unable to provide consent given cognitive impairment from their

subarachnoid hemorrhage, then a legally authorized representative can provide written

informed consent in conjunction with patient assent (whenever possible). The patient or

legally authorized representative are informed about the objectives of the study as well as

potential risks and benefits of participation. Documentation of consent is kept in paper format

and maintained in a locked and secure storage box by trial staff. Consent is obtained by either

a physician member of the research team, or an appropriately trained research coordinator. In

all situations, the team member seeking informed consent is not involved in the medical care

of the enrollee, to prevent actual or implied bias or compulsion for trial participation.

Additional consent provisions for collection and use of participant data and biological

specimens. There are no additional consent provisions for specific ancillary studies, however,

there is an optional provision in the consent form to allow for use of data collected for future

related studies.

Interventions. Explanation for the choice of comparators. Both arms of the NAVSaH trial

will receive standard of care for management of subarachnoid hemorrhage, not limited to

intensive care monitoring, treatment of a ruptured aneurysm via endovascular or surgical

Fig 2. Timeline for enrollment and participation in the NAVSaH clinical trial by participants. Cerebrospinal fluid (CSF).

https://doi.org/10.1371/journal.pone.0301154.g002
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means as dictated by the physician team, cerebrospinal fluid diversion when considered medi-

cally indicated, and repeated imaging studies as deemed necessary by the physician team.

Treatment with non-invasive vagus nerve stimulation has been implemented in many other

studies, and has a demonstrated safety profile when implemented previously following acute

ischemic or hemorrhagic stroke [58]. Sham stimulation, which is delivered as a comparator,

involves the placement of ear clips without electrical stimulation has no perceived positive or

negative effect on clinical outcome, or foreseeable risk for adverse effects.

Intervention description. Enrolled participants are randomized to one of two study arms

and receive either 1) twice daily non-invasive auricular vagus nerve stimulation to the left ear,

or 2) sham stimulation involving placement of the ear clips without applied electrical current.

Treatment is applied twice daily, similar to other studies applying vagus nerve stimulation to

drive reduction in inflammation [59–61]. The electrodes are placed on the left ear, consistent

with the typical left-sided cervical placement of invasive vagus nerve stimulators [62], although

no evidence indicates laterality in cardiac effects in non-invasive stimulation. An enrolled

patient will begin with either taVNS or sham stimulation twice daily during their stay in the

intensive care unit while continuous heart rate/rhythm, blood pressure, intracranial pressure,

and oxygenation monitoring is in place. Each day, there is one session each morning (between

05:00–10:00) and one each evening (between 16:00–21:00). The initial treatment session occurs

during the first treatment block time after informed consent is complete. All patients are fitted

with a portable TENS (transcutaneous electrical nerve stimulation) unit connected to two ear

clips, applied to the left ear during treatment periods. For VNS treatment, these ear clips are

placed along the concha of the ear (Fig 3), with positioning optimized to target the auricular

branch of the vagus nerve [61]. Stimulation parameters were selected based on prior studies

Fig 3. Target for auricular vagus nerve stimulation. Vagus nerve stimulation is administered by placing the

stimulating electrodes along the concha of the ear, where the innervation of the auricular branch of the vagus nerve

runs.

https://doi.org/10.1371/journal.pone.0301154.g003
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that sought to maximize vagus somatosensory evoked potentials while avoiding perception of

pain [63, 64]. Stimulation parameters will be 20 minutes duration, frequency of 20 Hz, 250μs

pulse width, and an intensity of 0.4mA. Sham treatments will involve no electrical current.

Treatment sessions with either taVNS or Sham stimulation will end after transfer out of the

intensive care unit.

Criteria for discontinuing or modifying allocated interventions. The study treatment will be

discontinued if a participant meets any of the following criteria: if irritation or redness at the

stimulation site occurs, evidence of induced clinically significant changes in heart rate or

rhythm, or by participant or legally authorized representative request. In these cases, the treat-

ment sessions will cease, but blood and cerebrospinal fluid draws and recording of clinical out-

comes will continue unless by request by the patient or legally authorized representative

request.

Strategies to improve adherence to interventions. All treatment sessions occur while the

enrolled patient is admitted to the hospital, and in the intensive care unit. Therefore, we antici-

pate few barriers to adherence with the intervention.

Relevant concomitant care permitted or prohibited during the trial. All medications, proce-

dures, or interventions recommended by the medical team to manage an enrolled patient’s

subarachnoid hemorrhage will be permitted. The patient will not be permitted to receive any

intervention that is associated with a separate clinical trial.

Provisions for post-trial care. There is no anticipated harm and no planned compensation

for trial participation. All post-trial care will follow the typical follow-up for patients dis-

charged after subarachnoid hemorrhage (including follow-up imaging or physician office vis-

its). No additional imaging, laboratory studies, or hospital visits are otherwise required due to

trial participation alone.

Outcomes. The NAVSaH trial’s evaluated end points include: 1) Defining the impact that

taVNS has on the SAH-induced inflammatory markers in the plasma and cerebrospinal fluid

(CSF), 2) Determining if taVNS following SAH reduces angiographic vasospasm 3) Determin-

ing if taVNS following SAH reduces chronic hydrocephalus.

For assessment of the impact taVNS has on inflammatory makers, blood and CSF is col-

lected prior to the initial treatment session as a baseline, and then every three days during the

patient’s inpatient hospital stay (CSF collected only when an external ventricular drain is in

place). The primary inflammatory marker assessed is TNF-α, although a panel of 13 cytokines

is analyzed in an exploratory fashion (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-

17, TNF-α, GM-CSF, and IFN-γ). Differences regarding the local and systemic inflammatory

cytokine TNF-α reduction from baseline to day 13 post-treatment will primarily be examined

through the interaction of time and treatment effects, with additional exploratory analyses per-

formed for other days.

To assess angiographic vasospasm, serial vascular imaging studies will be evaluated. In addi-

tion to initial diagnostic imaging, patients will undergo a repeat computed tomography or

catheter angiogram seven

days after admission, per our hospital’s standard protocol. Additionally, further vascular

imaging will be performed if there is clinical concern per the intensive care or neurosurgical

teams for clinical vasospasm or stroke. For both planned and indicated imaging sessions, each

vascular imaging study will be reviewed by a trained neurointerventionalist blinded to treat-

ment arm, who will measure and quantify the imaging as it relates to vasospasm as none, mild

(< 25% stenosis), moderate (25%–50% stenosis), or severe (> 50% stenosis) narrowing of at

least one major intracranial artery, as previously described [65, 66].

To evaluate the rate of chronic hydrocephalus, the primary outcome assessed will be binary

(placement of ventricular shunt, versus no shunt placement).
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The trial’s secondary end points include: patient demographics (gender, ethnicity, and age),

number and type of hospitalized acquired infections, duration of external ventricular drain in

days, interventions required for vasospasm (blood pressure augmentation, intraarterial medi-

cations, intrathecal medications, endovascular intervention with angioplasty), continuous

physiology data (heart rate, blood pressure, respiratory rate, intracranial pressure) before, dur-

ing, and after treatment sessions, hospital length of stay, intensive care unit length of stay, and

modified Rankin Scale score (mRS) at admission, discharge, and each at follow-up appoint-

ment for up to two years following SAH.

Participant timeline. The schematic overview of the NAVSaH trial is shown in Fig 2.

Study start-up began in July 2020, including protocol development and single institutional

review board approval. Trial enrollment began in January 2021, and it is anticipated that

enrollment will continue for approximately 4 years from that date. Participants are enrolled in

an acute care setting when they present with a spontaneous SAH, with enrollment occurring

within 24 hours of arrival to the hospital. Intervention with taVNS or Sham stimulation occurs

twice daily while the patient is in the intensive care unit, and discontinues on transfer to lower

level of care from ICU. A mRS is assessed at time of hospital admission, at time of discharge,

and at all follow-up appointments with the Neurosurgery clinic or Neuroangiography team in

the two years following admission by an assessor blinded to treatment arm. Follow-up with

the Neurosurgical and Neuroangiography teams follows standard of care, and no additional

follow-up appointments are scheduled strictly for the NAVSaH trial.

Sample size. Goal enrollment for the pilot NAVSaH trial is 50 patients, based on power

calculations to detect significant differences in inflammatory cytokines, radiographic vaso-

spasm, and chronic hydrocephalus.

Under a 2-by-2 repeated measures design consisting of two groups of patients, each mea-

sured at two time points, our goal is to compare the change across time in the taVNS group to

the change across time in the Sham group. Based upon previous work from Koopman et al.

[67], we assume our study will observe 1.1 standardized inflammatory cytokines mean change

difference between the two groups. Using a two-sided, two-sample t-test, assuming both time

points have equal variance and there is a weak correlation (i.e., 0.15) between measurement

pairs, a sample size of 25 in each group achieves at least 80% power to detect a standardized

difference of 1.1 in mean changes, with a significance level (alpha) of 0.05 [68].

Based upon our preliminary data, we assume this study will observe 25% and 55% severe

vasospasm in the taVNS and Sham groups, respectively. Under a design with 2 repeated mea-

surements (i.e., 2 raters), assuming a compound symmetry covariance structure with a Rho of

0.2, at a significance level (alpha) of 0.05, a sample size of 25 in each group achieves at least

80% power when the null proportion is 0.55, and the alternative proportion is 0.25 [69–71].

As previously described, LV et al. [8] studied the relationship between cytokine levels and

clinical endpoints in SAH, including hydrocephalus. From their outcomes, we predict a

needed enrollment of approximately 50 to detect these endpoints. From our own preliminary

data, with an incidence of chronic hydrocephalus 0% in treated patients and 28.6% in control

(despite grade of hemorrhage), alpha = 0.05 and power = 0.80, the projected sample size to

capture that change is approximately 44 patients.

Recruitment. Members of the Neurosurgical team and Intensive Care team identify

potential candidates for the NAVSaH trial and notify the research team who conducts formal

screening to determine candidacy. Recruitment outside of the hospital, or prior to admission,

is not performed.

Assignment of interventions: Allocation. Sequence generation. Participants are random-

ized 1:1 to receive treatment with taVNS or Sham stimulation. Randomization is via a simple
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randomization via computer generated random generated numbers, with next-number

obscured until after consent is completed and time of patient enrollment into the study.

Concealment mechanism. The computer-generated randomization sequence is concealed,

and the treatment group allocation via random number generation occurs only after the

patient has been consented and enrolled in the trial. Following assignment of treatment group,

treatment arm remains concealed to the patient, medical team, and outcomes assessors.

Implementation. Treatment group allocation is via a simple randomization via computer

generated random number assignment (0 vs 1). Patients are enrolled prior to randomization

by a member of the research team who goes through the informed consent process with the

patient, or their legally authorized representative when appropriate. A single investigator is

responsible for entering the patient into the computer system to ascertain the assigned treat-

ment arm.

Assignment of interventions: Blinding. Who will be blinded. Research team members,

who apply the ear clips and set stimulation parameters, are not blinded to treatment arm. The

participant, the medical team who dictates all management decisions for the patient’s sub-

arachnoid hemorrhage, and outcomes assessors (those who assign modified Rankin scores at

admission, discharge, and at each outpatient follow-up appointment) are blinded to treatment

arm. Stimulation parameters are sub-sensory, meaning there is no perceived sensation in the

setting of stimulation.

Procedure for unblinding if needed. There are no proposed circumstances in which unblind-

ing will be performed. If there are concerns regarding adverse events from the intervention

then treatment sessions can be ended prematurely, without revealing treatment group.

Data collection and management. Plans for assessment and collection of outcomes. Col-

lected data regarding patient clinical presentation, hospital events, clinical outcomes, results

from imaging studies, and serial laboratory data will be collected and stored via REDCap. The

web-based interface is designed specifically for clinical trials and prospective observational

studies. REDCap and the electronic health record will be used for all data collection.

Plans to promote participant retention and complete follow-up. The intervention is only

administered during the patient’s hospital stay, so there are no foreseeable barriers to retaining

participants during the intervention period. Required blood collection is drawn from an

indwelling line when available, or is collected at the same time as a patient’s otherwise collected

blood samples if venipuncture is required to minimize additional needle sticks that may dis-

suade ongoing participation during the hospital stay. All primary endpoints are collected dur-

ing the hospital stay, with no foreseeable barriers to obtaining this clinical information.

Following discharge, the patient is not required to make additional visits. Some exploratory

outcomes are tracked following discharged but will not be part of the primary analysis. Not

mandating additional study visits minimizes the burden on enrolled patients, and further

encourages retention in the study long-term.

Data management. Data entry input into RedCap undergoes second user validation to con-

firm data quality. All analysis of continuous variables includes identification of outliers to

assess for errors in data collection or reporting.

Confidentiality. During this study, medical history (medical diagnoses, surgical history, cur-

rent medications), information about a patient’s clinical course during hospitalization (medi-

cations or procedures performed, radiology exams obtained, and physical exam findings and

functional assessments), as well as laboratory data (samples from blood and cerebrospinal

fluid) will be assessed. All of the materials collected are for research purposes only, and data

will be kept in strict confidence. No identifiable information will be given to anyone without

permission from the subject. The consent form includes the informed consent statement

required by Washington University for studies involving PHI. Confidentiality will be ensured
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by use of unique identification codes. Data will be de-identified and stored with an assigned

ID number. Data access will be limited to study staff. Data and records will be kept locked and

secured, with any computer data password protected. No reference to any individual partici-

pant will appear in reports, presentations, or publications that may arise from the study.

The database will be secured with password protection. The informatics manager will

receive only coded information that is entered into the database under those identification

numbers. Electronic communication with outside collaborators will involve only unidentifi-

able information. Additionally, all traceable data from copied medical records will also be

removed.

Plans for collection, laboratory evaluation and storage of biological specimens for genetic or
molecular analysis in this trial/future use. While blood and cerebrospinal fluid samples are col-

lected in this study, there are no current plans for genetic analysis. In this trial, analysis of bio-

logical samples is limited to evaluation of inflammatory cytokines as described previously,

which are stored labeled only with the deidentified study ID number. However, the informed

consent does include an additional request for approval to allow data and collected biological

specimens to be used in future research.

Statistical methods. Statistical methods for primary and secondary outcomes. The primary

outcome of Aim 1 is quantified continuous measures of the plasma and CSF TNF-α collected

at two time points, baseline (before treatment) and day 13 after treatment. The taVNS impact

on SAH inflammatory markers will be examined via a linear mixed model, where time (i.e., 0-

and 13-days post-treatment), treatment (i.e., taVNS vs. Sham), and time-treatment interaction

are the fixed effects, and the dependency of measurements clustered within each individual

patient will be accounted for via the random effects. Group differences regarding the local and

systemic inflammatory cytokines reduction from baseline to day 13 post-treatment will be

examined through the interaction of time and treatment effects. Model assumptions will be

inspected, and remedy will be applied if necessary. Secondary outcomes involve exploratory

analyses of the remainder of the inflammatory markers collected from plasma and CSF.

The primary outcome of Aim 2 is the highest severity of vasospasm (binary, moderate/

severe vs. non moderate/severe) as assessed by measurements performed by a Neurointerven-

tionalist. A mixed effect logistic regression model will be used to examine the taVNS and

Sham group difference regarding the severity of vasospasm. A generalized estimating equation

(GEE) approach will be used to estimate the model parameters assuming a compound symme-

try covariance structure, given there might be a possible unknown correlation between

observed outcomes within the same patient. For other secondary clinical metrics related to

vasospasm, to detect treatment group differences, based upon the distribution of data, inde-

pendent t-tests or Wilcoxon–Mann–Whitney tests will be performed for continuous variables,

and Chi-square tests or Fisher exact tests will be performed for categorical variables.

The primary outcome of Aim 3 is binary (i.e., shunt vs. non-shunt) and the secondary out-

come of Aim 3 is continuous (i.e., the duration of external ventricular drainage). To detect the

treatment group difference, a 2x2 contingency table and Chi-square test will be used for the

binary outcome, and an independent t-test will be used for the continuous outcome.

Interim analyses. The principal investigators or study staff will review all data collection

forms on an ongoing basis for data completeness and accuracy as well as protocol compliance.

See Table 1 for data type, frequency of review, and reviewer. A statement reflecting the results

of the ongoing data review will also be incorporated into the Annual Report for the Indepen-

dent Monitor.

The Independent Monitor is appointed to monitor the conduct of the study and subject

safety by periodically reviewing data from the study. The Independent Monitor will oversee

the overall safety of the study subjects by protecting them from avoidable harm. The
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Independent Monitor will review adverse events and other relevant study data and will make

recommendations regarding continuation of the study to the Principal Investigators. The Prin-

cipal Investigators will agree to follow the recommendation of the Independent Monitor. This

may include termination or suspension of enrollment of the study at any time if it becomes

necessary to protect the best interests of the study subjects as advised by the Independent Mon-

itor. If suspicion of an unacceptable risk to participants arises during the conduct of the study,

the Independent Monitor, Principal Investigators, institutional review board (IRB), and/or

NIH may choose to suspend enrollment until the risk is assessed and a determination is made

about the risk. If unacceptable risk is confirmed, the study will be terminated. Decisions to sus-

pend or terminate will be communicated to the IRB. At the time of enrollment suspension or

termination a determination will be made about safety follow up assessments required for pre-

viously enrolled subjects. The Principal Investigators will notify enrolled subjects, as appropri-

ate, of new information and/or safety follow up assessments as required. Circumstances that

may warrant termination or suspension include, but are not limited to: 1) Determination of

unexpected, significant, or unacceptable risk to participants, 2) Demonstration of efficacy that

would warrant stopping, 3) Insufficient compliance to protocol requirements, 4) Data that are

not sufficiently complete and/or evaluable, 5) Determination that the primary endpoint has

been met, 6) Determination of futility. The study may resume once concerns about safety, pro-

tocol compliance, and data quality are addressed, and satisfy the IRB, Independent Monitor,

and NIH.

Methods for additional analyses (e.g. subgroup analyses). To evaluate for effect of grade of

hemorrhage (high grade with a Hunt and Hess Score�3, versus low grade), the interaction

between assigned treatment and the subgroup factor in a linear model will be tested (signifi-

cance level of P<0.017). The model will include a main effect for treatment, subgroup factor,

and an interaction between subgroup and treatment. Secondary outcomes will also be assessed

in similar models.

Methods in analysis to handle protocol non-adherence and any statistical methods to handle
missing data. High levels of missing data for the outcomes of interest are not expected because

these are readily available, documented in medical records as part of the standard of medical

care for SAH, and are ascertained during the patient’s primary hospital admission. Should

there be high rates of participant attrition in the trial, baseline characteristics and available

information on the hospital course will be reviewed and compared to participants who do not

withdraw from participation to assess for any differences in those who withdraw and those

who do not.

Plans to give access to the full protocol, participant level-data and statistical code. A dataset

with group-level, de-identified clinical data and participant-level de-identified laboratory data

Table 1. Frequency and personnel for trial conduct auditing.

Data type Frequency of

review

Reviewer

Subject accrual (including compliance with protocol enrollment

criteria)

Quarterly PI, Independent Monitor

Status of all enrolled subjects, as of date of reporting Quarterly PI, Independent Monitor

Clinical Endpoints/Outcomes Data Quarterly PI, Independent Monitor

Laboratory Endpoints Quarterly PI, Independent Monitor

AEs and rates Quarterly PI, Independent Monitor

SAEs Per occurrence PI, Independent Monitor,

NIH

https://doi.org/10.1371/journal.pone.0301154.t001

PLOS ONE Protocol for non-invasive auricular vagus nerve stimulation for subarachnoid hemorrhage clinical trial

PLOS ONE | https://doi.org/10.1371/journal.pone.0301154 August 23, 2024 11 / 18

https://doi.org/10.1371/journal.pone.0301154.t001
https://doi.org/10.1371/journal.pone.0301154


in accordance with the Health Insurance Portability and Accountability Act (HIPAA), as well

as statistical code used for analyses and will be made available upon reasonable request. The

team will comply with the clinical trial information dissemination expectations of the NIH pol-

icy and FDA/DHHS Final Rule to register and submit summary results at ClinicalTrials.gov.

Consistent with the terms and conditions of NIH funding, we will ensure the submission and

updating of registration and results information for this clinical trial in the timeframes estab-

lished by the Final Rule.

Oversight and monitoring

Composition of the coordinating center and trial steering committee. This is a single-center

study. There are no other sites participating in the study and there is no need for a separate

administrative or data coordinating center. This center’s study team will recruit and enroll

study participants under the delegation and supervision of the site’s Principal Investigators

from our Washington University School of Medicine Barnes Jewish Hospital’s patient

population.

The research team is comprised of senior investigators in the Departments of Neurosur-

gery, Biomedical Engineering, and Neurology, who have expertise in the fields of subarachnoid

hemorrhage, neuroinflammation, electrical stimulation, and clinical trials. The team’s respon-

sibilities include assessment of trial enrollment progress, overall supervision of the trial, and

periodic review of the progress of the study to review safety data.

The lead principal investigator is responsible for overseeing the collection and analysis of

data, as well as supervising additional team members who are responsible for identifying

potential participants, consenting and enrolling patients, and delivering all treatment sessions.

Communication is facilitated with weekly 1-hour laboratory group meetings where work-

ing issues are reviewed, and any difficulties with the technology, data acquisition, transfer, and

analysis are addressed. In addition, every week, there is a 2-hour scientific review of the project

work. The principal investigators and research team attend these meetings routinely. In addi-

tion, an administrative review meeting for budget and grant administration will be undertaken

every 3–4 months.

Composition of the data monitoring committee, its role and reporting structure. An Indepen-

dent Monitor who is a Neurosurgical faculty at Washington University who is not associated

with this research project and thus works independently of the PI, research team, and funding

agencies has been assigned to provide additional periodic review of subject enrollment, clinical

endpoints/outcomes, laboratory endpoints, and all reported adverse events. This individual is

not a part of the key personnel involved in the study, and is qualified to review the patient

safety data generated by this study because of their expertise in the areas of Neurosurgery and

Neurology.

Adverse event reporting and harms. An adverse event (AE) is any untoward medical occur-

rence in a subject during participation in the clinical study or with use of the experimental

agent being studied. An adverse finding can include a sign, symptom, abnormal assessment

(laboratory test value, vital signs, electrocardiogram finding, etc.), or any combination of

these.

A serious adverse event (SAE) is any adverse event that results in one or more of the follow-

ing outcomes:

• Death

• A life-threatening event

• Inpatient hospitalization or prolongation of existing hospitalization
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• A persistent or significant disability/incapacity

• A congenital anomaly or birth defect

• An important medical event based upon appropriate medical judgment

SAEs that are unanticipated, serious, and possibly related to the study intervention will be

reported to the Independent Monitor and IRB in accordance with requirements.

• Unexpected fatal or life-threatening AEs related to the intervention will be reported to the

NIH Program Officer within 7 days. Other serious and unexpected AEs related to the inter-

vention will be reported to the NIH Program Officer within 15 days.

• Anticipated or unrelated SAEs will be handled in a less urgent manner but will be reported

to the Independent Monitor, IRB, NIH, and other oversight organizations in accordance

with their requirements. In the annual AE summary, the Independent Monitor Report will

state that they have reviewed all AE reports.

Frequency and plans for auditing trial conduct. Table 1.

Plans for communicating important protocol amendments to relevant parties (e.g. trial partic-
ipants, ethical committees). All protocol amendments will be reviewed by the study investiga-

tors, Principal Investigators, and the Washington University IRB committee. This includes

main protocol amendments, revisions of any consent paperwork, and continuing reviews. Any

protocol amendments that impact enrolled patients will be communicated to patients as

deemed appropriate per review and recommendations by the IRB and Independent Monitor.

Dissemination plans. The Principal Investigators of the clinical trial will comply with the

clinical trial information dissemination expectations of the NIH policy and FDA/DHHS Final

Rule to register and submit summary results at ClinicalTrials.gov. Consistent with the terms

and conditions of NIH funding, we will ensure the submission and updating of registration

and results information for this clinical trial in the timeframes established by the Final Rule.

Registration and results reporting in ClinicalTrials.gov will be completed within the following

timeframes:

• Registration of the trial at ClinicalTrials.gov no later than 21 days after enrolling the first

participant.

• All submitted information will be updated at least once a year.

• Any apparent errors, deficiencies, and/or inconsistencies identified by NIH as part of the

quality control review process and any other errors identified will be addressed by the

responsible party.

• Corrections to submitted information will be made within 15 days for registration informa-

tion and 25 days for results information.

• Trial results will be submitted no later than one year after the primary completion date.

Informed Consent Documents for the clinical trial will include a specific statement relating

to posting of clinical trial information at ClinicalTrials.gov. The Washington University IRB

has template language explaining that the study will be posted on ClinicalTrials.gov that inves-

tigators are required to include in the consent document for the trial. The Principal Investiga-

tors will work closely to ensure that clinical trial registration and reporting occurs in

compliance with NIH policies and work together to facilitate the process of registration and

results reporting to ClinicalTrials.gov in a timely manner, in keeping within the required
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timeframes. Once data collection is complete, we will work with our statistician to prepare and

submit trial results no later than one year after the primary completion date.

The results of the clinical trial will be disseminated to the public through peer-reviewed

publication. Publication will be sought through open access publication to facilitate broad

access to the trial’s findings. Authorship in all resulting publications will be assigned according

to the International Committee of Medical Journal Editors guidelines

Discussion

The NAVSaH trial aims to target the deleterious inflammatory response following spontane-

ous SAH through use of a novel non-invasive neuromodulatory approach with vagus nerve

stimulation. In this single-institution, triple-blinded, randomized controlled clinical trial, the

investigators aim to evaluate the efficacy of this intervention on inflammatory markers in the

blood and cerebrospinal fluid, and on key clinical endpoints including vasospasm, hydroceph-

alus, and functional outcome. The cumulative result of the proposed project would be both a

biological and clinical validation that taVNS can significantly alter SAH-induced central

inflammation and its associated clinical comorbidities, with substantial potential to improve

the considerable morbidity associated with SAH. This trial will provide a critical foundation of

knowledge to build upon, with future studies projected to more deeply understand the mecha-

nism that links ear stimulation to immunomodulation and the stimulation parameters that

best optimize the clinical effect.
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