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Abstract

Background: High red meat and/or processed meat consumption are established colorectal 

cancer (CRC) risk factors. We conducted a genome-wide gene-environment (GxE) interaction 

analysis to identify genetic variants that may modify these associations.

Methods: A pooled sample of 29,842 CRC cases and 39,635 controls of European ancestry from 

27 studies were included. Quantiles for red meat and processed meat intake were constructed 

from harmonized questionnaire data. Genotyping arrays were imputed to the Haplotype Reference 

Consortium. Two-step EDGE and joint tests of GxE interaction were utilized in our genome-wide 

scan.

Results: Meta-analyses confirmed positive associations between increased consumption of red 

meat and processed meat with CRC risk (per quartile red meat OR = 1.30; 95%CI = 1.21–

1.41; processed meat OR = 1.40; 95%CI = 1.20–1.63). Two significant genome-wide GxE 

interactions for red meat consumption were found. Joint GxE tests revealed the rs4871179 SNP in 

chromosome 8 (downstream of HAS2); greater than median of consumption ORs = 1.38 (95%CI 

= 1.29–1.46), 1.20 (95%CI = 1.12 −1.27), and 1.07 (95%CI = 0.95 – 1.19) for CC, CG and 

GG, respectively. The two-step EDGE method identified the rs35352860 SNP in chromosome 18 

(SMAD7 intron); greater than median of consumption ORs = 1.18 (95%CI = 1.11–1.24), 1.35 

(95%CI = 1.26–1.44), and 1.46 (95%CI = 1.26–1.69) for CC, CT, and TT, respectively.

Conclusions: We propose two novel biomarkers that support the role of meat consumption with 

an increased risk of CRC.

Impact: The reported GxE interactions may explain the increased risk of CRC in certain 

population subgroups.
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INTRODUCTION

Colorectal cancer (CRC) is currently the third most common cancer worldwide, and second 

leading cause of cancer death (1). It is estimated that at least ~50% of CRC cases and 

CRC deaths could be attributed to modifiable lifestyle factors (2–4). The main established 

modifiable CRC risk factors are high consumption of processed meat and/or red meat, 

consumption of alcoholic drinks, smoking, being overweight or obese, low consumption of 

foods containing dietary fiber, low consumption of whole grains, and low physical activity 

(5–7). Based on the existing literature, the World Cancer Research Fund has concluded that 

there is strong evidence that red meat and/or processed meat consumption increases the 

risk of CRC (5). Moreover, based on epidemiological, animal, and mechanistic data, the 

International Agency for Research on Cancer (IARC) classified consumption of processed 

meat as a group 1 carcinogen (i.e., an established cause of CRC), and red meat as a group 

2a carcinogen (i.e., a probable cancer agent) (6,8). These classifications were in great part 

based on the evidence for CRC.

There are several mechanisms that have been proposed to explain the relationship between 

consumption of red or processed meat and CRC risk. Among them is the presence of 

carcinogenic N-nitroso compounds (NOC) in processed meat that can also be formed 

endogenously in the gut after consumption of red meat (9,10). The abundance of heme 

iron in red meat, combined with the presence of gut bacteria can facilitate this carcinogenic 

process. NOC primarily produced through bacterial decarboxylation of amino acids in 

the presence of a nitrosating agent may cause damage and inflammation to the gut 

lining. Furthermore, the existence of a persistent intestinal dysbiosis might exacerbate the 

carcinogenic process, as it has been linked to chronic gut inflammation (11–14). Additional 

carcinogens linked to red meat and/or processed meat are heterocyclic amines (HCAs) 

(15) and polycyclic aromatic hydrocarbons (PAHs) (16), which can be formed by different 

cooking methods (17,18).

In addition to modifiable risk factors, there are common genetic variants that have been 

linked to CRC. To date, there are over 200 genetic variants that were identified with 

genome-wide association studies (GWAS) that altogether explain ~20% of the heritability in 

CRC risk (19–21). Gene-environment (GxE) interactions refers to the phenomenon in which 

the effects of genetic variations at an individual level are modified by environmental factors 

and vice versa. In other words, it is the concept that environmental factors can impact the 

expression/function of genes, and that genetic factors can influence a person’s sensitivity or 

reaction to environmental factors. It has been speculated that these GxE interactions may 

explain part of the large fraction of missing heritability (22). There have been multiple 

studies that have explored the role of common genetic variants as potential modifiers of 

the effect of processed meat or red meat (23), most of them focused on candidate genes 

and single nucleotide polymorphisms (SNPs). There have only been two genome-wide GxE 

scans for red and processed meat (24,25), and only one of these reported a significant GxE 

interaction with processed meat (24). A more recent review and evaluation of all available 

data assigned this finding a moderate plausibility score and overall concluded that most 

studies of GxE in CRC to date have been underpowered to detect GxE interactions (23).
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In this study, we applied powerful methods in a genome-wide GxE scan to identify possible 

interactions between common variants and red meat and/or processed meat intake and CRC 

risk, using a large CRC pooled dataset.

MATERIALS and METHODS

Study participants

A total of 27 studies (17 prospective cohorts; 10 case-controls) were included in this study 

from three CRC genetic consortia: the Genetics and Epidemiology of Colorectal Cancer 

Consortium (GECCO), the Colorectal Cancer Transdisciplinary Study (CORECT) and the 

Colon Cancer Family Registry (CCFR) (19,20,26) (Supplementary Table 1). For cohort 

studies, nested case-control sets were assembled via risk-set sampling, while population-

based controls were used for case-control studies. Controls were mainly matched on age 

(study-specific range), sex, race, and enrollment date/trial group, when applicable (for the 

SELECT trial). Cases were defined as colorectal adenocarcinoma (the most common type 

of CRC) and were confirmed by medical records, pathology reports, or death certificate 

information. All participants gave written informed consent and studies were approved 

by their respective institutional review boards. Analyses were limited to individuals of 

European ancestry, based on self-reported race and ethnicity, and clustering of principal 

components with the 1000 Genomes Europeans (EUR) superpopulation. We excluded 

individuals based on cryptic relatedness or duplicates, genotyping/imputation errors, and 

age outliers. Individuals missing both red meat and processed meat intake or any of 

the adjustment covariates we considered were excluded. We further excluded studies of 

individuals diagnosed with advanced adenomas only. The final pooled sample included 

29,842 CRC cases and 39,635 controls.

Environmental exposure data

Lifestyle and environmental risk factors were collected by in-person interviews, phone 

interviews or structured self-administered questionnaires. Harmonized quality-control 

checks were performed in each study following similar criteria (27). Common data elements 

(CDEs) were defined a priori and through an iterative process, and responses from 

study questionnaires and data dictionaries were mapped to these CDEs. All definitions, 

permissible values, and standardized coding were tracked in a database via SAS and T-SQL. 

Data checks were performed to identify outliers and other errors. We developed a pooled 

variable that tracked consumption of red meat intake (beef, pork, lamb), and another one 

that tracked consumption of processed meat (bacon, sausages, luncheon/deli meats, hot 

dogs), each expressed as servings per day. Many of the red meat variables in the pooled 

studies had included processed meats as part of the red meat definition. Of the total study 

population, 64,152 individuals had both red and processed meat consumption information; 

5,325 had information only on red meat intake. We evaluated these two exposures using 

sex- and study-specific quartiles in which study-specific quartiles were computed and then 

the median of intake within each quartile was obtained. Body Mass Index (BMI) was 

calculated as the weight of each participant (in kg) divided by the square of height (in m2). 

A BMI variable was used that captured 5 kg/m2 increments. In addition, the World Health 

Organization (WHO) pre-defined BMI cut-points were used: normal weight (18.5–<25 kg/
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m2), overweight (>=25.0–<30 kg/m2), and obesity (>=30 kg/m2) (28). Total energy intake 

was calculated from food frequency questionnaires. For studies with partially missing data, 

total caloric intake was imputed using the mean value in the study. Studies with missing 

energy intake estimates were set to zero.

Genotyping and imputation

Details on quality control and genotyping metrics were previously published (19,26). 

Several genotyping arrays were used and are summarized in Supplementary Table 1. 

Briefly, exclusion criteria included: single nucleotide polymorphisms (SNPs) with a missing 

call rate of >2-to-5%, departure from Hardy-Weinberg equilibrium (HWE) (P<1×10−4), 

inconsistencies between self-reported and genotyped sex, and discordant genotype calls 

within duplicate samples. Genotypes were imputed to the Haplotype Reference Consortium 

(HRC) panel (39.1 million variants) using the University of Michigan Imputation Server 

(29,30), and converted into a binary format for data management and analyses using the 

BinaryDosage R package (https://cran.r-project.org/web/packages/BinaryDosage). Imputed 

SNPs were restricted based on a pooled minor allele frequency (MAF) ≥1% and imputation 

accuracy (R2>0.8). After imputation and quality control, a total of approximately 7.2 

million SNPs were selected for analyses. Principal component analysis (PCA) for population 

stratification assessment was performed using PLINK1.9 on 30,000 randomly sampled 

imputed SNPs with MAF > 5% and R2>0.99.

Statistical analyses

The associations of red meat or processed meat intake variables with CRC risk were 

assessed by meta-analysis of study-specific estimates, adjusted by sex, age and total energy 

intake. Between-sex, between-tumor site, between-study design as well as between-study 

heterogeneity and inconsistency were investigated using the heterogeneity Chi-squared and 

I2 statistic (31). Between-study heterogeneity represents the proportion of total variation 

in effect estimates attributable to between-study variance. Potential outlier studies were 

assessed by estimating the posterior probability of outliers based on mixture random effects 

using the “outlierProbs” function of metaplus R package (32). No outlier studies (posterior 

probability >0.99) were identified. We also assessed the relationship between red meat or 

processed meat with CRC risk stratified by sex, tumor localization (proximal colon, distal 

colon, or rectum) and study design (case-control or cohort study).

To identify novel GxE interactions for CRC, we performed genome-wide scans using 

the GxEScanR R package (https://cran.r-project.org/web/packages/GxEScanR), which 

implements several interaction testing methods. Imputed allelic dosages were modelled as 

continuous variables. In addition to the standard 1 degree-of-freedom (1-df) test of GxE 

interaction based on logistic regression, we utilized the more powerful two-step EDGE 

method (33) and the 3-degree-of-freedom (3-df) joint test (34). All models were adjusted 

for age, sex, study, total energy intake (kcal/day), and the first three principal components 

to account for ancestry. We considered a P value of <5×10−8 statistically significant. We 

also calculated odds ratios (OR) for red meat intake stratified by genotype and for genotype 

stratified by meat intake to examine patterns of sub-group-specific associations. A detailed 
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description of the notation and methods used in the GxE analysis has been previously 

published (33–34).

Functional annotation plots for GxE findings and regional plots were also generated. 

Regional plots enable inspection of the strength and extent of association signal, linkage 

disequilibrium (LD), and position of findings relative to genes in the region. Regional plots 

were generated using the software LocusZoom v1.3.32. Measures of LD were estimated 

using 1000G EUR study population controls.

Data availability

The data generated in this study are available upon request from the corresponding author.

RESULTS

Red meat and processed meat consumption and CRC risk

CRC cases were slightly older, were more likely living with obesity, had a higher total 

energy intake (2011kca/day ± 730.8 versus 1920kcal/day ± 706.6, p<0.001), and consumed 

more servings of red (0.60 ± 0.46 versus 0.54 ± 0.44, p<0.001) and/or processed meat (0.36 

± 0.35 versus 0.28 ± 0.35, p<0.001) per day when compared to controls (Table 1).

Meta-analyses of exposure main effects adjusting for age, sex, and total energy intake, 

showed associations between intake of red meat (per quartile increase servings/day 

OR=1.30; 95%CI 1.21–1.41) and intake of processed meat and CRC risk (per quartile 

increase OR=1.40; 95%CI 1.20–1.63) (Figure 1). We observed significant between study 

heterogeneity that was largely limited to case-control studies (Phet = 0.001, I2 = 65% & Phet 

= 0.008, I2 = 61% for red meat and processed meat, respectively) (Supplemental Figure 1). 

For both exposures, estimates of association were greater in magnitude in meta-analyses of 

case-control studies (red meat meta-OR = 1.45; 95% CI = 1.22–1.72; processed meat meta-

OR = 1.56; 1.22–2.00) than cohort studies (red meat meta-OR = 1.21; 95% CI = 1.08–1.35; 

processed meat meta-OR = 1.16; 0.98–1.37) (Supplemental Figure 1). Analysis stratified 

by sex suggested a slightly higher association for consumption of processed meat and CRC 

risk among men (OR = 1.51; 95%CI 1.25–1.82) compared to women (OR = 1.33; 95% 

CI = 0.99–1.80) (Figure 1). There were no substantial sex differences for the association 

between CRC and red meat intake. The association between red meat consumption and 

CRC risk was slightly higher for distal colon compared to proximal or rectal; whereas for 

processed meat consumption the association was higher for both distal colon and rectal 

localization compared to proximal location, albeit overlap in the confidence intervals was 

observed and these differences are not statistically significant (Figure 1). We obtained 

similar estimates when performing pooled analyses of associations further adjusted by the 

first three ancestry principal components. Whereas there was evidence for heterogeneity 

across studies (Supplemental Figure 1), when considering cohort and case-control studies 

separately, we decided to conduct GxE testing across all studies combined given that a 

positive association was reported in both study types.
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Genome-wide interaction scan results

Evaluation of red meat consumption interaction using the two-step EDGE method identified 

a statistically significant interaction of red meat with rs35352860 (p-value = 2 × 10−8) which 

maps to chromosome 18 in an intronic region of the SMAD7 (SMAD family member 7) 

gene (Figure 2, Table 2).

One additional SNP for red meat intake on chromosome 8 was identified based on the 

joint 3-df test (Table 2). This SNP, rs4871179, maps downstream of HAS2 (hyaluronan 

synthase 2). No statistically significant interactions were identified for processed meat. The 

less powerful standard 1-df GxE analysis revealed no evidence of interaction with either 

red meat or processed meat and genome-wide statistically significant loci (Supplemental 

Figure 2). No other statistically significant GxE interactions (p-value <10−8) that were also 

genome-wide significant GWAS loci were found.

To further explore the significant interactions, we constructed a dichotomous variable for 

red meat intake with median of consumption as cutoff point and evaluated the association 

between red meat intake and CRC risk, stratifying by genotypes of the identified loci (Table 

3). For the SNP on chromosome 18 identified by the two-step method (rs4871179), red meat 

was associated with CRC risk within each genotype group, but the magnitude increased 

with every copy of the major T allele. Specifically, the red meat in relation to CRC odds 

ratio was OR = 1.18 (95% CI = 1.11–1.24) for those with genotype CC, OR = 1.35 (95% 

CI 1.26–1.44) for CT, and OR = 1.46 (1.26–1.69) for TT (Table 3; Supplemental Figure 

3). For the SNP in chromosome 8, the association between red meat intake and CRC risk 

was significant among homozygous carriers of the more common allele (OR for CC = 1.38; 

95% CI = 1.29–1.46) and heterozygous (OR for CG = 1.2; 95% CI = 1.12–1.27) with a 

non-statistically significant association among homozygous carriers of the minor G allele 

(OR for GG = 1.07; 95% CI = 0.95–1.19) (Table 3; Supplemental Figure 3).

DISCUSSION

In this large-scale genome-wide GxE analysis of over 69,000 individuals from 27 studies, 

we found evidence of a statistical interaction between 2 SNPs (rs35352860, rs4871179) 

and red meat consumption in relation to CRC risk. We did not find evidence of GxE 

interactions when considering consumption of processed meat. A prior publication reported 

a G x processed-meat interaction for the rs4143094 SNP (10p14, near GATA3). Analysis of 

this SNP in our current sample revealed some suggestion of an interaction (p=0.0065) but it 

did not achieve genome-wide significance in any of our analyses (24).

The rs35352860 SNP which maps to the SMAD7 gene was found to have the strongest 

evidence to support effect modification of the red meat intake and CRC risk association 

as reported by the p-values in the GxE scan (Table 2). The SMAD7 gene codes for an 

intracellular protein, traditionally considered as a negative regulator of TGF-B1 (35) by 

interfering with TGF-B1 signaling. Several SMAD7 polymorphisms have been previously 

associated with CRC risk in several GWAS studies for CRC in European and Asian 

individuals (36–38). Moreover, a regional plot for rs35352860 shows that the SNP aligns 

with multiple hits in LD previously reported by Broderick et.al (39) (Supplementary Figure 
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4A). Additionally, an earlier study from this consortium reported a statistically significant 

GxE interaction between rs4939827 and BMI (40). We conducted a sensitivity analysis 

after adjustment of main effects model for BMI. Results did not differ from main findings 

obtained in genome-wide interaction scans of red meat consumption (Supplementary Table 

2).

There are no reports of a mechanism for a potential GxE interaction for the rs35352860 

polymorphism and red meat. Previous genome-wide GxE interaction analyses including red 

meat did not report associations of genome-wide significance for SMAD7 polymorphisms 

(27,41). However, SMAD7 deletion has been previously associated with a protective dose-

effect in overall survival and disease-free survival in tumor biopsies of CRC patients, with 

a greater effect on increased CRC-related death with every additional copy (42), and with 

overexpression in colonic adenocarcinoma cells inducing tumorigenesis (43).

Key components of red meat that have been linked to CRC risk include established 

carcinogens, such as heterocyclic amines and nitrosamines, as well as heme iron (6). The 

porphyrin structure of heme iron stimulates the production of pro-carcinogenic endogenous 

N-nitroso compounds as well as lipid oxidation products that can cause DNA damage 

(6,13,44). It is still unclear if the effects of red meat in colorectal carcinogenesis are only 

mediated through either of these compounds, or potential synergism between all of these. 

Given our observation of an effect modification of the association of red meat and CRC 

risk by genetic variants in SMAD7, we propose a mechanism that involves the SMAD7 

protein via regulation of circulating levels of hepcidin, which is a liver-derived peptide that 

closely influences erythrocyte production and is the main molecule in charge of regulating 

systemic iron homeostasis (45). Systemically, hepcidin binds and degrades the membrane 

transporter ferroportin; whose function is to excrete the previously intracellular stored iron 

in enterocytes from a pool that contains both ferrous iron (Fe2+) from the heme pathway 

as well as non-heme, into the bloodstream (46). Alterations in hepcidin concentration that 

reduce circulating levels of hepcidin lead to increase in duodenal iron absorption and clinical 

iron overload, and the SMAD7 protein has been reported to function as a regulator of 

iron homoeostasis by reducing hepcidin expression (47). Knock-out mice of the hepcidin 

protein modulator were reported to have an increased risk of CRC (48). Hepcidin is 

canonically regulated via the bone morphogenetic protein 6 (BMP6)-SMAD1/5/8 pathway 

(49). However, murine models with iron overload have also proposed that the SMAD6 and 

SMAD7 proteins are co-regulated with hepcidin levels (50), and that suppression of SMAD7 
can suppress hepcidin (50).

The SMAD7 rs35352860 SNP and several SNPs in LD align with open chromatin regions in 

the functional annotation plot due to the high density of mapped DNase type I cleavages 

(Supplemental Figure 5A). These regions correspond to DNase I hypersensitive sites, 

canonical epigenetic markers (H3K27ac & H3K4me) and cell lines evaluated in normal 

colon histological samples, tumor samples and CRC cell lines.

High accessibility to DNase Hypersensitive Sites increases the likelihood of transcriptional 

alterations due to cis-regulatory elements, namely: enhancers, promoters, silencers, 

insulators, and locus control regions. We hypothesize a mechanism in which over-expression 
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of the SMAD7 molecule effectively inhibits hepcidin production. This in turn, may prevent 

hepcidin binding to ferroportin, thus preventing the internalization of the transmembrane 

transporter with increased output of iron through the basolateral membrane into the 

bloodstream. Free circulating iron can contribute to free radical formation, facilitating a 

pro-inflammatory, pro-carcinogenic state. Therefore, we speculate that among carriers of a 

SMAD7 variant that leads to overexpression of this protein, the effects of excess iron will 

be worsened by a diet with high consumption of red meat, due to an impaired inability to 

increase hepcidin production in response to heme iron intake levels.

The variant in the 8q24 region (rs4871179) resides downstream of the HAS2 gene 

(Supplementary Figure 4B). The functional annotation plot did not portray accessible 

chromatin regions (Supplementary Figure 5B). There is evidence that this gene may play 

a role in colorectal carcinogenesis. Specifically, the HAS2 gene is a member of the 

Glycosyltransferase family 2, which confers glycosylation profiles to molecules in the 

endoplasmic reticulum and Golgi apparatus. Alterations of these glycosylation profiles in 

cancer cells have been associated with carcinogenesis, and tumor progression in the past 

(51,52). The HAS2 gene, catalyzes the synthesis of Hyaluronan Acid (HA), one of the main 

extracellular matrix components, has been reported to be overexpressed in CRC (53) and 

has been associated with tumorigenesis and metastasis in breast cancer (54,55). Inhibition 

or reduced expression of HAS2 and/or HAS3 decreases metastatic colon carcinoma cell 

adhesion to laminin (55), and increased apoptosis and reduced metastasis in experimental 

models (54). Higher HA levels are associated with a worse prognosis in CRC patients, 

with an inverse correlation between percentage of HA-positive carcinoma cells and cancer-

related survival rate and recurrence-free survival (56). There are no reports that link HAS2 
to possible effects of red meat consumption, or report GxE interactions with red meat 

consumption and CRC risk.

Our study has several strengths, including our large sample size with uniformly 

harmonized data and systematic quality control across all pooled studies, which allowed 

for consideration of tumor anatomical localization, gender, and study design in the 

meta-analyses. Another key strength is the implementation of powerful approaches for 

GxE analyses, including the two-step methods that improve our ability to identify novel 

interactions that were not detected using the traditional 1-df GxE test. As well, we were 

able to consider previously reported confounders of both the exposure and the genotypes. 

Among the limitations of our study is the fact that consumption of red meat and processed 

meat was obtained via questionnaires, and that many of the included studies are case-

control studies where the exposure was assessed after the cancer was diagnosed. However, 

case-control study participants were asked to report on intake typically 1 to 2 years 

before diagnosis/selection into the study. Therefore, we cannot exclude the possibility of 

misclassification and/or recall bias. For cohort studies, risk factors were assessed at the 

study-specific reference time, which aligns with the time of blood draw or buccal collection. 

A comprehensive description has been previously published (57). Moreover, four studies 

did not report total caloric intake which was set to zero in the analyses (i.e., ASTERISK, 

DACHS, PHS, UKB) (Supplementary Table 1). Nevertheless, sensitivity analyses confirmed 

that, since the interaction models included a fixed effect indicator for study, subjects in those 

four studies did not contribute information for estimating the energy effect. However, they 
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did contribute to the estimation of all other effects including GxE interaction. Furthermore, 

confounding analyses revealed that GxE estimates for both our significant SNPs changed 

<0.04% on the Odds Ratio scale when an adjusted model was compared to an unadjusted 

model without total caloric intake. Additionally, study-specific quartiles were created to 

evaluate meat consumption which do not account for absolute differences in exposure 

variable. However, given differences in assessment tool, the use of study-specific quantiles is 

a valid commonly used approach in pooled analysis of nutritional exposures (58). As well, 

other behavioral patterns (e.g., exercise) were not considered as confounders in the analysis. 

Finally, we acknowledge that this study pooled data from most studies conducted among 

populations of European ancestry, and thus these findings may not apply to other racial and 

ethnic populations.

In summary, we report two novel GxE interactions for red meat consumption and colorectal 

cancer risk. Our strongest finding is in a SNP in the SMAD7 gene, which provides further 

supportive evidence for a role of heme iron in the carcinogenic pathway of red meat 

consumption and CRC development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Results from overall association between colorectal cancer and A) red meat intake and B) 

processed meat intake, overall and stratified by sex and tumor site. Models are adjusted for 

age, sex, and total energy intake. Meat intake servings per day were coded as median of 

sex/study specific quartiles, modeled as a continuous variable.

Stern et al. Page 19

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Results from EDGE two-step GxE testing procedure using expectation-based SNP 

partitioning with principal components approach for effective number of tests adjustment 

(59). Numbers reflect total number of SNPs assigned to each partition, with the number of 

effective tests listed below. Only the first 7 bins were plotted; significant hit corresponds to 

rs35352860 (SMAD7 region).
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Table 1.

Summary statistics for demographic and CRC related risk factors, by case/control status

Cases Controls

N = 29842 N = 39635 P-value

Red meat intake (servings/day)a

 Mean (SD) 0.60 (± 0.46) 0.54 (± 0.44) <0.001

 Missing 70 (0.2%) 69 (0.2%)

Processed meat intake (servings/day)a

 Mean (SD) 0.36 (± 0.35) 0.28 (± 0.29) <0.001

 Missing 2930 (9.8%) 2395 (6.0%)

Ageb

 Mean (SD) 64.2 (± 10.8) 63.5 (± 9.42) <0.001

Sex

 Female 14569 (48.88%) 19615 (49.52%) 0.082

 Male 15273 (51.2%) 20020 (50.48%)

Height (cm)

 Mean (SD) 169 (± 9.56) 169 (± 9.53) 0.314

 Missing 411 (1.4%) 282 (0.7%)

BMI

 Mean (SD) 27.4 (± 4.90) 27.0 (± 4.62) <0.001

 Missing 1492 (5.0%) 1459 (3.7%)

BMI

 Normal (18.5 to <25 kg/m2) 9286 (31.1%) 13570 (34.2%) <0.001

 Overweight (>=25 to <30 kg/m2) 11915 (39.9%) 16263 (41%)

 Obese (>=30 kg/m2) 6903 (23.1%) 8071 (20.4%)

 Missing 1738 (5.8%) 1731 (4.4%)

Total Energy Intake (kcal/day)b

 Mean (SD) 2011 (± 730.8) 1920 (± 706.6) <0.001

 Missing 7475 (25%) 14998 (37.8%)

a
1 serving is equivalent to 70.9 grams or 2.5 ounces.

b
Mean imputed for partially missing data. Studies with missing variable not used for mean estimation.
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