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Abstract 
Protein solubility plays a crucial role in various biotechnological, industrial, and biomedical applications. With the reduction in 
sequencing and gene synthesis costs, the adoption of high-throughput experimental screening coupled with tailored bioinformatic 
prediction has witnessed a rapidly growing trend for the development of novel functional enzymes of interest (EOI). High protein 
solubility rates are essential in this process and accurate prediction of solubility is a challenging task. As deep learning technology 
continues to evolve, attention-based protein language models (PLMs) can extract intrinsic information from protein sequences to 
a greater extent. Leveraging these models along with the increasing availability of protein solubility data inferred from structural 
database like the Protein Data Bank holds great potential to enhance the prediction of protein solubility. In this study, we curated 
an Updated Escherichia coli protein Solubility DataSet (UESolDS) and employed a combination of multiple PLMs and classification layers 
to predict protein solubility. The resulting best-performing model, named Protein Language Model-based protein Solubility prediction 
model (PLM_Sol), demonstrated significant improvements over previous reported models, achieving a notable 6.4% increase in accuracy, 
9.0% increase in F1_score, and 11.1% increase in Matthews correlation coefficient score on the independent test set. Moreover, additional 
evaluation utilizing our in-house synthesized protein resource as test data, encompassing diverse types of enzymes, also showcased 
the good performance of PLM_Sol. Overall, PLM_Sol exhibited consistent and promising performance across both independent test set 
and experimental set, thereby making it well suited for facilitating large-scale EOI studies. PLM_Sol is available as a standalone program 
and as an easy-to-use model at https://zenodo.org/doi/10.5281/zenodo.10675340. 
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Introduction 
Proper folding of proteins to maintain enough solubility and 
homeostasis is essential for nearly every protein-based biological 
process. Unsatisfied solubility or aggregation can impede protein-
based drug development, such as antibody production. The low 
solubility of antibodies may limit their shelf-life and potentially 
induce adverse immune responses [1–3]. Apart from antibodies, 
more and more enzymes of interest (EOI) are being discovered 
with an increasing speed due to the decreasing cost of sequencing 
and gene synthesis as well as continuous improvement of high-
throughput functional screening platforms [4–6]. In these large-
scale EOI screening studies, enhancing the accuracy of protein sol-
ubility prediction can improve the success rate of protein purifi-
cation and facilitate the downstream biophysical or biochemical 
characterization. Common hosts such as bacterial cells, insect 

cells, yeast cells, plant cells, and mammalian cells are often used 
for recombinant protein expression [7]. Among these options, bac-
terial cells, typically Escherichia coli, provide the advantages of easy 
genetic manipulation and cost-effectiveness, therefore serving as 
one of the major platforms for recombinant protein production 
[8]. Improving the accuracy of protein solubility prediction in E. coli 
thus has great potential to reduce experimental cost and increase 
the success rate of novel EOI discovery. 

Protein solubility in E. coli is a complex issue influenced 
by numerous factors at different levels. Firstly, regarding the 
sequence level, several attributes have been identified as pivotal 
determinants of solubility, encompassing the composition of 
specific amino acids (Asn, Thr, Tyr), the frequency of tripeptides 
[9], and the ratio of charged amino acids on the protein surface 
[10, 11]. Secondly, during the protein expression process, the 
ineffective translation of the mRNA and the manifestation of
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protein toxicity to E. coli may impede normal growth. In addition, 
there is evidence suggesting that protein instability can lead 
to aggregation, thereby inducing the formation of inclusion 
bodies [12–14]. Thirdly, at the experimental level, factors such 
as the selection of expression strains, appropriate fusion tags, 
culture temperature, and the pH value of the protein lysis 
buffer collectively contribute to the protein solubility [15]. 
Notwithstanding the abundance of available data, extracting 
essential features responsible for insolubility remains difficult, 
rendering the prediction of protein solubility a challenging task. 

Over the past three decades, extensive researches have been 
dedicated to investigate the correlation between protein sequence 
and solubility, culminating in the formulation of numerous pre-
dictive models. Early studies employed statistical methods with 
a small dataset to extract essential protein sequence features 
for solubility classification [16]. In addition, SWI [17] employed  
the arithmetic mean of sequence composition scoring to predict 
protein’s solubility. Another booster for protein solubility predic-
tor is the emergency of machine learning (ML), which shifted the 
focus toward the utilization of feature engineering and super-
vised ML algorithms, such as linear regression, support vector 
machines, and gradient boosting machines [18]. Some of the 
models leveraging traditional ML algorithms include PROSO [19], 
SOLpro [20], PROSO II [21], SCM [22], Protein-Sol [23], PaRSnIP [24], 
and SoluProt [25]. Recently, with the fast development of deep 
learning (DL), a transition from conventional ML to DL algorithms 
has been observed [26]. Researchers generated several DL models, 
such as DeepSol [27], SKADE [28], EPSOL [29], DSResSol [30], and 
DeepSoluE [31], which employ Convolutional Neural Networks 
(CNNs), bidirectional Gated Recurrent Unit (biGRU), or Long Short-
Term Memory (LSTM)-based approaches for protein solubility 
prediction. 

With the continuous development of natural language pro-
cessing, attention-based algorithms deepen the understanding of 
relationships among tokens [32, 33]. The protein sequences, serv-
ing as the language of proteins, have catalyzed the development 
of diverse protein language models (PLMs), such as ProteinBERT 
[34], Evolutionary Scale Modeling (ESM) [35, 36], and ProtTrans 
[37]. These models excel in general contextual embeddings of pro-
tein sequences by training transformer models on large protein 
databases, such as UniRef [38] and BFD (Big Fantastic Database) 
[39]. By training with a labeled dataset, these models can be fine-
tuned for predicting specific protein properties. For example, Net-
SolP utilized ESM1b and employed multilayer perceptron (MLP) for 
protein solubility classification [40]. 

Despite the significant advancements achieved by the afore-
mentioned models, there still exists room for improvement. First 
of all, high-quality training data are critical for the success of 
any model. However, the most widely utilized dataset to date, 
originating from PROSO II [21] in 2012, has become outdated and 
suffers from ambiguous annotations. Another frequently used 
dataset, provided by SoluProt [25] in 2021, comprises only 10,912 
sequences. Secondly, the accessibility and usability of models are 
also critical. For example, some of the reported models are out 
of service [19, 21, 22], while others require the inclusion of protein 
secondary structure information as inputs which is time consum-
ing and compute intensive [24, 27, 29, 30]. Thirdly, model archi-
tectures play a crucial role in DL-based classification tasks. With 
the expanding of UniRef50D [38] database, ESM2 updated mul-
tiparameter versions of models [36], showcasing improvements 
in predictive capabilities and overall effectiveness in capturing 
intricate features of protein sequences. In terms of classification 
layers, the aforementioned NetSolP [40] applied only a simple MLP. 

Thus, the incorporation of updated protein language encoders and 
different classifier layers holds great potential to further improve 
prediction performance. 

Given the aforementioned limitations, we attempted to 
improve the performance of protein solubility prediction by 
focusing on two key aspects: generating high-quality datasets, 
and developing a robust and easy-to-use model. For dataset 
generation, we integrated existing protein solubility data from 
TargetTrack [41], DNASU [42], eSOL [43], and Protein Data Bank 
(PDB) [44], making diligent efforts to improve the accuracy 
and comprehensiveness of the dataset. We designated this 
compiled dataset as the Updated E. coli protein Solubility DataSet 
(UESolDS). For model design, we trained a series of architectures 
by integrating multiple PLMs with diverse classifiers. Three 
pretrained PLMs, namely proteinBERT, ESM2, and ProtTrans, were 
employed alongside different classification layers, comprising 
MLP, Light Attention (LA) [45], and the biLSTM_TextCNN [46]. 
Subsequently, we systematically evaluated their performance on 
an independent test set. In comparison to previously reported 
models, the combination of ProtT5-XL-UniRef50 (ProtT5) with 
biLSTM_TextCNN demonstrated superior performance, denoting 
as the Protein Language Model-based protein Solubility prediction 
model (PLM_Sol). Finally, we performed an experimental test by 
assessing the solubility of 216 understudied proteins belonging 
to three distinct family types, and PLM_Sol consistently exhibited 
good performance. 

Materials and Methods 
UESolDS source 
TargetTrack The TargetTrack database compiles experimental 
results curated by >100 investigators across 35 centers from 
2000 to 2015, focusing on investigating the expression levels and 
structures of 350,000 proteins [41]. We applied a comparable data 
filtering analysis approach as that employed in SoluProt [25]. 
Utilizing experimental protocols provided by each contributor in 
the TargetTrack database, we extracted 17 datasets specifically 
focusing on protein expression in E. coli (Supplementary Table S1). 
The TargetTrack database contained numerous entries marked 
as “work stopped” or “other” due to uncertain final statuses, and 
these data were consequently excluded [21]. Subsequently, based 
on the experimental status of proteins, they were categorized 
into insoluble (Insol) and soluble (Sol). Insol proteins were those 
labeled with the tags “tested”, “selected”, “cloned”, and “expression 
tested”. Sol proteins were those labeled with “expressed”, 
“soluble”, “purified” and “in PDB” and had subsequent structural 
analysis data. 

DNASU The DNASU is a global plasmid repository. Data 
obtained from DNASU originated from the Protein Structure 
Initiative: Biology (PSI:Biology) [42]. The entries using the 
common vectors (“pET21_NESG”, “pET15_NESG”) for recombinant 
protein expression were retrieved. Then, they were categorized 
based on the following tags: Insol proteins were labeled as 
“Tested_Not_Soluble” while Sol proteins were labeled as “Pro-
tein_Soluble”. 

eSOL eSOL is a database offering solubility information for E. 
coli proteins through the protein synthesis using recombinant 
elements cell-free expression system [43]. The eSOL database 
assigns a solubility score to Sol proteins, whereas those lacking 
solubility scores are categorized as Insol proteins. 

PDB Protein sequences with E. coli as expression host from the 
PDB database (March 2023 version) were extracted and annotated 
as Sol [44].
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UESolDS data cleaning 
The aforementioned datasets contained a total of 210,304 entries. 
Six steps were implemented sequentially for data cleaning to 
compile the aforementioned UESolDS. 

(1) 19,576 membrane proteins predicted by TransMembrane 
helix Hidden Markov Model (TMHMM) [47] were filtered out 
due to their commonly insolubility upon overexpression [21, 
25, 48]. 

(2) The following His tag fragments in proteins were excluded 
due to an uneven distribution of these tags between Insol 
and Sol proteins revealed by NetSolP [40]: “MGSDKIHHH-
HHH”, “MGSSHHHHHH”, “MHHHHHHS”, “MRGSHHHHHH”, 
“MAHHHHHH”, “MGHHHHHH”, “MGGSHHHHHH”, “HHHH-
HHH” and “AHHHHHHH”. 

(3) 1,454 sequences containing special characters “X|x”, “U|u”, 
“Z|z”, “∗”, “.”, “+” and  “−” were thoroughly removed. 

(4) 232 sequences with lengths <25 aa or >2,500 aa were filtered 
out. 

(5) During the data categorization process, we identified data 
contamination, as some Insol proteins exhibit high similarity 
with Sol proteins. To enhance the dataset quality, we 
searched for matches of Insol protein sequences in Sol 
by using BLAST blastp [49]. The overlap of 23,933 Insol 
entries exhibiting an identity >75% and coverage >70% was 
removed. 

(6) Clustering above filtered sequences using MMseqs [50] with  
25% identity and coverage >70% threshold. 

Finally, there were 31,581 entries categorized as Insol and 
46,450 entries categorized as Sol, resulting in the creation of the 
UESolDS. 

Independent test set generation 
For an unbiased evaluation of model performance, we first aggre-
gated the training sets of the previously reported models slated 
for evaluation in this study. Next, sequences in UESolDS with an 
identity of ≥25% to the integrated training sets were excluded. 
Subsequently, we randomly selected 2,000 sequences from the 
remaining Sol/Insol data to form the independent test set. 

Model architecture and training process 
ProteinBERT ProteinBERT has six encoder layers and is trained on 
the UniRef90 dataset, along with protein gene ontology anno-
tation information. The inputs of proteinBERT are the protein 
sequences and the outputs are fixed-dimension vectors. Then, 
the vectors are fed into a vanilla MLP layer to obtain solubility 
probabilities. For the training process, ProteinBERT underwent a 
process where all layers of the pretrained model were initially 
frozen, except for the classification layers, which were trained 
for up to 10 epochs. Afterward, all layers were unfrozen and 
trained additional epochs until the test loss did not decline for 3 
epochs. To optimize the learning process, the dynamic learning 
rate adjustment technique ReduceLROnPlateau was employed. 
The loss was calculated using binary cross-entropy. The training 
process was executed on a single Graphics Processing Unit (GPU) 
(Tesla P100-PCIE-12GB), with the learning rate and batch size set 
to 0.001 and 80, respectively. 

ProtTrans To employ ProtTrans as the encoder, six models were 
trained by combining two architectures from ProtTrans with three 
classifiers, respectively. The first architecture, ProtBert_BFD, based 
on BERT with a total of 30 encoder layers, is trained on the BFD 
dataset. The second one is ProtT5, which utilized an architecture 

of T5 with a total of 24 encoder layers. It is pretrained on the 
BFD dataset and fine-tuned on UniRef50. The inputs of these PLM 
models are the protein sequences, and the outputs are matrices 
whose shape is n × L, where n represents the embedding dimen-
sions and L is the maximum protein sequence length. Following 
the ProtBert_BFD and ProtT5 architectures, three classification 
modules were introduced and tested, respectively. The first clas-
sification module is a vanilla MLP. The second is the LA architec-
ture, as described in a previous study [45], which shows excel-
lent performance in protein localization classification. Thirdly, 
the biLSTM_TextCNN architecture, known for its effectiveness in 
sentiment classification [46], utilizes a bidirectional LSTM (biL-
STM) to convert the information from the encoder into corre-
sponding matrices. Following the classification process, a Text-
attentional CNN (TextCNN) is applied, featuring three parallel 
one-dimensional convolution (Conv-1D) layers for crucial feature 
extraction. Next, the max pooling is executed along the direction 
of Conv-1D. The resulting three vectors obtained are concatenated 
and feed into fully connected layers to generate probabilities. For 
the training process, Bio-embedding software [51] was used to 
extract embedding information from ProtBert_BFD and ProtT5. 
In the model training phase, all layers of the pretrained model 
remained frozen. The classification layers were trained for 15 
epochs. The learning rate was initially set to 0.001 and adjusted 
by the optimizer AdamW [52] with a weight decay of 0.001. Binary 
cross-entropy was utilized to calculate the loss. The training 
process was conducted on a single GPU (Tesla P100-PCIE-12GB) 
with a batch size of 72. 

ESM2 To employ ESM2 as the encoder, six models were trained 
by combining two architectures from ESM2 with three classifiers, 
respectively. As for ESM2-based models, two implementations, 
esm2_t30_150M_UR50D (ESM2_30) and esm2_t33_650M_UR50D 
(ESM2_33), were selected. After the protein sequences are input 
into ESM2, the outputs matrices’ shape was L × n.  L is the  max-
imum protein sequence length and n is the embedding dimen-
sion. The classification modules utilized the same settings as 
the classification modules used above ProtTrans. For the training 
process, fine-tuning involved unfreezing the embedding norm 
before layers, embedding norm after layers, and Roberta Head 
for masked language modeling layers in the pretrained model. 
Training consisted of 15 epochs with a learning rate of 0.001 and a 
batch size of 119. The optimizer utilized AdamW with a weight 
decay of 0.0001. Cross-entropy was used to calculate the loss. 
A total of eight Tesla P100-PCIE-12GB GPUs were used for this 
process. 

Experimental test set generation procedure 
To better understand PLM_Sol’s performance on the understud-
ied EOI, we selected various types of in-house EOI, consisting 
of tandem repeat proteins, DNA transposases, and deaminases 
(unpublished data). These EOI were intended to be synthesized 
for the development of novel gene editing tools, without any 
prior solubility prediction steps. To minimize redundancy, we 
clustered these EOI at 25% sequence identity, yielding 216 entries 
including 155 tandem repeat proteins, 30 DNA transposases, and 
31 deaminases. Then, we performed in vitro recombinant protein 
expression assay in E. coli using the following procedure. 

The pET28a vector with an N-terminal His tag and SUMO tag 
was applied for protein expression in E. coli Rosetta (DE3) cells. 
Protein expression was induced by adding 0.1 mM Isopropyl ß-D-
1-thiogalactopyranoside (IPTG) when the OD600 reached 0.6–0.8, 
followed by incubation at 16 ◦C for 18 h. Cell pellets were sonicated 
(50 W, 3 s on/3 s off on ice for 3 min) after being resuspended in
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Figure 1. Generation and analysis of UESolDS. (A) Data processing pipeline of UESolDS. (B) Distribution of sequence lengths in the UniProtKB (release 
2024_01) and UESolDS. (C) Taxonomy distribution of sequences from the UniProKB and UESolDS. 

binding buffer (50 mM Tris–HCl, 500 mM NaCl, pH 7.5). Super-
natant was extracted and analyzed via SDS-PAGE gels, where 
protein bands with overexpression strips at the right molecular 
weight were identified as Sol hits based on the Coomassie blue 
staining gel results. 

Evaluation metrics 
The performance metrics, including accuracy, area under the 
curve (AUC), area under the precision–recall curve (AUPR), 
precision, sensitivity, specificity, F1_score, confusion matrix. and 
Matthews correlation coefficient (MCC) were calculated using the 
scikit-learn packages [53]. 

Results 
Dataset organization and analysis 
The previously reported datasets are outdated, with ambiguous 
annotation [21] or limited coverage [25]. To generate a more com-
prehensive and precise dataset, we reconstructed the dataset on 
recombinant protein solubility in E. coli by integrating and updat-
ing related databases, including TargetTrack, DNASU, eSOL, and 
PDB. We executed a six-step filtration process, encompassing the 
removal of membrane proteins, His tag fragments, special charac-
ters, sequences within certain length ranges, and ambiguous Insol 

sequences (Methods, Fig. 1A). This refined dataset was denoted 
as the UESolDS with a total of 78,031 entries. In order to estab-
lish an independent test set, we conducted a sequence identity 
analysis between UESolDS and the integrated training datasets 
of seven previously reported models, including Protein_sol [23], 
SKADE [28], SWI [17], Soluprot [25], EPSOL [29], NetSolP [40], and 
DeepSoluE [31]. Sequences with >25% identity to any of the 
previously reported training sets were removed. Subsequently, a 
random selection of 2,000 Sol and 2,000 Insol entries from the 
remaining dataset were compiled to form the independent test 
set (Fig. 1A). 

To elucidate the characteristics of UESolDS, we conducted an 
analysis of the sequence length and species distribution. The 
results revealed a concentration of protein lengths within the 
range of 25–500 amino acids in UESolDS (Fig. 1B). It is worth noting 
that UESolDS showed a very similar distribution pattern with 
UniProtKB [54] database (Fig. 1B), indicating a good coverage and 
representation of the existing protein space. The statistical anal-
ysis of the species distribution showed that bacteria constituted 
the majority with ∼54.6%, followed by eukaryotes with ∼37.8%, 
archaea with ∼5.2%, viruses with 1.6%, and other sequences with 
0.8%, which were annotated as unclassified (Fig. 1C). In addi-
tion, we compared UESolDS with UniProtKB, revealing a similar 
distribution in species composition, with bacteria, eukaryotes,
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Table 1. Characteristics of the PLM embeddings used in this study 

Embeddings Language models Layers Parameters Training databases 

ProteinBERT Modified BERT 6 16M Uniref90 (106M seqs) 
esm2_t30_150M_UR50D BERT 30 150M UniRef50D (2021_04) (50M seqs) 
esm2_t33_650M_UR50D BERT 33 650M UniRef50D (2021_04) (50M seqs) 
ProtT5-XL T5 24 3B BFD100 (2B seqs) + UniRef50 (45M seqs) 
ProtBert BERT 30 420 M BFD100 (2B seqs) 

Figure 2. Performance of 13 in-house models on independent test set. (A) Comparison of accuracy among 13 in-house models. The training results of 
different PLMs combined with MLP, LA, and BiLSTM_TextCNN classifiers are separated with dashed lines. (B) Comparison of F1_score among 13 in-house 
models. The results are presented in the same order as in (A). (C) Comparison of MCC among 13 in-house models. The results are presented in the same 
order as in (A). 

and archaea ranking as the top three categories ( Fig. 1C). These 
findings collectively emphasized a broad diversity of our refined 
dataset, thereby establishing a solid foundation for improving the 
model’s generalization capabilities. 

Model construction and performance evaluation 
With the rapidly evolving development of PLMs, the utilization of 
updated PLMs like ESM2 [36], coupled with different classification 
layers, holds the potential to improve the extraction of protein sol-
ubility features with higher accuracy. Therefore, we constructed 
models based on the following two parts: an encoder responsible 
for generating protein sequence embeddings from the PLMs, and 
a classification module for selecting and categorizing the crucial 
features. In this work, three PLMs have been tested, including 
ProteinBERT [34], ProtTrans [37], and ESM2 (Table 1). In addition, 
three classification architectures have been employed, namely 
MLP, LA [45], and biLSTM_TextCNN [46]. A total of 13 models were 
developed and trained (Methods). 

We then evaluated the performance of the 13 in-house trained 
models on the independent test set. Among these, the combina-
tion of ProtT5 with biLSTM_TextCNN demonstrated the best per-
formance, achieving the highest accuracy of 0.7299, top F1_score 
of 0.7542, and maximum MCC of 0.4690 (Fig. 2A, B, C). Hence, the 
combination of ProtT5 with biLSTM_TextCNN was selected as our 
protein solubility classification model, designated as the PLM_Sol 
(Fig. 3A). 

Subsequently, we compared PLM_Sol with seven previously 
reported models, and PLM_Sol exhibited enhancement over the 
previously best-performing software across various metrics. For 
example, PLM_Sol showed a 6.4% increase in accuracy over EPSOL, 

a 9.0% increase in F1_score over Soluprot, and an 11.1% increase 
in MCC score over EPSOL on the test set (Fig. 3B, Table 2). PLM_Sol 
also showed the highest AUC and AUPR score among the models 
evaluated based on the receiver operating characteristic (ROC) 
and precision–recall curve (Fig. 3C, E). Next, we analyzed the 
confusion matrix of each model and observed distinctive pre-
diction outcomes among the previously reported tools (Fig. 3D). 
For example, Protein_sol, SWI, and NetSolP preferred to predict 
proteins as Sol, while SKADE and EPSOL preferred to predict 
proteins as Insol. Conversely, PLM_Sol showed more accurate 
predictions power. 

To visually showcase the classification performance of 
PLM_Sol, we applied t-SNE [55] to the test set using ProtT5 embed-
dings and the vector values from PLM_Sol’s FC layer. Compared 
with the ProtT5 embeddings, the data processed by the PLM_Sol 
classification layer effectively separated Sol and Insol proteins 
data, suggesting a robust classification performance (Fig. 3F). 

Solubility prediction for diverse types of EOI 
To further validate the generalization of PLM_Sol, we conducted 
an evaluation of protein solubility prediction for 216 in-house 
EOI (Methods). These diverse protein types exhibit significant 
variability in solubility, and some of them are reported to be 
poorly soluble [56, 57], providing valuable material for the 
assessment of the model’s generalizability. We utilized the in 
vitro recombination protein expression assay to evaluate the 
solubility of EOI, resulting in 134 Insol proteins and 82 Sol proteins 
(Supplementary Table S2). 

Next, PLM_Sol along with seven previously reported models 
were employed to predict the solubility of the aforementioned
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Figure 3. Performance of PLM_Sol on independent test set. (A) Model architecture of PLM_Sol; FC, fully connected layer. (B) Comparison of accuracy, 
F1_score, and MCC between PLM_Sol and previously reported models. (C) ROC curve for PLM_Sol and previously reported models. (D) Confusion matrices 
depicting PLM_Sol predictions in comparison with previously reported models. (E) Precision–recall curve for PLM_Sol and previously reported models. 
(F) Dimensionality reduction using t-SNE for ProtT5 embeddings and PLM_Sol FC layers vector values on independent test set. Each point represents a 
sequence. 

in-house EOI, followed by an assessment of their overall perfor-
mance. We set the threshold to 0.5, which represents the average 
of the optimal thresholds in our two test sets and is also adopted 
by many previously reported models [ 17, 23, 25, 28, 40]. We then 

calculated the confusion matrix and accuracy. The confusion 
matrix was utilized to showcase the comparison between 
predicted and experimentally observed outcomes (Fig. 4A). 
The predictive preferences in our experimental test set were
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Table 2. Comparison of solubility prediction performance of PLM_Sol with existing models on independent test set. 

Models T AUC Accuracy F1_score MCC Precision Sensitivity Specificity 

Protein_sol 0.5 0.5985 0.5649 0.6350 0.1405 0.5470 0.7569 0.3729 
SKADE 0.5 0.6882 0.6443 0.5304 0.3305 0.7811 0.4015 0.8874 
SWI 0.5 0.5597 0.5423 0.6334 0.0971 0.5284 0.7905 0.2938 
Soluprot 0.5 0.7126 0.6308 0.6639 0.2667 0.6095 0.7290 0.5325 
EPSOL — 0.6664 0.6663 0.5915 0.3578 0.7630 0.4830 0.8499 
NetSolP 0.5 0.6183 0.5502 0.6557 0.1268 0.5312 0.8564 0.2437 
DeepSoluE 0.4 0.6660 0.5990 0.6407 0.2036 0.5804 0.7150 0.4830 
PLM_Sol 0.5 0.8342 0.7299 0.7542 0.4690 0.6919 0.8289 0.6308 

T represents the threshold value of the models. The bolded string indicates the highest score within the respective column. 

Figure 4. Performance of PLM_Sol on experimental test set. (A) Confusion matrices depicting PLM_Sol predictions in comparison with previously reported 
models. (B) Accuracy for PLM_Sol and previously reported models. (C) ROC curve for PLM_Sol and previously reported models. (D) Precision–recall curve 
for PLM_Sol and previously reported models. 

consistent with those in the independent test set for some 
reported models. It is noteworthy that PLM_Sol demonstrated 
a higher proportion of correct predictions, suggesting a better 
performance in predicting protein solubility for EOI screening 
( Fig. 4B). In addition, we plotted the ROC and precision–recall 
curves to illustrate PLM_Sol’s performance on the experimental 
test set (Fig. 4C, D). Due to the limited size of the test set, the 
curves were not smooth. Although PLM_Sol is not the best on 
every metrics of ROC and precision–recall curves, it performed 
well overall. 

Discussion 
Deep learning relies on two fundamental pillars: data and model 
[58–60]. However, in the development of solubility prediction 

tasks, most models have predominantly focused on model 
optimization, overlooking the quality of the datasets [27–29]. For 
instance, a commonly used dataset from PROSO II [21] showed  
data contamination, as we identified 9.8% of Insol proteins that 
showed strong similarity (>90% identity and >70% coverage) to 
those present in the Sol dataset. This can be attributed to the 
ambiguity of the annotations for Insol proteins in the TargetTrack 
database, which serves as the dominant source of Insol data. In 
this study, a more comprehensive and accurate database UESolDS 
was generated by integrating the existing datasets, followed by 
a more stringent blastp parameters (>75% identity and >70% 
coverage) to eliminate overlapping Insol instances within the Sol 
category. Furthermore, given the inherent complexity of protein 
insolubility states, more in-depth investigation and detailed anno-
tation of insoluble protein experimental information may further
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improve the quality of the datasets. This, in turn, holds potential 
to further enhance the classification capability of DL models. 

For model construction, we utilized the refined databases 
and employed PLMs incorporating additional classification 
layers for enhanced solubility prediction. After evaluation on 
an independent test set, we identified the best-performing 
model, named PLM_Sol. Compared to the state-of-the-art models, 
PLM_Sol exhibited a 6.4% increase in accuracy on the test set. 
In addition to the independent test set, we also validated the 
efficiency of PLM_Sol using our in-house experimental data, 
which showed improved prediction performance with an increase 
in accuracy of ∼4.2%. Furthermore, our models could benefit from 
further optimization. The evaluation of the experimental test set 
shows that there is still room to improve the performance of 
PLM_sol. In the fast-paced world of large language models, the 
utilization of parameter-efficient fine-tuning modules, such as 
LoRA [61], Adapter Tuning [62], IA3 [63], and Prompt Tuning [64], 
may enhance the model performance. Alternatively, employing 
the protein structure features derived from AlphaFold2 [39] or  
ESMFold [36] may provide the capability to identify key structural 
features to better separate Sol and Insol proteins. Improvement 
based on these continuously emerging algorithms, combined with 
updated high-quality datasets, would ensure a better prediction 
accuracy. 

All in all, PLM_Sol is easy to use and provides accurate pre-
dictions of protein solubility based solely on protein sequences 
as input. The integration of PLM_Sol into a high-throughput EOI 
screening pipeline offers the potential to avoid Insol gene syn-
thesis, thereby improving the success rate and facilitating the 
scale-up screen process. Furthermore, the ongoing accumulation 
of experimental results from the above design, coupled with the 
continuously updated UESolDS, holds the prospect of iteratively 
refining PLM_Sol, thereby continuously enhancing its overall pre-
dictive performance. 

Key Points 
• We curated an Updated E. coli protein Solubility DataSet 

(UESolDS) by incorporating newly available PDB data and 
consolidating three solubility datasets to explore protein 
solubility. 

• For the prediction of protein solubility, we benchmarked 
a combination of diverse PLMs along with various classi-
fication architectures. An independent test dataset was 
compiled for evaluation purposes. The ProtT5 combined 
with biLSTM_TextCNN demonstrating the best perfor-
mance, designated as PLM_Sol, exhibited substantial 
improvements over previously reported models with a 
notable increase of 6.4% in accuracy, 9.0% in F1_score, 
and 11.1% in MCC score. 

• To further evaluate the performance of PLM_Sol, we 
performed the experimental testing by assessing the sol-
ubility of 216 understudied proteins across three distinct 
families. PLM_Sol also exhibited good performance. 
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