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Abstract
Purpose of review  Skin type diversity in image datasets refers to the representation of various skin types. This diversity 
allows for the verification of comparable performance of a trained model across different skin types. A widespread problem 
in datasets involving human skin is the lack of verifiable diversity in skin types, making it difficult to evaluate whether the 
performance of the trained models generalizes across different skin types. For example, the diversity issues in skin lesion 
datasets, which are used to train deep learning-based models, often result in lower accuracy for darker skin types that are 
typically under-represented in these datasets. Under-representation in datasets results in lower performance in deep learning 
models for under-represented skin types.
Recent findings  This issue has been discussed in previous works; however, the reporting of skin types, and inherent diversity, 
have not been fully assessed. Some works report skin types but do not attempt to assess the representation of each skin type in 
datasets. Others, focusing on skin lesions, identify the issue but do not measure skin type diversity in the datasets examined.
Summary  Effort is needed to address these shortcomings and move towards facilitating verifiable diversity. Building on 
previous works in skin lesion datasets, this review explores the general issue of skin type diversity by investigating and 
evaluating skin lesion datasets specifically. The main contributions of this work are an evaluation of publicly available skin 
lesion datasets and their metadata to assess the frequency and completeness of reporting of skin type and an investigation 
into the diversity and representation of each skin type within these datasets.
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Introduction

Diversity is an important feature in datasets used for train-
ing artificial intelligence (AI) based models, as the perfor-
mance of AI is only as good as its data. In this paper, “skin 
type diversity” refers to the range and representation of 
different skin types within the human skin image dataset. 
It provides the opportunity to verify the comparable perfor-
mance of a trained model for each skin type. Authors fre-
quently report ethnicity instead of skin type, but ethnicity 
and skin type are not the same, as many ethnicities can have 

diverse skin types. There are some other works whose data-
sets focus on the representation of varied ethnicities [1]. 
Ethnicity is a wider and more complex concept that refers 
to groups characterized by shared geographical, ances-
tral origin, cultural, religious, linguistic, or other shared 
characteristics [2]. Sufficient diversity should encompass 
a range of skin tones that adequately represent the popula-
tion being studied, enabling an assessment of whether a 
particular skin type is under-represented to a degree that it 
impacts the reliability of the AI model [3]. Addressing this 
issue is crucial, as it can result in AI models favoring the 
majority class, reducing accuracy for the minority class. 
Techniques like resampling, cost-sensitive learning, over-
sampling, under-sampling, and ensemble methods help to 
balance datasets and improve models’ performance [4, 5]. 
These approaches are particularly useful for addressing 
insufficient skin type diversity by ensuring that all skin 
types are adequately represented and learned by the model, 
thereby enhancing the model's ability to perform compara-
bly well across different skin types.
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In examining the performance of AI on human skin, 
particularly regarding its lower accuracy for dark-skinned 
individuals, it is important to recognize that the observed 
disparities may not solely be due to algorithmic bias. It 
might be attributed to broader systemic inequities in data 
collection, demographic characteristics of participants, their 
socioeconomic status, and other sociological factors [6, 7]. 
In this paper, the term bias refers to the inadequate repre-
sentation of skin types in the training datasets and the result-
ing difference in the performance of trained AI models for 
certain skin types [8]. This issue can potentially lead to the 
exclusion of certain groups of people by AI-based models.

The effect of inadequate skin type diversity and under-
representation of dark-skinned people in datasets can be 
seen in many AI-based technologies. For example, AI sys-
tems that judge beauty pageant winners are biased against 
darker-skinned contestants [9]. In a beauty contest run by 
Beauty.ai, the 44 finalists were judged by the algorithms as 
the most attractive, except for six who were described as 
“Asian”, and all were described as “white”. Only one finalist 
was dark-skinned [10, 11]. Another study investigating the 
performance of object detection systems on pedestrians with 
different skin types showed higher precision on lighter skin 
types than on darker skin types [12]. In another work, bias in 
face verification applications and datasets was evaluated con-
cerning different skin types, and found that recognition accu-
racy was reduced for darker-skinned people [13]. The effect 
of this issue on the performance of robotic systems such as 
a robot peacekeeper, a self-driving car, and a medical robot 
was assessed [14]. It was shown that current AI and robotic 
systems have lower performance for certain skin types.

In AI in healthcare sectors, there are consumer wear-
able devices that are used for tracking activity, sleep, and 
other health-related purposes, but due to some limitations, 
these health products may only be useful for light-skinned 
people. Findings show that these devices are inaccurate, 
and even may not work at all for dark-skinned people [1, 
15]. While other literature has pointed out potential inac-
curacies in pulse oximetry for individuals with darker 
skin tones, the findings show that the Apple Watch, which 
employed the Fitzpatrick skin type scale in its model, 
did not exhibit such limitations seen in traditional pulse 
oximeters that can be affected by skin pigmentation and 
performed consistently across different skin types [16]. 
However, the mentioned examples indicate that the needs 
of darker skin population groups are not well-represented 
[17], which can potentially lead to reduced accuracy for 
dark-skinned groups by deep learning-based models. Sev-
eral factors play a role in the biased performance of these 
models towards dark-skinned people.

A significant reason among these is the lack of skin 
type diversity in datasets used for training AI-based mod-
els, the absence of reliable labels for each sample, and 

consequently, a lack of evaluation of the model's perfor-
mance on a per skin type basis [1, 15]. There are many rea-
sons for not having enough data from dark-skinned people 
in datasets used for AI applications. For example, in the 
case of skin lesion datasets, reasons include low incidence 
of skin cancer in dark-skinned people [18, 19], unequal 
access to healthcare [20], poor quality images due to poor 
quality of care [21, 22] and algorithms with different per-
formance for certain groups of people used in digital cam-
eras as well as computer software [23, 24] contribute to 
unbalanced datasets. Consequently, dark-skinned people 
are under-represented in datasets from health services as 
well as research datasets [20]. Deep learning-based mod-
els trained on lighter-skinned subjects are at risk of poor 
performance for people with darker skin [25].

Due to the problems mentioned above, it is necessary to 
evaluate and quantify skin type diversity to detect under-
representation in datasets before using them for training AI 
systems. Doing this helps to prevent models from having a 
lower performance for darker-skinned groups of people [26]. 
The Fitzpatrick scale might be helpful in this regard which 
provides a skin tone classification based on reaction to expo-
sure to sunlight [27]. While it provides a useful framework 
for categorizing skin types, it may not fully capture the full 
spectrum of the human skin diversity needed for training 
AI models [26]. This scale is used in dermatology to clas-
sify skin tones into six numbered categories as shown in 
Fig. 1. Despite its limitations, the Fitzpatrick skin type scale 
has previously been used to evaluate skin type diversity in 
datasets [26].

Although the issue of inadequate skin type diversity has 
been discussed in previous works, these have not attempted 
to evaluate skin type diversity for datasets. For instance, in 
the Gender Shades study [28], the Fitzpatrick scale was used 
to evaluate the PPB, IJB-A, and Adience datasets. However, 
rather than measuring skin type diversity over six separate 
Fitzpatrick skin type categories, the authors instead classify 
the images in these datasets using two aggregate groups—
darker and lighter.

To mitigate discrimination against certain groups of peo-
ple, the FairFace dataset was created, a balanced face image 
dataset for seven race groups that provides more accurate 
and consistent modeling across different race and gender 
groups [29]. However, this work focuses on ethnic diversity 
and does not report skin type diversity. A new method was 
proposed using computer simulations to detect biases in face 
detection using Bayesian parameter search in high dimen-
sional feature space. Although the Fitzpatrick scale was 
considered for the identification of demographic biases in 
commercial face application programming interfaces (APIs), 
skin type diversity was not measured [30].

A new method was introduced for human skin detection, 
not using color information, but rather using a U-Net-based 
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segmentation network [31]. This method was tested on two 
datasets containing face images: ECU (Edith Cowan Univer-
sity) and RFW (Racial Faces in the Wild). ECU is an imbal-
anced dataset created based on six different Fitzpatrick skin 
types and RFW is a balanced dataset with only the annota-
tion of ethnicity, based on four test subsets: “Caucasian”, 
“Asian”, “Indian”, and “African”. In the case of the RFW 
dataset, it is not evaluated based on Fitzpatrick skin type but 
just based on ethnicity.

Casual Conversations was created, which is a fair and 
diverse dataset of videos collected from seven countries for 
AI applications, labeled based on the two skin tone scales 
of Monk [32] and Fitzpatrick [27]. Nonetheless, the authors 
do not report any measurement of skin type diversity for 
their dataset [33]. The SkinCon dataset was created for train-
ing models related to skin diseases, which contains labels 
for different skin types [34]. This dataset was constructed 
from two skin disease image datasets: Fitzpatrick 17 k [26] 
and Diverse Dermatology Images (DDI) [35]. Although the 
Fitzpatrick skin type scale is mentioned in this work, no 
measurement of skin type diversity is presented. Skin lesion 
image datasets were assessed for diversity based on their 
metadata including age, gender, ethnicity, and skin type. The 
authors mentioned that there is limited reporting on skin 
type in the metadata and also less representation of darker-
skinned people in skin lesion datasets. However, the authors 

did not measure skin type diversity in any of the skin lesion 
datasets [1].

To measure skin type diversity and detect under-repre-
sentation in datasets used for training deep learning-based 
models, Fitzpatrick skin type metadata should be included in 
the datasets [26]. Accessing this information is a crucial step 
to not only detect under-representation in datasets, but also 
help to avoid training models on datasets with inadequate 
skin type diversity, and as a result prevent models from per-
forming poorly for darker-skinned groups of people. Accord-
ing to our investigation, three available skin lesion datasets 
provide Fitzpatrick scale skin type metadata, labeled by 
dermatologists: PAD-UFES-20 [36], Fitzpatrick 17k [26], 
and DDI [35]. To investigate the issue of inadequate skin 
type diversity in datasets used for training deep learning 
models, just two datasets—PAD-UFES-20 and Fitzpatrick 
17 k—are utilized as examples in this review. DDI was not 
used because it is a balanced dataset (albeit for three aggre-
gate skin type groups, rather than for all six Fitzpatrick skin 
types). Sample images from the PAD-UFES-20 and Fitzpat-
rick 17k datasets are shown in Fig. 2 and Fig. 3, respectively.

Investigation of metadata in these two datasets is help-
ful to assess skin type diversity and check to what extent 
the lack of diversity in the datasets potentially leads to 
discrimination by models trained on the datasets. The 
main contributions of this study are an investigation into 

Type I: very light       Type II: light               Type III: intermediate         Type IV: tan                Type V: brown             Type VI: dark         

Fig. 1   The range of skin tones in the Fitzpatrick skin type scale classifies skin tones into six types

(a)           (b)                          (c)        (d)

Fig. 2   Some sample images from the PAD-UFES-20 dataset. (a) Skin type I. (b) Skin type II. (c) Skin type III. (d) Skin type IV
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(a)                          (b)                                         (c)                                      (d)

Fig. 3   Some sample images from the Fitzpatrick 17k dataset. (a) Skin type I. (b) Skin type II. (c) Skin type III. (d) Skin type IV

Table 1   A subset of papers identified through the PRISMA process that used publicly available skin lesion datasets. We have attempted to select 
a subset that spans the majority of the skin lesion datasets used in the full list of identified papers. (C: Clinical images, D: Dermoscopic images)

Author Year Dataset Image

Mendonça et al [43] 2013 PH2 D
Saez et al [44] 2014 Interactive Atlas of Dermoscopy D
Sun et al [45] 2016 SD-198 C
Liao et al [46] 2016 AtlasDerm / Danderm / DermIS / Dermnet / Derma / DermQuest (Derm101) D
Kawahara et al [47] 2016 Dermofit Image Library D
Ge et al [48] 2017 MoleMap / ISBI-2016 D
Lopez et al [49] 2017 Dermofit Image Library / Dermnet / ISBI 2016 Challenge D
Kawahara et al [50] 2018 7-point checklist C
Han et al [51] 2018 Asan Dataset / MED-NODE C
Gutman et al. [52] 2018 ISIC-MSK-2 D
Han et al [53] 2018 Edinburgh Dermofit Image Library / Hallym C/ D
Shoieb and Youssef [54] 2018 DermQuest / MED-NODE / DermIS C/ D
Goyal et al [55] 2018 ISBI 2017 / PH2 / HAM10000 D
Mendes and da Silva [56] 2018 MED-NODE / Atlas / Edinburgh C/ D
Gonzalez-Diaz [57] 2018 2017 ISBI challenge / EDRA / ISIC Archive D
Yang et al [58] 2019 SD-198 / SD-260
Brinker TJ et al [59] 2019 MClass-D C
Combalia et al [60] 2019 BCN20000 D
Xie et al [61] 2019 XiangyaDerm C
He et al [62] 2019 Skin-10 / Skin-100 C
Pacheco et al [36] 2020 PAD-UFES-20 C
Han et al [63] 2020 SNU / Edinburgh C
Han et al [63] 2020 Normal / Web C
Milantev et al [64] 2020 SD-198 / MED-NODE / PH2 / SKINL2v2 / Seven-Point / Light Field Image C/ D
Andrade et al [65] 2020 SMARTSKINS / Dermofit Image Library C
Zhang et al [66] 2020 Skin-Cancer-Detection (SCD) / ISIC 2018 D
Hasan et al [67] 2021 Skin Cancer Benign vs. Malignant D
Abhishek et al [68] 2021 Interactive Atlas of Dermoscopy / MClass-D D
Maron et al [69] 2021 HAM10000 / PH2 / SKINL2 / BCN20000/ PROP D
Krohling et al [70] 2021 PAD-UFES-20 C
Yao et al [71] 2021 ISIC 2018 / Seven-Point Criteria Evaluation (7-PT) C/ D
Groh et al [26] 2021 Fitzpatrick 17 k C
Abbas et al [72] 2021 Yonsei University Hospital D
Ali et al [73] 2022 Monkeypox Skin Lesion Dataset (MSLD) C
Alenezi et al [74] 2023 ISIC-2019, 2020 D
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reporting skin type information in available skin lesions 
datasets, a significant extension of the work by [1], and 
an investigation into the diversity and representation of 
specific skin types within these datasets. Previous sim-
ilar work by [37] discussed the lack of transparency in 
medical skin datasets and the necessity of demographic 
descriptions such as ethnicity and Fitzpatrick skin type for 
further analysis and deep learning applications. However, 
the authors do not address the potential limitations in skin 
type diversity within the investigated datasets, although 
the Fitzpatrick scale is included. Also, the two publicly 
available datasets, PAD-UFES-20 and Fitzpatrick 17 k, 
were published without thoroughly assessing skin type 
diversity by evaluating the representation of various skin 
types and ethnicities and ensuring a balanced distribution 
across different skin tones.

Given the examples of AI model underperformance for 
individuals with certain skin colors, having a reliable skin 
type label for each sample can significantly help address 
the under-representation issue in human skin-related data-
bases, although alternative methods like skin type classifi-
cation algorithms as a pre-processing step are also viable 
options [38]. Therefore, this study makes a significant 
contribution in this regard by:

1. Providing an investigation into publicly available 
skin lesion datasets to determine the extent of coverage 
in terms of reporting on skin types compared to other 
reported metadata in these datasets.

2. Presenting a comprehensive evaluation of skin type 
diversity level in three datasets where skin type metadata 
is provided. The results of this analysis are noteworthy, 
showing an inadequate representation of skin types in these 
datasets, which can be addressed by technical solutions.

This review emphasizes the danger of implementing 
algorithms on datasets lacking transparency and diversity, 
as supported by prior studies [39–41].

Methods

The selection process used in our review to identify papers 
that used publicly available skin lesion datasets was based 
on the PRISMA statement [42]. The databases of PubMed, 
Elsevier, Springer, Google Scholar, and IEEE Xplore were 
searched. In our initial search, the following search terms 
were used: “skin cancer detection”, “skin lesion segmenta-
tion”, “skin lesion augmentation”, “balancing skin lesion 
datasets”, “skin lesion datasets”, “Fitzpatrick skin type 
metadata skin lesion”, “Fitzpatrick skin typology angle”, 
and “skin type diversity in skin lesion datasets” to identify 
papers on skin type diversity that make use of skin lesion 
image datasets. Table 1 provides a summary of which 
datasets are used in each of the selected papers. Section 3 
includes a review of a subset of the identified datasets 
that match the following criteria: gender, age, ethnicity, 
and skin type.

Results

Our initial search (using the search terms listed in 
Sect.  2) returned over 1,400 publications as shown 
in Fig. 4. In the first screening, more than 800 dupli-
cate papers were eliminated, leaving 690 papers to be 
assessed. In the second step, a further 513 publications 

Fig. 4   PRISMA flow chart of 
study selection
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Table 2   54 different publicly available skin lesion datasets used in publications and their reporting of four main metadata, showing a lack of 
reporting of skin type information to cover skin type diversity in datasets

Skin lesion datasets No. Images Metadata

Gender Age Ethnicity Skin type

7-point criteria evaluation dataset [50]  > 2,000 ✔ - - -
Asan [53] 120,780 ✔ ✔ ✔ -
Atlas [56] 3,816 - - - -
AtlasDerm [75] 9,503 - - ✔ -
BCN20000 [60] 19,424 ✔ ✔ - -
Cancer Genome Atlas [76] 2,860 - - - -
Clinical Atlas [77] 839 - - - -
DanDerm [78] 1,110 - - ✔ -
Derm7pt [50]  > 2000 - - - -
Derm101 [79] 107,656 - - ✔ -
Dermatology Dataset [80] 336 - ✔ - -
DermIS [81, 82] 7,172 - ✔ ✔ -
Dermnet [46] 19,500 - - ✔ -
DermNet NZ [75] 246 - - - -
Dermofit Image Library [83] 1300 - - ✔ -
Dermoscopic Atlas [77] 872 - - - -
Dermoscopy Skin Lesion Multispectral Image Database [84] 30 - - - -
DermQuest [81] 137 - - - -
DDI [35] 656 ✔ ✔ -  ✔
Edinburgh [85] 1,300 ✔ ✔ ✔ -
EDRA Interactive Atlas of Dermoscopy [76] 1,000 - - - -
Fitzpatrick 17k [26] 16,577 - - - ✔
Hallym [51] 152 ✔ ✔ ✔ -
HAM10000 [77] 10,015 ✔ ✔ - -
Interactive Atlas of Dermoscopy (IAD) [76]  > 2, 000 - - - -
ISBI 2016 [52] 1,279 - - - -
ISBI 2017 [86] 2,750 - - - -
ISIC Challenge 2020 [87] 33,126 ✔ ✔ ✔ -
ISIC-MSK [52] 225 ✔ ✔ - -
ISIC-UDA [52] 557 - - - -
Kaggle [75] 367 - - - -
Light Field Image [88] 250 ✔ ✔ - -
MClass [89] 100 - - - -
MED-NODE [90] 170 - - - -
MoleMap [82, 91] 102,451 - - - -
Monkeypox Skin Lesion Dataset (MSLD) [73] 228 - - ✔ -
Normal [63] 48,271 ✔ ✔ ✔ -
OLE [46] 1,300 - - - -
PAD-UFES-20 [36] 2,299 ✔ ✔ - ✔
PH2 [43] 200 - - - -
SD-128 [45] 5,619 - - ✔ -
SD-198 [45, 92] 6,584 ✔ ✔ ✔ -
SD-260 [58] 20,600 ✔ ✔ ✔ -
SIIM-ISIC Melanoma [87] 33,126  ✔ ✔ - -
Skin-10 [62] 10,218 - - - -
Skin-100 [62] 19,807 - - - -
Skin Cancer’ Malignant vs. Benign [93, 94] 6,594 - - - -
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were excluded due to lack of relevance (did not use skin 
lesion datasets), or being unavailable (including those not 
accessible without payment in Technological University 
Dublin), leaving 177 papers to be assessed for eligibil-
ity. Of these, 45 were excluded due to not being peer-
reviewed. Ultimately, 132 publications were included in 
the systematic review.

The 132 papers identified from the search process used 
one or more publicly available skin lesion datasets. Table 1 
shows a subset of these papers.1

As shown in Table 1, there are overlaps between papers 
using the same groups of skin lesion datasets. Through the 
process, 54 different skin lesion datasets were identified 
from these papers. Table 2 summarizes each dataset’s report-
ing of the following metadata: age, gender, ethnicity, and 
Fitzpatrick skin type. The number of images is also shown.

Ideally, skin lesion datasets should achieve skin type 
diversity as well as have transparency in their metadata. As 
a result, not only would their diversity be easily measured, 
but also any imbalance would be detected before training 
models using these datasets. As seen in Table 2, only three 
datasets: PAD-UFES-20, Fitzpatrick 17k, and DDI provide 
metadata on skin type. They have skin type labels based on 
the Fitzpatrick rating system [1]. Figure 5 also shows the 
breakdown of reporting in the metadata for gender, age, 
ethnicity, and skin type. As shown, skin type metadata is 
the least frequently provided, being included in just 3 of 54 
datasets (5.56%). Age metadata were the most frequently 
provided, being included in 35.19% of the datasets.

Although the PAD-UFES-20 and Fitzpatrick 17 k data-
sets provide skin type metadata, they contain far fewer 
images of darker skin types (e.g. only 635 out of 16,577 
images in Fitzpatrick 17 k are of skin type VI, and only 
one image of skin type VI in PAD-UFES-20). Thus, apart 
from the lack of reporting of skin type metadata, even if 
datasets cover skin type information, there is no guarantee 

that they have enough representation for darker-skinned 
groups. Figure 6 and Fig. 7 show the distributions of skin 
types in the PAD-UFES-20 and Fitzpatrick 17 k datasets 
respectively. It can be seen that skin type VI accounts for 
the lowest percentage in both datasets: 0.07% in PAD-
UFES-20 and 3.97% in Fitzpatrick 17  k. Note that in 
the Fitzpatrick 17k dataset, the full number of images is 
16,577, but 565 images were excluded because they had 
unknown Fitzpatrick skin types (labeled “-1”).

Table 2   (continued)

Skin lesion datasets No. Images Metadata

Gender Age Ethnicity Skin type

SkinCon [34] 3230 - - - -
SkinL2 [88] 376 - - - -
SMARTSKINS [95] - ✔ ✔ - -
SNU [63] 2,201 ✔ ✔ ✔ -
Web [63] 51,459 ✔ ✔ ✔ -
XiangyaDerm [61] 107,565 - - - -
Yonsei University Health System South Korea [96] 724 - - - -

Fig. 5   Percentage of the 54 skin lesion datasets that provide metadata 
for gender, age, ethnicity, and skin type respectively

Fig. 6   Skin type distribution for 1,494 images in the PAD-UFES-20 
dataset [36], according to dermatologist-assigned Fitzpatrick scale 
labels

1  The full list of 132 publications is available here: https://​arrow.​
tudub​lin.​ie/​engsc​helec​on/​15/

https://arrow.tudublin.ie/engschelecon/15/
https://arrow.tudublin.ie/engschelecon/15/
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As shown in Fig. 8, the DDI dataset metadata classifies 
images into three skin type groups, rather than providing 
exact information for each of the six individual Fitzpat-
rick skin types. Therefore, although the dataset is balanced 
concerning these three groups, it does not guarantee that 
each skin type group is balanced. More importantly, due 
to its small size, it is not suitable for generalizing deep-
learning models for all skin types. In the case of ethnicity 
labels, it should be noted that ethnicity is different from 
skin type. To a significant degree, shared ethnicity reflects 
shared ancestry, but people of the same ethnic group can 
have a wide range of skin types.

Conclusions

Summary of findings

This study is the first review to date that investigates 
publicly available skin lesion datasets and their metadata 
in detail for the important issue of inadequate skin type 
diversity. As these datasets are used for training deep 
learning models, inadequate skin type diversity within 
the datasets could affect the performance of the models, 
in terms of having low accuracy against specific groups 

of people [35, 97]. To overcome this issue, it is impor-
tant that, firstly, information about skin type distribution 
be provided for datasets, and secondly, that skin type 
diversity be evaluated in detail to facilitate downstream 
research and ensure that balanced methods are specified 
for achieving diverse representation before using the data-
sets for training models.

The issue of inadequate skin type diversity has been 
discussed in previous works, but without reporting a meas-
urement for each skin type. For example, in the Gender 
Shades study [28], although the authors used the Fitzpat-
rick skin type descriptions for their facial image datasets, 
they just divided the datasets into two skin type groups: 
darker and lighter. A balanced dataset, FairFace, was cre-
ated according to different ethnicities, rather than different 
skin types [29]. Also, the issue of skin lesion datasets was 
discussed but did not measure skin type diversity for those 
datasets [1]. Failure to report the distribution of skin types 
used in a dataset raises concerns about the extent to which 
different populations are represented in that dataset, and 
also about the generalizability of machine learning algo-
rithms that have been trained using it.

Our results showed a lack of skin type reporting in 
all identified skin lesion datasets, except three: PAD-
UFES-20, Fitzpatrick 17k, and DDI. Of the skin lesion 
datasets used in the papers identified in our review, these 
three are the only ones that provide information about 
skin type using the Fitzpatrick scale. The shortage of 
skin lesion datasets including skin type information com-
pared to the large number of skin lesion datasets without 
it, raises concerns about the high potential for underper-
formance in AI models trained on these datasets.

However, as shown in the results, two datasets—PAD-
UFES-20 and Fitzpatrick 17k—have considerably less rep-
resentation of darker skin. The DDI dataset reports skin tone 
distribution in three aggregate groups, rather than for each 
of the six Fitzpatrick skin types; therefore, exact information 
about the number of images belonging to each skin type is 
unavailable. Furthermore, it is too small for training a gen-
eralized model that works for all skin types. Nevertheless, 
none of these three datasets includes information about the 
ethnicity corresponding to the skin type of each image. Also, 
the results showed that the distinction between ethnicity and 
skin type should be restated as one ethnicity can include 
different skin types.

Deep learning-based models should be developed with 
fairness and equity in mind, aiming to include a representa-
tive distribution of all skin tones. If achieving this balance 
is not possible, the limitations should be transparently 
reported, including details on metadata, the training process, 
and any associated challenges, to ensure clarity regarding 
the model's performance across different skin tones [97]. 
This review has shown that skin type diversity in skin lesion 

Fig. 7   Skin type distribution for 16,012 images in the Fitzpatrick 17 k 
dataset [26], according to dermatologist-assigned Fitzpatrick scale 
labels. The original number of images was 16,577, but 565 images 
had unknown Fitzpatrick skin types

Fig. 8   Skin type distribution for the 656 images in the DDI dataset 
[35], according to dermatologist-assigned Fitzpatrick scale labels
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image datasets is either unquantifiable (due to lack of skin 
type metadata in the vast majority of datasets) or inadequate 
(in the three datasets where metadata is provided). To facili-
tate the evaluation of skin type diversity, datasets should 
ideally include dermatologist-assigned Fitzpatrick skin type 
labels. Compared to classifications like ethnicity and race, 
Fitzpatrick skin type is relatively clearly defined and pro-
vides a more objective basis for establishing diversity.

Addressing Under‑representation

Some metrics such as ISSintra [96] or alternative metrics 
[97] can be used to measure the skin type diversity of the 
datasets used for training the AI models. One of the widely 
used methods in previous works to measure the representa-
tion of different skin types in datasets and lack of diversity 
involves the use of automatic skin type classification meth-
ods, such as individual typology angle (ITA). ITA values 
show an inverse correlation with skin pigmentation and 
enable the classification of skin color into six groups, rang-
ing from very light to dark skin [98–100].

Finally, to achieve AI models with a fair performance 
for each skin type, there are methods, including augmen-
tation [101, 102] or adversarial de-biasing [103–105], and 
balancing datasets [5] to enhance the fairness of the models 
and create balanced datasets. For example, in addressing 
dataset imbalance, authors balance minority classes in skin 
disease datasets through the utilization of class weight-
ing as a data balancing technique [106]. In [5], the authors 
addressed class imbalance in the clinical dataset using two 
resampling methods: SMOTE and under-sampling. SMOTE 
generates synthetic minority examples based on k-nearest 
neighbors while under-sampling reduces the majority class 
size to balance the dataset. In the study by Islam et al. [107] 
normalization, data reduction, and data augmentation are 
used in pre-processing steps to classify skin lesions from the 
HAM10000 dataset. In another study, data up-sampling and 
augmentation methods were used in skin lesion classifica-
tion using a convolutional neural network (CNN) to improve 
the classifier's efficiency for the HAM 10000 dataset [108].

To bridge the gap in the under-representation of darker 
skin tones, [109] used augmentation methods like flipping, 
cropping, and rotating on two clinical image skin lesion 
datasets (DermNet NZ and ISIC 2018). This approach 
increased the inclusion of dark skin tones, resulting in a 
higher accuracy of 94% for malignancy detection with the 
augmented datasets. Mohamed et al. [110] showed how bal-
ancing the dataset affected skin lesion classification results 
using two models, MobileNet and DenseNet121, on the 
HAM10000 dataset. After applying augmentation methods 
like zooming, rotation, and flipping, the accuracy improved 

by 20% for DenseNet121 and 10% for MobileNet. Rezk et al. 
[97] addressed the shortage of dark skin images in dermatol-
ogy datasets (DermNet NZ, ISIC, Dermatology Atlas) by 
creating realistic images of darker skin for better diagnosis 
of skin lesions in people of color. They used style transfer 
(ST) and deep blending (DB), with ST transferring styles 
between images and DB blending features from multiple 
images. Their findings showed that diverse skin color images 
improved the model's ability to recognize skin tone varia-
tions, though geometric transformations alone weren't suffi-
cient to account for all deviations in skin tone distribution in 
the test set. Rezk et al. [109] used deep learning to generate 
darker skin tone images from ISIC and DermNet NZ data-
sets to improve skin cancer detection models. Their results 
showed that models trained on diverse datasets, including 
these generated images, provided more accurate diagnoses 
for people of color. Additionally, other studies have high-
lighted the benefits of augmentation techniques in balancing 
datasets and improving diagnostic accuracy [111–114].

Implications for Future Research

In conclusion, this study underscores the need for sufficient 
representation of all skin types within datasets, emphasizing 
the importance of accurate skin type labeling. Achieving 
fair representation is important for mitigating the underper-
formance of AI models’ performance, particularly concern-
ing darker skin tones. The disparities in model performance 
across different skin types can lead to inaccuracies, which 
may adversely affect the diagnostic accuracy and usability 
of these models in real-world applications. Strategies such 
as expanding data collection efforts to ensure adequate rep-
resentation of diverse skin tones, data augmentation to arti-
ficially increase the representation of under-represented skin 
tones, and transparent reporting to clearly convey the diver-
sity of represented skin tones in datasets, could be employed 
to achieve more balanced datasets.
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