Binding of platelet-derived growth factor-BB and transforming growth factor- β 1 to α_2 -macroglobulin *in vitro* and *in vivo*: comparison of receptor-recognized and non-recognized α_2 -macroglobulin conformations

Kendall P. CROOKSTON,* Donna J. WEBB,* Jonathan LAMARRE† and Steven L. GONIAS*†‡

Departments of *Biochemistry and †Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, U.S.A.

 α_2 -Macroglobulin (α_2 M) undergoes a major conformational change when reacting with proteinases or primary amines. This conformational change has been referred to as the 'slow' to 'fast' transformation based on the increase in $\alpha_2 M$ mobility shown by non-denaturing PAGE. Previous studies demonstrated that many cytokines, including transforming growth factor $\beta 1$ (TGF- β 1) and interleukin-1 β , bind preferentially or exclusively to $\alpha_2 M$ which has undergone conformational change. In this study, we demonstrate that platelet-derived growth factor-BB (PDGF-BB) also binds preferentially to conformationally transformed $\alpha_2 M$ ($\alpha_2 M$ -methylamine, $\alpha_2 M$ -trypsin) in vitro. Purified ¹²⁵I-PDGF-BB– α_2 M–methylamine complex cleared rapidly from the circulation of mice via the $\alpha_2 M$ receptor/low-densitylipoprotein-receptor-related protein (α_{2} M-R/LRP). In order to determine whether PDGF-BB or TGF- β 1 binds to native $\alpha_{p}M$, we defined the native conformation by lack of interaction with a₃M-R/LRP instead of electrophoretic mobility. ¹²⁵I-PDGF-**BB** was incubated with 4.3 μ M native α_{a} M and 0.47 μ M

INTRODUCTION

 α_2 -Macroglobulin (α_2 M) is a large, homotetrameric glycoprotein (M_r approx. 718000) and an inhibitor of proteinases from all four major classes [1–3]. Upon reaction with proteinases, α_2 M undergoes a major conformational change [4–6]. This conformational change results in irreversible proteinase trapping [4,7]. Each of the four α_2 M subunits has a single β -cysteinyl- γ -glutamyl thiol ester bond [8,9]. Aminolysis of the thiol esters with small primary amines causes a conformational change in α_2 M which is very similar, or equivalent, to that caused by proteinases [5,6]. The mobility of α_2 M in non-denaturing PAGE systems is increased after conformational change [4]. This 'slow-form' to 'fast-form' mobility transition has become a commonly used indicator of α_2 M conformation.

After reaction with proteinase or amine, $\alpha_2 M$ is recognized by the cellular receptor, $\alpha_2 M$ receptor/low-density-lipoproteinreceptor-related protein ($\alpha_2 M$ -R/LRP) [10,11]. Cellular binding via $\alpha_2 M$ -R/LRP is followed by ligand endocytosis. This process is responsible for the rapid clearance of $\alpha_2 M$ -proteinase complexes and $\alpha_2 M$ -methylamine from the circulation [12]. $\alpha_2 M$ -R/LRP is expressed by a number of cell types including hepatocytes, macrophages, fibroblasts and neurons [12–14]. The native or unreacted conformation of $\alpha_3 M$ (slow-form) demon α_2 M-methylamine. The ¹²⁵I-PDGF-BB distributed evenly between slow-form and fast-form α_{0} M without shifting the electrophoretic mobility of either species. When the mixed preparation was injected intravenously in mice, ¹²⁵I-PDGF-BB-fast-form- α_2 M cleared rapidly and selectively from the circulation; ¹²⁵I-PDGF-BB which was bound to slow-form $\alpha_2 M$ was stable in the blood (apparently not recognized by $\alpha_2 M \cdot R / LRP$). Therefore, while conformationally transformed $\alpha_2 M$ binds PDGF-BB preferentially in vitro, non- α_2 M-R/LRP-recognized α_2 M binds PDGF-BB as well. Binding of ¹²⁵I-PDGF-BB and ¹²⁵I-TGF-β1 to $\alpha_2 M$ was demonstrated in vivo by injecting the free growth factors intravenously into mice. Plasma samples which were subjected to non-denaturing PAGE and autoradiography demonstrated binding of both growth factors exclusively to the slowform of $\alpha_{0}M$. Therefore, under normal physiological conditions, native $\alpha_2 M$ (non- $\alpha_2 M$ -R/LRP-recognized) is the primary form of the proteinase inhibitor functioning as a carrier of PDGF-BB and TGF- β 1 in the blood.

strates no affinity for α_2 M-R/LRP [12]. Receptor recognition of transformed α_2 M reflects the exposure or orientation of receptorbinding domains located near the C-terminus of each α_2 M subunit [15,16].

 α_2 M is found in the plasma at high concentrations (2–3 mg/ml) and in the extracellular spaces; however, an essential role for α_2 M as a regulator of proteinases has not been defined [17]. By mechanisms which are distinct from proteinase trapping, α_2 M binds a number of growth factors and cytokines [17], including transforming growth factor- β 1 (TGF- β 1) [18–23], plateletderived growth factor (PDGF) [24–27], interleukin-1 β (IL-1 β) [28–31], basic fibroblast growth factor (bFGF) [32], and tumour necrosis factor- α (TNF- α) [33,34]. In cell-culture systems, α_2 M may inhibit [21] or promote cytokine activity [26]. In addition, cytokines that are bound to conformationally transformed α_2 M may be targeted to cells expressing α_2 M/LRP; this process results in the rapid clearance of fast-form- α_2 M-TGF- β 1 and fast-form- α_2 M-TNF- α complexes from the circulation [20,23,33].

Conformational change of $\alpha_2 M$ may be critical for the appropriate expression of cytokine regulatory activity [17,21]. Conformational change not only provides the signal for receptor targeting, but also increases the affinity of $\alpha_2 M$ for many cytokines. In experiments with TGF- β 1, the affinity is increased by at least an order of magnitude [22]. Apparently weak binding

Abbreviations used: $\alpha_2 M$, α_2 -macroglobulin; TGF- β 1, transforming growth factor- β 1; PDGF, platelet-derived growth factor; $\alpha_2 M$ -R/LRP, α_2 -macroglobulin receptor/low-density-lipoprotein-receptor-related protein; IL-1 β , interleukin 1 β ; bFGF, basic fibroblast growth factor; TNF- α , tumour necrosis factor- α ; DTNB, 5,5'-dithiobis(2-nitrobenzoic acid); PNPGB, *p*-nitrophenyl *p*'-guanidinobenzoate hydrochloride; DTT, 1,4-dithiothreitol; BS³, bis(sulphosuccinimidyl) suberate; DSS, disuccinimidyl suberate; $\alpha_2 M$ -methylamine-c, carboxamidomethylated $\alpha_2 M$ -methylamine; *r*, molar ratio of active trypsin to $\alpha_2 M$.

[‡] To whom correspondence should be addressed.

of TGF- β 1 to native $\alpha_2 M$ is also observed by non-denaturing PAGE and gel-filtration chromatography [20–23]; however, this result must be interpreted with caution for the following reasons: (1) All of the techniques used to examine TGF- β 1 binding to $\alpha_2 M$ typically include a large molar excess of $\alpha_2 M$. It is almost impossible to exclude trace levels of conformationally transformed $\alpha_2 M$ from these preparations, especially when certain commercially available $\alpha_2 M$ preparations are used. (2) Conformational change of $\alpha_2 M$ is not a simple one-step process. Conformational intermediates have been characterized by electron microscopy, electrophoresis and spectroscopic techniques [35–38]. These intermediates may not always be resolved from native $\alpha_2 M$ by non-denaturing PAGE.

In addition to TGF- β 1, preferential or exclusive binding to conformationally transformed $\alpha_2 M$ (fast-form) has been demonstrated with TNF- α [33,34], IL-1 β [28–31], and bFGF [30,32]. PDGF may provide an exception to this rule. Bonner et al. [27] reported comparable binding of PDGF (AA, BB, AB isoforms) to native $\alpha_2 M$ and $\alpha_2 M$ -methylamine; however, the experimental procedures used in this study (non-denaturing PAGE, chromatography, incubations with large molar excesses of $\alpha_{0}M$) were similar to those used by our laboratory with TGF- β 1, and therefore subject to the same limitations (listed above). The possibility of significant cytokine binding to native $\alpha_{n}M$ is very important since PDGF, like TGF- β 1, is associated with α_2 M in the plasma [18,19,24,25]. The conformation of $\alpha_2 M$ should determine whether PDGF (or TGF- β 1) persists in the plasma or is rapidly cleared from the circulation. In addition, due to the function of α_2 M-R/LRP, the concentration of native α_2 M (slowform) greatly exceeds the concentration of $\alpha_{2}M$ (fast-form) in the blood and probably in extravascular spaces. Finally, if native α_2 M is a carrier of certain cytokines, such as PDGF, while the fast-form binds others, such as TGF- β 1 and IL-1 β , then the α_2 M conformational change might be associated with cytokine uptake and release. Hypothetically, this shift could alter the cytokine milieu to which cells are exposed.

In the present investigation, we used a highly purified preparation of human $\alpha_2 M$ to demonstrate that PDGF-BB binds preferentially to fast-form $\alpha_2 M$ in vitro. Limited binding of PDGF-BB to native $\alpha_2 M$ was also observed; however, the significance of this interaction was unclear due to the possible presence of trace levels of fast-form $\alpha_2 M$ or conformational intermediates in our preparation. In order to determine whether cytokine binding to native $\alpha_2 M$ is significant, it was necessary to redefine 'native $\alpha_{2}M$ ' based on properties other than electrophoretic mobility alone. We defined native $\alpha_2 M$ as the form (or forms) of the proteinase inhibitor that is not recognized by α_2 M-R/LRP. This parameter was not only easily measured but also physiologically significant. Based on this new definition, we demonstrated that native $\alpha_2 M$ binds PDGF-BB in vitro and that native $\alpha_2 M$ is the primary form of the proteinase inhibitor responsible for carrying both PDGF-BB and TGF- β 1 in the blood.

MATERIALS AND METHODS

Reagents

5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB), *p*-nitrophenyl *p*'guanidinobenzoate hydrochloride (PNPGB), 1,4-dithiothreitol (DTT), methylamine hydrochloride, chloramine-T, iodoacetamide, trypsin and BSA were purchased from Sigma Chemical Co. (St. Louis, MO, U.S.A.). Bis(sulphosuccinimidyl) suberate (BS³) and disuccinimidyl suberate (DSS) were purchased from Pierce (Rockford, IL, U.S.A.). Na¹²⁵I was purchased from Amersham (Arlington Heights, IL, U.S.A.).

α_2 M and derivatives

 $\alpha_{s}M$ was purified from human plasma by the method of Imber and Pizzo [39]. The concentration of $\alpha_2 M$ was determined by absorbance at 280 nm, using an $A_{1.0 \text{ cm}}^{1.0\%}$ of 8.93 [3]. α_2 M-methylamine was prepared by dialysing α_2 M against 200 mM methylamine hydrochloride in 50 mM Tris/HCl (pH 8.2) for 12 h at 22 °C and then extensively against 20 mM sodium phosphate/150 mM NaCl, pH 7.4 (PBS) at 4 °C. Reaction of native $\alpha_2 M$ with methylamine was confirmed by native PAGE (slow to fast transformation) and by loss of trypsin-binding activity (greater than 95%), as determined by the method of Ganrot [40]. Carboxamidomethylated α_{2} M-methylamine $(\alpha_2 M$ -methylamine-c) was prepared by incubating $\alpha_2 M$ methylamine (6-8 μ M) with 2.0 mM iodoacetamide for 1 h at 22 °C. α_2 M-methylamine-c was dialysed into PBS to remove unreacted iodoacetamide. The thiol-group content was reduced from 3.5 mol/mol for α_2 M-methylamine to less than 0.05 mol/mol for α_2 M-methylamine-c, as determined by titration with DTNB.

Trypsin was active-site titrated with PNPGB by the method of Chase and Shaw [41]. α_2 M-trypsin complexes were prepared by incubating 1.7 μ M native α_2 M with different molar ratios (r) of active trypsin, as described previously [7,21]. The trypsin was then inactivated with PNPGB before incubation with growth factors. PNPGB does not affect the TGF- β 1-binding activity of α_2 M-trypsin complex [21].

Growth factors

Radio-iodinated recombinant human PDGF-BB was purchased from New England Nuclear (specific radioactivity approx. 29–53 μ Ci/ μ g). Pig TGF- β 1 (lyophilized without carrier proteins) was purchased from R&D Systems (Minneapolis, MN, U.S.A.). Human TGF- β 1 (identical in sequence to pig TGF- β 1) was purified from acidic/ethanol extracts of platelets [42]. TGF- β 1 was radio-iodinated by the chloramine-T method of Ruff and Rizzino [43]. The specific radioactivity was 100–200 μ Ci/ μ g. Human ¹²⁵I-TGF- β 1 prepared in this laboratory and pig ¹²⁵I-TGF- β 1 purchased commercially interact identically with α_2 M [21,22]. The final preparations of ¹²⁵I-TGF- β 1 and ¹²⁵I-PDGF-BB included 1.0 mg/ml and 10 mg/ml BSA respectively.

¹²⁵I-PDGF-BB binding to α_2 M as determined by f.p.l.c.

Native $\alpha_2 M$, $\alpha_2 M$ -methylamine, and $\alpha_2 M$ -methylamine-c (1.4 μM) were incubated with 3.4 nM ¹²⁵I-PDGF-BB for 2 h at 37 °C in PBS with 8 μM BSA. The reaction mixtures were then subjected to chromatography on a Superose-6 column (Pharmacia) which had been equilibrated in PBS (0.4 ml/min). Binding of ¹²⁵I-PDGF-BB to $\alpha_2 M$ was determined by the level of radioactivity co-eluting with $\alpha_2 M$ (percentage of total radioactivity loaded) as described previously [20,21]. The minimum radioactivity co-eluting with the $\alpha_2 M$ -methylamine peak in each experiment was 50000 c.p.m.

SDS/PAGE of PDGF-BB-a,M complexes

¹²⁵I-PDGF-BB- α_2 M complex was purified by f.p.l.c. on a Superose-6 column and subjected to SDS/PAGE on 5% slabs using a Hepes-imidazole buffer system, pH 7.4 [21]. Before electrophoresis, samples were denatured in 2.0% (w/v) SDS with or without 25 mM DTT. ¹²⁵I-PDGF-BB was detected in the gels by autoradiography. The gels were sliced and the radioactivity in each section was determined in a γ -counter. In control experiments, ¹²⁵I-PDGF-BB was subjected to electrophoresis in

globulin

445

the absence of $\alpha_2 M$. Significant radioactivity was not detected in the region of the gel typically occupied by $\alpha_2 M$.

Growth factor- α_2 M cross-linking experiments

¹²⁵I-PDGF-BB (6 nM) and ¹²⁵I-TGF- β 1 (1 nM) were incubated individually with α_2 M or BSA for 2 h at 37 °C. BS³ or DSS was added to a final concentration of 5.0 mM and incubated for 1 h at 22 °C. Tris/HCl, pH 7.4 (0.3 M, final concentration) was added to stop the cross-linking reactions. The samples were then subjected to SDS/PAGE on 5% slabs (without reductant).

Non-denaturing PAGE

Chromatography fractions, murine plasma, and purified $\alpha_2 M$ that had been incubated with growth factors were studied by non-denaturing PAGE using the buffer system described by Van Leuven et al. [44]. Binding of ¹²⁵I-labelled growth factor to $\alpha_2 M$ was assessed by autoradiography and by counting the radio-activity in gel slices.

Plasma clearance studies

¹²⁵I-PDGF-BB (16 nM) was incubated with α_{2} M-methylamine (1.5–3.5 μ M) or with a combination of native α_2 M (4.3 μ M) and α_2 M-methylamine (0.47 μ M) for 2 h at 37 °C. ¹²⁵I-PDGF-BB-a₂M complex was resolved from unbound ¹²⁵I-PDGF-BB by chromatography on a Superose-6 column. Plasma clearance experiments were performed in 20-30 g female CD-1 mice (Charles River Breeding Laboratories, Inc., Wilmington, MA, U.S.A.). The method has been described in detail elsewhere [12,20]. Briefly, ¹²⁵I-PDGF-BB, ¹²⁵I-TGF-β1 or purified ¹²⁵I-PDGF-BB- α_{2} M complex was injected into the lateral tail veins of anaesthetized mice. At various times, blood samples $(30 \ \mu l)$ were drawn from the retro-orbital venous plexus using calibrated, heparinized microhaematocrit tubes. The radioactivity in each blood sample was determined and expressed as a percentage of that present 5-10 s after injection. Unless otherwise noted, each experiment was performed in triplicate. Competition experiments were performed either by diluting purified $^{125}\text{I-PDGF-BB-}\alpha_9\text{M}$ complex with a 20-fold molar excess of $\alpha_2 M$ -methylamine (relative to $\alpha_2 M$ present in radioligand preparation), or by first injecting excess α_2 M-methylamine, followed by a second injection (into the opposite tail vein) containing the radioligand.

Blood samples to be analysed by non-denaturing PAGE and autoradiography were collected into sodium citrate (0.38%, w/v) at 4 °C instead of heparin and subjected to centrifugation in order to prepare platelet-deficient plasma. The mobilities of ¹²⁵I-PDGF-BB- α_2 M complexes in the recovered plasma samples were calibrated using murine plasma which had been treated with methylamine *in vitro*. Slightly less than 50% of the methylamine-treated α_2 M in murine plasma was converted into the fast-form, as expected based on a previous investigation [45].

Organ-distribution experiments

Radioligands were injected intravenously and allowed to clear from the plasma for 30 min. The mice were then killed by cervical dislocation under heavy anaesthesia. The major body organs were removed, rinsed briefly in water, blotted to remove surface moisture and weighed. The radioactivity in each organ was determined and expressed as a fraction of the total recovered radioactivity. These results were then normalized for organ size by dividing the percentage of recovered radioactivity in each organ by organ mass. More than 50 % of injected radioactivity was recovered with the listed organs.

RESULTS

PDGF-BB binding to $\alpha_2 M$

PDGF-BB binding to $\alpha_{2}M$ was studied initially by f.p.l.c. ¹²⁵I-PDGF-BB (3.4 nM) was incubated with a 400-fold molar excess of $\alpha_{0}M$ for 2 h at 37 °C. Table 1 shows that $\alpha_{0}M$ -methylamine (fast-form) bound significantly more PDGF-BB than native α_2 M. Since non-covalent α_2 M-growth factor complexes may dissociate during chromatography, the results presented in Table 1 represent minimum estimates. Nevertheless, these results differ from those determined previously by Bonner et al. [27] using an equivalent chromatographic procedure. In the previous investigation, comparable binding of PDGF to commercially purchased native $\alpha_2 M$ and $\alpha_2 M$ -methylamine was demonstrated. In our experiments, $\alpha_2 M$ -methylamine and $\alpha_2 M$ -methylamine-c bound equivalent levels of PDGF-BB. These results suggest that modification of the cysteine residues generated by thiol ester aminolysis (the only free thiol groups in α_2 M-methylamine) does not significantly alter total PDGF-BB binding (covalent and noncovalent).

In order to determine whether binding of PDGF-BB to $\alpha_2 M$ methylamine had reached apparent equilibrium by 2 h, 3.4 nM ¹²⁵I-PDGF-BB was incubated with 0.7 μ M $\alpha_2 M$ methylamine at 37 °C for various periods of time. Binding was analysed by native PAGE. After incubation for 2 h, 24% of the ¹²⁵I-PDGF-BB was recovered in association with the $\alpha_2 M$ -methylamine. Further incubation, for up to 8 h, increased binding by no more than 3% (results not shown).

To determine whether PDGF-BB binds covalently to $\alpha_{a}M$, ¹²⁵I-PDGF-BB- $\alpha_2 M$ complexes were purified by chromatography on a Superose-6 column and immediately subjected to SDS/PAGE. Under non-reducing conditions, only $19\pm1\%$ (n = 5) of the ¹²⁵I-PDGF-BB migrated with the α_2 M-methylamine, suggesting that most of the PDGF-BB- α_2 M-methylamine complex was non-covalent in nature. After reduction with DTT, covalent binding was decreased to 3.0 % or less. Covalent binding of ¹²⁵I-PDGF-BB to α_2 M-methylamine-c was reduced by 75% compared with α_{2} M-methylamine (assessed under non-reducing conditions). These results indicate that disulphide bonds are responsible for the majority of covalent PDGF-BB- $\alpha_{9}M$ methylamine complexes. Since total binding of PDGF-BB to α_{2} M-methylamine-c was unchanged compared with α_{2} Mmethylamine, while covalent binding was decreased, covalent binding probably does not play an important role in stabilizing PDGF-BB- $\alpha_{o}M$ complexes during chromatography.

¹²⁵I-PDGF-BB– α_2 M–methylamine was purified by chromatography on a Superose-6 column and stored at 4 °C. Covalent binding was determined by SDS/PAGE after 6 weeks. Approx. 30% of the PDGF-BB was recovered in SDS-stable complexes with α_2 M–methylamine (50% greater than that observed when ¹²⁵I-PDGF-BB– α_2 M–methylamine was analysed immediately after recovery from chromatography). Greater than 70% of the

Table 1 Analysis of $^{125}\text{I-PDGF-BB}$ binding to α_2M by Superose 6 chromatography

$\alpha_2 M$ species	Percentage bound (mean \pm S.E.M.)		
Native $\alpha_2 M$	3.9±0.6		
α_{2} M—methylamine	18.0±3.2		
$\alpha_2 M$ —methylamine-c	19.4±2.3		

Figure 1 Comparison of $^{125}\text{I-PDGF-BB}$ and $^{125}\text{I-TGF-}\beta\text{1}$ binding to $\alpha,\text{M-methylamine}$

 $^{125}\text{I-PDGF-BB}$ (hatched bars) or $^{125}\text{I-TGF-}\beta1$ (solid bars) (3.4 nM) was incubated with the indicated concentrations of $\alpha_2\text{M}-$ methylamine. Binding was determined by non-denaturing PAGE.

Figure 2 Binding of ¹²⁵I-PDGF-BB and ¹²⁵I-TGF- β 1 to α ,M-trypsin

Native $\alpha_2 M (1.7 \ \mu M)$ was reacted with trypsin. The ratio of active trypsin to $\alpha_2 M$ is designated r. After inactivating the trypsin with PNPGB, samples were incubated with 13 nM ¹²⁵I-PDGF or 2 nM ¹²⁵I-TGF- β 1. Binding was determined by non-denaturing PAGE and autoradiography. $\alpha_2 M$ -methylamine (M) is shown for comparison.

covalent binding was dissociated by DTT, confirming the importance of disulphide bonds.

Comparison of PDGF-BB and TGF- β 1 binding to α_2 M

To compare binding of ¹²⁵I-TGF- β l and ¹²⁵I-PDGF-BB to α_2 M-methylamine, equivalent concentrations of each growth factor were incubated with the same α_2 M-methylamine preparation. Binding was determined by non-denaturing PAGE (Figure 1). Complex formation with both growth factors increased as the α_2 M-methylamine concentration was increased; however, TGF- β l binding always exceeded PDGF-BB binding.

 $\alpha_2 M (1.7 \,\mu M)$ was incubated with different concentrations of trypsin for 10 min at 22 °C. Under the specified conditions,

Figure 3 Cross-linking of $\alpha_2 M$ to ¹²⁵I-TGF- β 1 and ¹²⁵I-PDGF-BB

¹²⁵I-TGF- β 1 (1 nM) or ¹²⁵I-PDGF-BB (6 nm) was incubated with α_2 M or BSA. Some of the samples (c-f, i-l) were subsequently treated with 5 mM BS³. SDS/PAGE was then performed (no reduction). The concentration of α_2 M was 0.8 μ M. The incubations included: a, TGF- β 1 and 1.2 μ M BSA (no BS³); b, TGF- β 1, α_2 M-methylamine, and 1.2 μ M BSA (no BS³); c, TGF- β 1, α_2 M-methylamine and 1.2 μ M BSA (+BS³); d, TGF- β 1, native α_2 M and 1.2 μ M BSA (+BS³); e, TGF- β 1 and 10 μ M BSA (+BS³); f, TGF- β 1 and 1.2 μ M BSA (+BS³); g, PDGF-BB and 12 μ M BSA (no BS³); h, PDGF-BB, α_2 M-methylamine and 12 μ M BSA (no BS³); pDGF-BB, α_2 M-methylamine and 12 μ M BSA (no BS³); h, PDGF-BB, α_2 M-methylamine and 12 μ M BSA (mo BS³); h, PDGF-BB, α_2 M-methylamine and 12 μ M BSA (+BS³); f, TGF- β 1, native α_2 M and 12 μ M BSA (+BS³); h, PDGF-BB, α_2 M-methylamine and 12 μ M BSA (+BS³); h, PDGF-BB, α_2 M-methylamine and 12 μ M BSA (+BS³); h, PDGF-BB, α_2 M-methylamine and 12 μ M BSA (+BS³); h, PDGF-BB, α_2 M-methylamine and 12 μ M BSA (+BS³); h, PDGF-BB, α_2 M-methylamine and 12 μ M BSA (+BS³); h, PDGF-BB, α_2 M and 12 μ M BSA (+BS³); h, PDGF-BB and 21 μ M BSA (+BS³); h, PDGF-BB and 12 μ M BSA (+BS³). The molecular-mass markers shown to the left include the α_2 M tetramer (720 kDa), α_2 M dimer (360 kDa), BSA dimer (133 kDa), and BSA monomer (66 kDa).

complex formation between $\alpha_2 M$ and trypsin is quantitative when the ratio of active trypsin to $\alpha_2 M(r)$ is less than two [7]. The trypsin distributes into the two proteinase-binding sites in each $\alpha_2 M$ module, without evidence of co-operativity. In a previous study [21], we demonstrated that TGF- β 1 binding to $\alpha_2 M$ is increased (relative to native $\alpha_2 M$) in binary $\alpha_2 M$ -trypsin complex (one mol of trypsin/mol of $\alpha_2 M$) and decreased in ternary $\alpha_2 M$ -trypsin complex (two mol of trypsin/mol of $\alpha_2 M$). This dependence of TGF- β 1-binding activity on r value is shown in Figure 2. When $\alpha_2 M$ was incubated with trypsin at r = 0.8, mostly binary $\alpha_2 M$ -trypsin formed [7] and TGF- β 1 binding was increased. At r = 3.0, only ternary $\alpha_2 M$ -trypsin was formed [7], and TGF- β 1 binding was decreased.

The binding of ¹²⁵I-PDGF-BB to α_2 M-trypsin demonstrated the equivalent dependence on r value. Increased PDGF-BB binding was observed (relative to the native α_2 M preparation) when r = 0.8; decreased binding was observed when r = 3.0. These studies demonstrate that α_2 M-proteinase complex binds increased levels of PDGF-BB compared with native α_2 M. The dependence of PDGF-BB binding on the r value and the greater

Figure 4 Plasma clearance of ¹²⁵I-PDGF-BB

Radioactivity remaining in the circulation after intravenous injection of free ¹²⁵I-PDGF-BB (\blacksquare), purified ¹²⁵I-PDGF-BB– α_2 M–methylamine complex (\bullet) or ¹²⁵I-PDGF-BB– α_2 M–methylamine complex and excess non-radiolabelled α_2 M–methylamine (\bigcirc). The error bars represent the S.E.M.

binding of PDGF-BB to α_2 M-methylamine compared with α_2 M-trypsin represent similarities with the α_2 M/TGF- β l interaction.

Since most of the ¹²⁵I-PDGF-BB- α_2 M-methylamine complex and ¹²⁵I-TGF- β I- α_{a} M-methylamine complex is non-covalent, a fraction of these complexes probably dissociates during chromatography or non-denaturing PAGE. We developed a system for analysing equilibrium binding of radio-iodinated cytokines to immobilized α_2 M-methylamine [22]; however, the specific radioactivity of ¹²⁵I-PDGF-BB and the extent of binding of ¹²⁵I-PDGF-BB to immobilized α_2 M-methylamine were insufficient for analysis in this system. As an alternative, BS³ and DSS were used to stabilize complexes of $\alpha_{2}M$ with ¹²⁵I-PDGF-BB or ¹²⁵I-TGF- β 1 covalently before SDS/PAGE. Figure 3 shows that BS³ did not cross-link ¹²⁵I-PDGF-BB or ¹²⁵I-TGF-β1 to BSA, even when the concentration of BSA was quite high (21 μ M and 10 μ M in incubations with PDGF-BB and TGF- β 1 respectively). Therefore, under the conditions used here, BS³ does not cross-link proteins which are present together in solution, but not associated. Substantial binding of ¹²⁵I-TGF- β 1 to α_2 Mmethylamine was observed. In four separate experiments with 0.8 μ M α_2 M-methylamine, 56-75% of the TGF- β 1 was covalently stabilized in complex with α_2 M-methylamine by BS³. Under equivalent conditions, ¹²⁵I-TGF- β 1 binding to native α_2 M ranged from 22-33 %. As expected, greatly decreased binding of TGF- β 1 to native α_2 M and α_2 M-methylamine was observed when the BS³ was omitted.

Complexes of ¹²⁵I-PDGF-BB and $\alpha_2 M$ were also stabilized by the cross-linking agents. The amount of recovered PDGF-BB- $\alpha_2 M$ -methylamine complex exceeded the level of PDGF-BB-native $\alpha_2 M$ complex (37% versus 24% with BS³ and 18% versus 10% with DSS). When the cross-linking agents were omitted, trace binding of PDGF-BB to $\alpha_2 M$ -methylamine was

Table 2 Organ-distribution studies

Normalized radioactivities were determined by dividing the radioactivity recovered in each organ (percentage of total recovered radioactivity) by the organ mass (g). Values represent the mean \pm S.E.M. (n = 3).

Organ	PDGF		PDGF– α_2 M–methylamine	
	Radioactivity recovered (%)	Normalized radioactivity (%/g)	Radioactivity recovered (%)	Normalized radioactivity (%/g)
Heart	0+0	1+0	0+1	1+0
Kidney	10 ± 1	18 ± 5	3 ± 1	5 ± 2
Liver	86±1	52 ± 6	95 <u>+</u> 1	63 ± 6
Lungs	1±0	2±0	0 ± 0	2 ± 0
Spleen	4±0	27 <u>+</u> 1	2 ± 0	16 ± 2

detected; binding to native $\alpha_2 M$ was below the detection limit. Stabilization of growth factor-native $\alpha_2 M$ complexes by crosslinking agents suggests that these complexes exist in solution; however, as with other techniques, the problem of $\alpha_2 M$ conformational heterogeneity cannot be fully resolved.

Plasma clearance of ¹²⁵I-PDGF-BB in mice

Intravenously injected ¹²⁵I-PDGF-BB cleared rapidly from the circulation of mice; however, clearance was not a simple first-order process (Figure 4). Almost 90 % of the ¹²⁵I-PDGF-BB was eliminated within 3 min. The rate of clearance then decreased and the level of intravascular radioligand stabilized at about 5 % within 10 min. A similar clearance pattern was observed previously with ¹²⁵I-TGF- β 1; however, the plateau level in the curve was about 15–20 % [20]. Table 2 shows that large amounts of the injected ¹²⁵I-PDGF-BB were recovered in the liver, spleen and kidneys.

Part of the plateau effect seen in the plasma clearance of free ¹²⁵I-PDGF-BB was explained by the presence of minor heterogeneity in the injected radioligand preparation. When ¹²⁵I-PDGF-BB was subjected to chromatography on a Superose-6 column in 13 separate experiments (with and without $\alpha_{2}M$), a small but constant percentage of the radioactivity eluted at a column volume typical of BSA. The protein in this peak was subjected to SDS/PAGE and autoradiography. The mobility of the autoradiography band was equivalent to that of BSA in the Coomassie-Blue-stained gel before and after reduction (results not shown). DTT did not significantly affect the recovery of radioactivity in the BSA band. Based on this analysis, we estimated that 2.08 ± 0.18 % of the ¹²⁵I-PDGF-BB preparation consisted of ¹²⁵I-BSA or covalent (non-reducible) ¹²⁵I-PDGF-BB-BSA complex. The presence of these contaminants was not unexpected because of the high concentration of BSA (0.15 mM) in the ¹²⁵I-PDGF-BB preparation.

¹²⁵I-PDGF-BB- α_2 M-methylamine was purified by chromatography on a Superose-6 column and immediately studied in plasma clearance experiments. The complex was eliminated from the circulation relatively quickly (Figure 4). The first 50% of the radioligand was cleared within 3 min; nearly 90% was eliminated in 10 min. In organ-distribution studies, almost all of the radioactivity was recovered in the liver, as would be expected for

Figure 5 Plasma clearance of a mixed preparation of purified ¹²⁵I-PDGF-BB- α_2 M complexes formed by incubating ¹²⁵I-PDGF-BB with native human α_3 M and α_3 M-methylamine

The mixed preparation is shown (\bigcirc) together with the reproduced clearance curve for purified ¹²⁵I-PDGF-BB- α_2 M-methylamine from Figure 4 for comparison (broken line). The insert is an autoradiograph showing plasma samples drawn at the indicated times (in min) and subjected to non-denaturing PAGE. Equal amounts of plasma were loaded in each lane of the gel. The migration of slow-form and fast-form human α_2 M (based on the Coomassie-Blue-stained gel) is shown for reference.

an α_2 M-R/LRP-mediated process [12]. When excess nonradiolabelled α_2 M-methylamine was co-injected with purified ¹²⁵I-PDGF-BB- α_2 M-methylamine in order to block the α_2 M-R/LRP pathways, the rate of radioligand clearance was significantly decreased. These studies indicate that PDGF-BB binding to the fast-form of α_2 M does not interfere with α_2 M-R/LRP binding. Similar results have been reported for complexes of fastform α_2 M with TGF- β 1 [20] and TNF- α [33]. In control experiments, the clearance of free ¹²⁵I-PDGF-BB was not significantly affected by excess α_2 M-methylamine (results not shown).

A plasma clearance model for identifying growth factor binding to native $\alpha_{z}M$

¹²⁵I-PDGF-BB was incubated simultaneously with 4.3 μ M native α_2 M (human) and 0.47 μ M α_2 M-methylamine. The PDGF-BB which was bound to α_2 M was purified by chromatography and studied by SDS/PAGE and autoradiography. As shown in the autoradiograph (inset, Figure 5), the ¹²⁵I-PDGF-BB distributed fairly evenly into two bands. These autoradiography bands superimposed precisely over the major bands of the slow-form and fast-form α_2 M in the Coomassie-blue-stained gel. The nearly even distribution of ¹²⁵I-PDGF-BB between slow-form and fast-form α_2 M was expected due to the excess of native α_2 M present during the incubation.

Since human and murine $\alpha_2 M$ are recognized comparably by murine $\alpha_2 M$ -R/LRP [45], the mixture of purified ¹²⁵I-PDGF-BB- $\alpha_2 M$ complexes was studied in plasma clearance experiments. Compared with pure ¹²⁵I-PDGF-BB- $\alpha_2 M$ -methylamine complex, the ¹²⁵I-PDGF-BB which was bound to the mixed $\alpha_2 M$ preparation cleared at a decreased rate (Figure 5). This result suggested that some of the ¹²⁵I-PDGF-BB bound to $\alpha_2 M$ which was not receptor-recognized. Plasma samples obtained at various times were subjected to non-denaturing PAGE and autoradiography. The ¹²⁵I-PDGF-BB which was bound to fast-form $\alpha_2 M$ cleared rapidly from the plasma. ¹²⁵I-PDGF-BB which was bound to slow-migrating $\alpha_2 M$ was not cleared. These studies

Figure 6 Binding of ¹²⁵I-PDGF-BB to murine α_2 M in vivo

Free ¹²⁵I-PDGF-BB was injected intravenously in mice. Blood drawn at the indicated times was processed to form plasma and subjected to non-denaturing PAGE and autoradiography. Equal amounts of radioactivity were loaded in each well. The lane labelled 'S' is the Coomassie-Bluestained control showing murine plasma treated with methylamine.

demonstrate that PDGF-BB binds to native $\alpha_2 M$, as defined by lack of receptor recognition and by electrophoretic mobility. PDGF-BB-native $\alpha_2 M$ complexes are not readily cleared from the plasma.

Binding of PDGF-BB to $\alpha_2 M$ in vivo

Since ¹²⁵I-PDGF-BB binds to native $\alpha_2 M$ in vitro without altering the mobility of the $\alpha_2 M$, experiments were designed to determine whether growth factor-native $\alpha_2 M$ complexes form in vivo. Free ¹²⁵I-PDGF-BB was injected intravenously and blood was sampled after different time periods. Equal amounts of radioactivity from each sample were subjected to non-denaturing PAGE and autoradiography. As shown in Figure 6, ¹²⁵I-PDGF-BB- $\alpha_2 M$ complex was observed within one min. It is possible that some of the ¹²⁵I-PDGF-BB- $\alpha_2 M$ complex detected at this early stage formed after the blood was drawn from the mice; however, the amount of ¹²⁵I-PDGF-BB- $\alpha_2 M$ complex recovered increased significantly as the clearance experiment progressed. This result can only be attributed to complex formation *in vivo*.

The ¹²⁵I-PDGF-BB which bound to $\alpha_2 M$ in vivo was entirely associated with native $\alpha_2 M$, demonstrating slow-form mobility. Radioactivity was also recovered in increasing amounts with time near the dye-front (the location of albumin in this PAGE system). This result probably reflects the presence of ¹²⁵I-BSA or ¹²⁵I-PDGF-BB-BSA complex in the ¹²⁵I-PDGF-BB preparation, as described above. These contaminants would be expected to comprise an increasingly large percentage of the total radio-

Figure 7 Binding of ¹²⁵I-TGF- β 1 to murine α_2 M in vivo

Free ¹²⁵I-TGF-*β*1 was injected intravenously in mice. Blood drawn at the indicated times was processed to form plasma and subjected to non-denaturing PAGE and autoradiography. Equal amounts of radioactivity were loaded in each well. The lane labelled 'S' is the Coomassie-Blue-stained control showing murine plasma treated with methylamine.

activity in the blood as the experiment progresses and the majority of the ¹²⁵I-PDGF-BB is cleared.

Binding of TGF- β 1 to α_2 M in vivo

¹²⁵I-TGF- β 1 binding to α_2 M was also studied within the context of a plasma clearance experiment. Free ¹²⁵I-TGF- β 1 was injected intravenously and allowed to clear from the circulation. Plasma samples were obtained at various times and analysed by nondenaturing PAGE and autoradiography. As shown in Figure 7, binding of TGF- β 1 to α_2 M was demonstrated *in vivo*. The TGF- β 1 associated exclusively with the slow-form of α_2 M. Therefore, while conformationally transformed α_2 M binds TGF- β 1 with increased affinity *in vitro*, the primary form of α_2 M responsible for PDGF-BB- and TGF- β 1-carrier activity in plasma is non- α_2 M-R/LRP-recognized, native, slow-form α_2 M.

DISCUSSION

Many of the original investigations implicating $\alpha_2 M$ as a major carrier of cytokines were based on analyses of human plasma. It was recognized that PDGF [24,25] and TGF- β 1 [18,19] associate with a high-molecular-mass plasma component which was identified as $\alpha_2 M$. Subsequent studies with purified proteins demonstrated that TGF- β 1-binding to $\alpha_2 M$ in vitro is highly dependent on $\alpha_2 M$ conformation. Analyses performed in our laboratory demonstrated that TGF- β 1 binds to the fast-form of $\alpha_2 M$ [20–22]. A similar conformation-dependency was demonstrated with bFGF [32], IL-1 β [28–31], and TNF- α [33,34]. While lower affinity or less efficient cytokine binding to native α_2 M has been observed, these results are difficult to interpret since, in most experiments, in order to detect binding, the concentration of α_2 M greatly exceeds the concentration of cytokine. When the α_2 M is present in great excess, low levels of contaminating fast-form or α_2 M conformational intermediates may incorrectly suggest cytokine binding to native α_2 M.

In this investigation, we show for the first time that PDGF-BB binds primarily to the transformed conformation of $\alpha_{2}M$. Occupancy of both proteinase-binding sites in $\alpha_2 M$ effectively precludes PDGF-BB binding, as has been demonstrated with TGF-β1 [21]. The extent of binding of ¹²⁵I-PDGF-BB to α_{0} M-methylamine reported here is about the same as that reported previously [27]. By contrast, our native $\alpha_2 M$, purified in the laboratory from fresh plasma, bound significantly less PDGF-BB. These studies demonstrate that the properties of the PDGF-BB/ α_{0} M interaction are similar to those of the TGF- $\beta 1/\alpha_{0}$ M interaction. Although the specific radioactivity of ¹²⁵I-PDGF-BB and the level of binding to α_{2} M-methylamine precluded the determination of an equilibrium dissociation constant, studies presented in Figure 1 suggest that the PDGF-BB/ α_2 Mmethylamine interaction may be weaker than the TGF- $\beta 1/\alpha_{\rm p}$ M-methylamine interaction studied previously ($K_{\rm p}$ 10-100 nM, [22]).

PDGF-BB which was bound to the receptor-recognized conformation of $\alpha_2 M$ ($\alpha_2 M$ -methylamine) was rapidly cleared from the plasma. The organ distribution data and the inhibition of clearance by excess $\alpha_2 M$ -methylamine strongly suggest that $\alpha_2 M$ -R/LRP is responsible for the hepatic uptake of ¹²⁵I-PDGF-BB- $\alpha_2 M$ -methylamine complex (excess $\alpha_2 M$ -methylamine did not affect the clearance of free PDGF-BB). Similar results have been demonstrated with TGF- $\beta I-\alpha_2 M$ -methylamine [20] and TNF- $\alpha-\alpha_2 M$ -methylamine complexes [30]. These studies demonstrate that the fate of a cytokine bound to $\alpha_2 M$ in the plasma will depend on the conformation of $\alpha_2 M$.

Since studies examining direct binding of cytokines to native $\alpha_2 M$ in vitro cannot be independently interpreted, we studied this interaction in experiments which incorporated in vitro and in vivo techniques. In the plasma clearance system, the ability of purified cytokine– $\alpha_2 M$ complexes to interact with $\alpha_2 M$ -R/LRP (and thereby clear from the circulation) provided an index of $\alpha_2 M$ conformation and an alternative to using mobility in non-denaturing PAGE alone. Defining 'native $\alpha_2 M$ ', based on interaction with $\alpha_2 M$ -R/LRP, is appropriate in experiments with cytokines, since receptor binding is an important factor that may determine how $\alpha_2 M$ affects cytokine function. In the plasma clearance system, we conclusively determined that PDGF-BB binds to native $\alpha_2 M$ in vitro when native $\alpha_2 M$ was defined by the lack of binding to $\alpha_2 M$ -R/LRP.

We then studied the interaction of cytokines with $\alpha_2 M$ in vivo. Based on the non-linear clearance profile of free TGF- β 1, we previously suggested that some TGF- β 1 may quickly bind to $\alpha_2 M$ after intravenous injection [20]. By subjecting plasma samples to non-denaturing PAGE and autoradiography, we demonstrated that both ¹²⁵I-TGF- β 1 and ¹²⁵I-PDGF-BB bind $\alpha_2 M$ in the circulation. Since the mobilities of the bound cytokines (when measured by autoradiography) were identical to the mobility of slow-form murine $\alpha_2 M$, we propose that native $\alpha_2 M$ (non- $\alpha_2 M$ -R/LRP-recognized) is the major carrier of TGF- β 1 and PDGF-BB in the blood. Philip and O'Connor-McCourt [23] drew the same conclusion for TGF- β 1 based on Western-blot analyses of plasma samples subjected to non-denaturing PAGE. In their studies, TGF- β 1 which was endogenous to plasma comigrated with slow-form $\alpha_2 M$.

The binding of cytokines to native $\alpha_2 M$ in vivo probably reflects interactions which are weak but favoured because of the very high concentration of native $\alpha_{2}M$. Hypothetically, any process which generates significant levels of intravascular proteinase may shift the balance so that PDGF-BB and TGF- β 1 bind to receptor-recognized $\alpha_2 M$. In patients with sepsis, α_{2} M-kallikrein complexes can be detected by immunological methods in the blood [46]. Other pathophysiological processes which might result in the formation of intravascular fast-form α_{2} M-cytokine complexes were reviewed recently by Borth [47]. The major question to be answered is whether $\alpha_{2}M$ -proteinase complexes can survive in the plasma long enough to alter intravascular levels of cytokines. Some $\alpha_2 M$ -proteinase complexes such as α_{0} M-thrombin clear at a decreased rate compared with α_2 M-methylamine and α_2 M-trypsin [38], but still bind increased levels of TGF- β 1 compared with native $\alpha_{2}M$ [48]. These complexes would be expected to compete most favourably with native $\alpha_{0}M$ for cytokine binding in the blood. Finally, the ratio of native $\alpha_{n}M$ to $\alpha_{n}M$ -proteinase complexes may be quite different in extravascular spaces compared with the blood. Therefore, the predominant conformation of $\alpha_0 M$ responsible for cytokine binding and the result of this interaction on cytokine function may depend on the tissue compartment under consideration.

This work was supported by grant CA-53462 from the National Institutes of Health, U.S.A. K.P.C. is supported in part by the Medical Scientist Training Program (GM 07267). J.L. is a fellow of the Medical Research Council of Canada. S.L.G. is the recipient of Research Career Development Award HL-02272.

REFERENCES

- 1 Barrett, A. J. and Starkey, P. M. (1973) Biochem. J. 133, 709-724
- 2 Swenson, R. P. and Howard, J. B. (1979) J. Biol. Chem. 254, 4452-4456
- 3 Hall, D. K. and Roberts, R. C. (1978) Biochem. J. 173, 27-38
- 4 Barrett, A. J., Brown, M. A. and Sayers, C: A. (1979) Biochem. J. 181, 401-418
- 5 Gonias, S. L., Reynolds, J. A. and Pizzo, S. V. (1982) Biochim. Biophys. Acta 705, 306–314
- 6 Bjork, I. and Fish, W. W. (1982) Biochem. J. 207, 347-356
- 7 Gonias, S. L. and Pizzo, S. V. (1983) J. Biol. Chem. 258, 14682-14685
- 8 Sottrup-Jensen, L., Petersen, T. E. and Magnusson, S. (1980) FEBS Lett. 121, 275–279
- 9 Howard, J. B. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2235-2239
- 10 Moestrup, S. K. and Gliemann, J. (1989) J. Biol. Chem. 264, 15574-15577
- 11 Strickland, D. K., Ashcom, J. D., Williams, S., Burgess, W. H., Migliorini, M. and Argraves, W. S. (1990) J. Biol. Chem. 265, 17401–17404
- 12 Pizzo, S. V. and Gonias, S. L. (1984) in The Receptors (Conn, P. M., ed.), vol. 1, pp. 178–221, Academic Press, Orlando, FL, U.S.A.
- 13 Moestrup, S. K., Gliemann, J. and Pallesen, G. (1992) Cell Tissue Res. 269, 375–382
- 14 Wolf, B. B., Lopes, M. B. S., VandenBerg, S. R. and Gonias, S. L. (1992) Am. J. Pathol. 141, 37–42

Received 25 November 1992/20 January 1993; accepted 4 February 1993

- 15 Sottrup-Jensen, L., Gliemann, J. and Van Leuven, F. (1986) FEBS Lett. 205, 20-24
- 16 Van Leuven, F., Marynen, P., Sottrup-Jensen, L., Cassiman, J.-J. and Van den Berghe, H. (1986) J. Biol. Chem. 261, 11369–11373
- 17 Gonias, S. L. (1992) Exp. Hematol. **20**, 302–311
- 18 O'Connor-McCourt, M. D. and Wakefield, L. M. (1987) J. Biol. Chem. 262,
- 14090–14099
- Huang, S. S., O'Grady, P. and Huang, J. S. (1988) J. Biol. Chem. 263, 1535–1541
 LaMarre, J., Hayes, M. A., Wollenberg, G. K., Hussaini, I., Hall, S. W. and Gonias,
- S. L. (1991) J. Clin. Invest. 87, 39–44
 Hall, S. W., LaMarre, J., Marshall, L. B., Hayes, M. A. and Gonias, S. L. (1992) Biochem. J. 281, 569–575
- 22 Webb, D. J., Crookston, K. P., Hall, S. W. and Gonias, S. L. (1992) Arch. Biochem. Biophys. 292, 487–492
- 23 Philip, A. and O'Connor-McCourt, M. D. (1991) J. Biol. Chem. 266, 22290-22296
- 24 Huang, J. S., Huang, S. S. and Deuel, T. F. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 342–346
- 25 Raines, E. W., Bowen-Pope, D. F. and Ross, R. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3424–3428
- 26 Bonner, J. C., Badgett, A., Osornio-Vargas, A. R., Hoffman, M. and Brody, A. R. (1990) J. Cell. Physiol. 145, 1–8
- 27 Bonner, J. C., Goodell, A. L., Lasky, J. A. and Hoffman, M. R. (1992) J. Biol. Chem. 267, 12837–12844
- 28 Borth, W. and Luger, T. A. (1989) J. Biol. Chem. 264, 5818-5825
- 29 Borth, W., Urbanski, A., Prohaska, R., Susani, M. and Luger, T. A. (1990) Blood 75, 2388–2395
- 30 Borth, W., Scheer, B., Urbansky, A., Luger, T. A. and Sottrup-Jensen, L. (1990) J. Immunol. **145**, 3747–3754
- 31 Teodorescu, M., McCafee, M., Skosey, J. L., Wallman, J., Shaw, A. and Hanly, W. C. (1991) Mol. Immunol. 28, 323–331
- 32 Dennis, P. A., Saksela, O., Harpel, P. and Rifkin, D. B. (1989) J. Biol. Chem. 264, 7210–7216
- 33 Wollenberg, G. K., LaMarre, J., Gonias, S. L. and Hayes, M. A. (1991) Am. J. Pathol. 138, 265–272
- 34 James, K., van den Haan, J., Lens, S. and Farmer, K. (1992) Immunol. Lett. 34, 49–58
- 35 Marshall, L. B., Figler, N. L. and Gonias, S. L. (1992) J. Biol. Chem. 267, 6347–6352
- 36 Steiner, J. P., Bhattacharya, P. and Strickland, D. K. (1985) Biochemistry 24, 2993–3001
- 37 Strickland, D. K., Steiner, J. P., Miliorini, M. and Battey, F. D. (1988) Biochemistry 27, 1458–1466
- 38 Roche, P. A. and Pizzo, S. V. (1988) Arch. Biochem. Biophys. 267, 285-293
- 39 Imber, M. J. and Pizzo, S. V. (1981) J. Biol. Chem. 256, 8134-8139
- 40 Ganrot, P. O. (1967) Clin. Chim. Acta 16, 328-330
- 41 Chase, T. and Shaw, E. (1967) Biochem. Biophys. Res. Commun. 29, 508-514
- 42 Assoian, R. K. (1987) Methods Enzymol. 146, 153-163
- 43 Ruff, E. and Rizzino, A. (1986) Biochem. Biophys. Res. Commun. 138, 714-719
- 44 Van Leuven, F., Cassiman, J.-J. and Van den Berghe, H. (1981) J. Biol. Chem. 256, 9016–9022
- 45 Gonias, S. L., Balber, A. E., Hubbard, W. J. and Pizzo, S. V. (1983) Biochem. J. 209, 99–105
- 46 Kaufman, N., Page, J. D., Pixley, R. A., Schein, R., Schmaier, A. H. and Colman, R. W. (1991) Blood **77**, 2660–2667
- 47 Borth, W. (1992) FASEB J. 6, 3345-3353
- 48 Webb, D. J., LaMarre, J. and Gonias, S. L. (1992) Semin. Thromb. Hemostasis 18, 305–310