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Abstract
Aims/hypotheses  Glucagon and glucagon-like peptide-1 (GLP-1) are derived from the same precursor; proglucagon, 
and dual agonists of their receptors are currently being explored for the treatment of obesity and metabolic dysfunction-
associated steatotic liver disease (MASLD). Elevated levels of endogenous glucagon (hyperglucagonaemia) have been 
linked with hyperglycaemia in individuals with type 2 diabetes but are also observed in individuals with obesity and 
MASLD. GLP-1 levels have been reported to be largely unaffected or even reduced in similar conditions. We investigated 
potential determinants of plasma proglucagon and associations of glucagon receptor signalling with metabolic diseases 
based on data from the UK Biobank.
Methods  We used exome sequencing data from the UK Biobank for ~410,000 white participants to identify glucagon recep-
tor variants and grouped them based on their known or predicted signalling. Data on plasma levels of proglucagon estimated 
using Olink technology were available for a subset of the cohort (~40,000). We determined associations of glucagon receptor 
variants and proglucagon with BMI, type 2 diabetes and liver fat (quantified by liver MRI) and performed survival analyses to 
investigate if elevated proglucagon predicts type 2 diabetes development.
Results  Obesity, MASLD and type 2 diabetes were associated with elevated plasma levels of proglucagon independently of 
each other. Baseline proglucagon levels were associated with the risk of type 2 diabetes development over a 14 year follow-
up period (HR 1.13; 95% CI 1.09, 1.17; n=1562; p=1.3×10−12). This association was of the same magnitude across strata 
of BMI. Carriers of glucagon receptor variants with reduced cAMP signalling had elevated levels of proglucagon (β 0.847; 
95% CI 0.04, 1.66; n=17; p=0.04), and carriers of variants with a predicted frameshift mutation had higher levels of liver 
fat compared with the wild-type reference group (β 0.504; 95% CI 0.03, 0.98; n=11; p=0.04).
Conclusions/interpretation  Our findings support the suggestion that glucagon receptor signalling is involved in MASLD, 
that plasma levels of proglucagon are linked to the risk of type 2 diabetes development, and that proglucagon levels are 
influenced by genetic variation in the glucagon receptor, obesity, type 2 diabetes and MASLD. Determining the molecular 
signalling pathways downstream of glucagon receptor activation may guide the development of biased GLP-1/glucagon co-
agonist with improved metabolic benefits.
Data availability  All coding is available through https://​github.​com/​nicwi​n98/​UK-​Bioba​nk-​GCG
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Introduction

The proglucagon gene (GCG​) encodes several circulating 
peptides/hormones including glucagon, glucagon-like pep-
tide-1 (GLP-1), glucagon-like peptide 2, glicentin, oxynto-
modulin, and major proglucagon fragment (MPGF). Gluca-
gon and GLP-1 impact on glucose control, food intake, and 
hepatic protein and lipid metabolism [1], and co-agonists of 
these two hormones are being tested in clinical trials for the 
treatment of obesity and metabolic dysfunction-associated 
steatotic liver disease (MASLD) [2, 3]. Glucagon binds to 
and acts via the glucagon receptor, belonging to class B1 
of the superfamily of G protein-coupled receptors, signal-
ling through Gαs (stimulating the adenylate cyclase/cAMP/
protein kinase A pathway) and Gαq (signalling through the 
phospholipase C [PLC]/inositol phosphate [IP3]/calcium/
calmodulin pathway). Like other class B1 receptors, the 
glucagon receptor recruits β-arrestin, which sterically alters 
the binding between the receptor and the G protein and reg-
ulates internalisation [4]. The molecular pharmacological 
phenotypes of 38 missense variants of the glucagon recep-
tor were recently described at the level of cAMP signalling 
and β-arrestin recruitment [5], whereas similar systematic 
investigations at the level of the PLC/IP3 pathway are still 
lacking.

Increased plasma levels of glucagon (hyperglucagonaemia) 
are associated with fasting hyperglycaemia in people with type 
2 diabetes but are also observed in individuals with obesity and/
or MASLD [6–8]. An important gap in the understanding of 
the pathophysiological role of glucagon in metabolic diseases 
lies in elucidating whether increased plasma levels of glucagon 
result from: (1) obesity, (2) MASLD, (3) type 2 diabetes, or 
(4) a combination of these. A key question in this context is 
whether hyperglucagonaemia is merely an epiphenomenon of 
dysmetabolic conditions or a direct contributor to the develop-
ment of type 2 diabetes. Elucidation of this has been challenged 
due to lack of sufficient matching of body weight, age, sex, 
MASLD status and kidney function, in particular because of 
limited sample size across reported clinical studies.

To determine the role of glucagon and glucagon-related 
peptides in type 2 diabetes, and whether hyperproglucagonae-
mia exists independently of obesity, MASLD and type 2 dia-
betes, we analysed data from the UK Biobank including data 
from nearly 500,000 individuals. The dataset included plasma 
proglucagon data for ~40,000 individuals, ~15 years follow-
up data on incident type 2 diabetes development, amino acid 
quantification for ~230,000 individuals, liver fat quantification 
for ~35,000 individuals, and exome sequencing, allowing inves-
tigations of the potential impact of glucagon receptor variants 
on clinical features.
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Materials and methods

The UK Biobank  The UK Biobank is a large prospective 
research resource including half a million participants aged 
40 to 69 at the time of inclusion from the UK. The biobank 
encompasses genetic, lifestyle and health data derived from 
various sources such as questionnaires, physical assess-
ments, biological specimens, imaging and the continual 
monitoring of health-related outcomes, as described in 
detail previously [9]. Participants who withdrew from the 
biobank were excluded from all analyses (n=179, updated 
14 November 2023). We excluded individuals who were not 
categorised as white and individuals with sex chromosome 
aneuploidy. A list of field names used in the study is avail-
able in electronic supplementary material (ESM) Table 1.

Proteomics data processing  Proteomics data for 1464 pro-
teins and 54,219 individuals were generated by Olink (Upp-
sala, Sweden) using the Olink Explore 1536 PEA (prox-
imity extension assay). The proteomics measurements are 
available as Normalised Protein eXpression (NPX) units 
(an arbitrary and normalised unit on a log2 scale). The data 
was accessed through the DNAnexus platform (DNAnexus, 
Mountain View, CA, USA) and processed locally. Process-
ing of the raw data and normalisation has been described 
elsewhere [10, 11]. Overall, there was 2.9% missing data 
(4.5% missing data for proglucagon). In preliminary analy-
ses, we found no association between the proportion of miss-
ing data and sex or having a glucagon receptor variant com-
pared with the wild-type (see Methods: Exome sequencing 
analysis and variant annotation). We filtered out individuals 
and proteins with >10% missing data (4 proteins and 3298 
individuals were excluded). On the basis of the assumption 
that missing values are missing because they are below the 
limit of detection, we used the MinProb method (ImputeL-
CMD package for R, v. 2.0; R Foundation, Vienna, Austria) 
to impute the remaining 1.1% missing data (1.7% missing 
data for glucagon). This approach aims to preserve the over-
all structure of the dataset by conservatively estimating the 
missing values; however, imputation may lead to a loss of 
information, particularly in terms of variability. The result-
ing proteomics sub-cohort consisted of 40,164 individuals, 
and differential expression analysis was conducted on 1460 
proteins to uncover plasma proteins potentially regulated by 
glucagon receptor signalling. In a prospective analysis the 
association between concentrations of proglucagon and the 
risk of incident diabetes was evaluated.

Exome sequencing analysis and variant annotation  We ana-
lysed the whole-exome sequencing data of 469,914 indi-
viduals from the UK Biobank [9]. The UK Biobank whole-
exome sequencing data was reference-aligned with the 

Original Quality Functional Equivalent protocol previously 
described [12]. This protocol uses Burrows–Wheeler Align-
ment Maximal Exact Matches (BWA-MEM) [13] to map all 
the reads to the human reference genome GRCh38 [14]. Var-
iant calling was performed using DeepVariant (v.1.5.0) [15]. 
We filtered the genomic Variant Call Format (gVCF) files for 
each sample, restricted to the location of the glucagon recep-
tor at chr17: 81,804,150 to 81,814,008 forward strand. The 
analyses were conducted on the Research Analysis Platform 
(https://​ukbio​bank.​dnane​xus.​com, accessed August 2023). A 
computing instance equipped with 36 CPU threads was cho-
sen to run 36 bcftools (Swiss army knife v.4.9.1; DNAnexus, 
Mountain View, CA, USA) parallel jobs and automatically 
launch new jobs when the previous jobs had finished. The 
output csv files were subsequently merged using Python. 
The scripts used to filter the gVCF files from UK Biobank 
and merge the output csv files are available at https://​github.​
com/​nicwi​n98/​UK-​Bioba​nk-​GCG.

We filtered for genotype quality (GQ) <20, depth (DP) 
<10, and allele balance (AB, for the minor allele) <0.2. 
The genetic variants were annotated for their sequence 
effect with opencravat.org (accessed August 2023) [16]. 
We created a variant group ‘Frameshift’ for predicted loss-
of-function (LoF) alleles. This group included the sequence 
ontologies frameshift elongation, frameshift truncation, in-
frame deletion, in-frame insertion, start lost, and stop gained 
(see ESM Table 2). Missense variants were denoted as the 
reference amino acid (1 letter code), the amino acid position, 
followed by the alternative amino acid. Missense variants 
were subsequently categorised as G40S heterozygotes and 
G40S homozygotes (pooled in the proteomics sub-cohort), 
or as ‘cAMP LoF’ based on a previous study reporting the 
molecular phenotype of 38 missense variants [5].

Incident type 2 diabetes and survival analyses  We defined 
type 2 diabetes based on hospital diagnoses encoded as 
E11 or E14 in the ICD-10 classification system (https://​icd.​
who.​int/​brows​e10/​2019/​en). We excluded individuals with 
a diagnosis of type 1 diabetes (E10). Prevalent cases were 
defined as: (1) probable and possible type 2 diabetes based 
on the Eastwood algorithm [17], (2) with a baseline HbA1c 
greater than 48 mmol/mol (6.5%) (a recommended cutoff 
point for diagnosing type 2 diabetes), or (3) a diagnosis 
before or within 6 months after the enrolment visit. A list of 
fields used for the definition of diseases is available in ESM 
Table 3. After exclusion of 1833 prevalent cases, a total of 
1562 developed incident type 2 diabetes during follow-up 
(median follow-up time: 14.75 years).

Risk time (in months) was defined from date of baseline 
examination (between 2006 and 2010) where the blood sam-
ple for proteomics analysis was obtained, to date of type 2 
diabetes diagnosis, death, end of follow-up (defined as the last 

https://ukbiobank.dnanexus.com
https://github.com/nicwin98/UK-Biobank-GCG
https://github.com/nicwin98/UK-Biobank-GCG
https://icd.who.int/browse10/2019/en
https://icd.who.int/browse10/2019/en
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updated version of the hospital register [3 October 2021]), or 
loss to follow-up, whichever occurred first. Data on loss to fol-
low-up was last updated in May 2017, and censored individu-
als were included in the analysis up to the point of censoring.

For the Kaplan–Meier survival analysis, the cohort was 
stratified into tertiles based on their plasma proglucagon 
levels at the baseline visit. Pairwise comparison using the 
Logrank test with Bonferroni correction for multiple test-
ing was used to compare survival curves between the three 
subgroups. Using Cox proportional hazard regression with 
adjustment for age and sex, we explored BMI (continuously) 
as a potential intermediate. However, due to lacking model 
fit, our final analysis instead stratified on BMI categories 
(BMI <25 kg/m2; 25 kg/m2 ≤ BMI <30 kg/m2; BMI ≥30 
kg/m2) and addressed whether the association between pro-
glucagon and incident type 2 diabetes differed across BMI 
categories. Proportional hazards and linearity assumptions 
for all covariates were assessed with Schoenfeld and Martin-
gale residual plots, respectively. Survival analyses were done 
using the Survival package for R (v3.5-4) [18].

Statistical methods  For association analyses, we used the 
following variables: age when attending the assessment 
centre; sex; BMI; baseline type 2 diabetes (defined as prob-
able and possible type 2 diabetes based on the Eastwood 
algorithm) [17]; liver fat (quantified by MRI–proton den-
sity fat-fraction [PDFF]) at the second repeat visit) [19]; 
weekly alcohol consumption; glucose; HbA1c; amino acids. 
BMI was used continuously or as a binary variable (non-
obese, BMI <25 kg/m2; obese, BMI ≥30 kg/m2). Liver fat 
was used as a continuous variable or a binary variable to 
define MASLD (non-MASLD, <5.5%; MASLD, ≥5.5%), 
with individuals having a weekly alcohol intake above 17.5 
units for women and 26.25 units for men being excluded in 
both cases. A list of type 2 diabetes medications tested for 
confounding is provided in ESM Table 4.

Differences in plasma levels of proglucagon by disease 
groups and respective control groups were assessed by 
unpaired t tests. For linear models, increments of independ-
ent variables were set to 5% for liver fat, 5 years for age, and 
5 mmol/l for serum creatinine. BMI, glucose, HbA1c and 
amino acids were normalised to the SD of each variable. 
Glucagon receptor variant groups were tested for association 
of binary traits with logistic regression with Firth correction.

Differential expression analysis of the wild-type refer-
ence group vs the glucagon receptor variant groups (i.e. 
frameshift, cAMP loss-of-function, and G40S) respectively, 
was conducted using Limma software (v.3.56.2) [20]. Pro-
tein NPX values from the Olink proteomics analysis were 
the outcome and variant group, age and sex were predictors. 
Multiple comparisons were adjusted using the Benjamini–
Hochberg method. R version 4.3.0 was used for all analyses.

Results

Plasma proglucagon is elevated in obesity, type 2 diabetes and 
MASLD and associates with increased risk of incident type 2 
diabetes  Plasma proglucagon was available as a part of the 
proteomics analysis in a sub-cohort that matched the UK 
Biobank cohort on age, sex, and recruitment centre [10]. BMI, 
type 2 diabetes prevalence, liver fat, and HbA1c were also sim-
ilar between the two cohorts (ESM Table 5). We investigated 
whether plasma proglucagon (available as NPX units [an arbi-
trary and normalised unit on a log2 scale]) was associated with 
BMI, type 2 diabetes and MASLD. Plasma proglucagon was 
increased in individuals with obesity (fold change [FC] 1.43, 
p=1×10−72) (Fig. 1a), type 2 diabetes (FC 2.36, p=3×10−75) 
(Fig. 1b) and MASLD (FC 1.23, p=1×10−6) (Fig. 1c).

We performed multiple linear regression models to assess 
the association between plasma proglucagon as independent 
variable and type 2 diabetes, BMI and liver fat as depend-
ent variables. Model 1 was adjusted for age, sex, fasting 
time and plasma creatinine. All variables associated with 
higher plasma proglucagon (Fig. 1d). To investigate whether 
these metabolic diseases were independently associated 
with higher proglucagon, we adjusted the linear models for 
each of the other variables. Plasma proglucagon remained 
positively associated with BMI (p=0.0004), type 2 diabetes 
(p=1.4×10−6) and liver fat (p=0.0027) (Fig. 1d), suggest-
ing that each of these metabolic disorders independently 
associate with elevations in plasma proglucagon. This was 
confirmed in an additional analysis with a tenfold increase 
in the sample size for type 2 diabetes and BMI specifically 
(Fig. 1e). Individuals with type 2 diabetes on metformin 
treatment had higher proglucagon levels, whereas insulin 
treatment lowered proglucagon to levels below the reference 
levels of individuals without diabetes (ESM Fig. 1).

To investigate if high plasma levels of proglucagon asso-
ciate with an increased risk of developing type 2 diabetes, 
we first performed a Kaplan–Meier survival analysis strati-
fied on tertiles of plasma proglucagon at baseline (Tertile 
1: mean proglucagon (NPX): −1.50, n=13,385; Tertile 2: 
mean proglucagon: −0.005, n=13,386; Tertile 3: mean pro-
glucagon: 1.62, n=13,385). The median follow-up time was 
14.75 years, and the number of incident type 2 diabetes cases 
included in the models was 1551 (893 men and 658 women). 
The risk of incident type 2 diabetes increased stepwise from 
low to medium levels (p=1.5×10−5) and from medium to 
high levels (p=2.4×10−5) (Fig. 2a). Second, we applied a 
Cox proportional hazard regression analysis to evaluate 
the impact of baseline proglucagon levels of incident type 
2 diabetes with adjustment for age and sex. Proglucagon 
was positively associated with the risk of type 2 diabetes 
development (HR 1.13; 95% CI 1.09, 1.17, p=1.3×10−12). 
We also stratified our model on BMI, and the association 
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between proglucagon and incident type 2 diabetes was of 
similar magnitude across BMI categories (Fig. 2b).

Association between plasma proglucagon and circulating 
metabolites  We tested the impact of selected confounders 

on plasma levels of proglucagon using linear models. Pro-
glucagon levels were higher in male than female partici-
pants and increased with age (Fig. 3a). Plasma creatinine 
served as a renal function estimate, as circulating products 
of proglucagon are cleared in the kidneys. Increased plasma 
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Fig. 1   Plasma proglucagon is elevated in obesity, type 2 diabe-
tes and MASLD. Plasma proglucagon in (a) lean individuals (BMI 
<25) and individuals with obesity (BMI ≥30), (b) individuals with 
and without type 2 diabetes, and (c) individuals with and without 
MASLD. The number of individuals in each group is shown. Data 
are shown as boxplots with quartiles and whiskers representing 1.5 
times the interquartile range. Data points beyond the whiskers are 
plotted individually. Data is analysed by unpaired t test: ***p<0.001. 
(d) Multiple linear regression analyses were performed with plasma 
proglucagon from Olink proteomics as the dependent variable and 
BMI, T2D and per cent liver fat (quantified by PDFF) as independent 

variables. Increments are given as SDs of BMI and a 5% increase for 
liver fat. Model 1 for each variable included adjustment for age, sex, 
fasting time and plasma creatinine. Additional co-factors in each of 
the remaining models are indicated in the figure. (e) Similar to (d) 
but with a tenfold increase in sample size. Multiple linear regression 
analyses with plasma proglucagon as the dependent variable and T2D 
and BMI as independent variables. Increments are given as SDs of 
BMI. Model 1 for each variable included adjustment for age, sex, 
fasting time and plasma creatinine. Additional co-factors in each of 
the remaining models are indicated in the figure. T2D, type 2 diabetes
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creatinine, suggestive of reduced renal clearance, was asso-
ciated with increased proglucagon (Fig. 3a).

Next, we used multiple linear regression to evaluate the 
association between plasma proglucagon and amino acids and 
glucose, adjusting for BMI and the confounders in Fig. 3a. 
Plasma proglucagon was positively associated with tyrosine, 
phenylalanine, alanine and histidine as well as the branched-
chain amino acids (BCAA) valine, leucine and isoleucine. 
Interestingly, glutamine and glycine were not associated with 
proglucagon levels (Fig. 3b). Plasma glucose and HbA1c were 
also positively associated with proglucagon levels (Fig. 3b).

Associations of proglucagon with type 2 diabetes and BMI 
may depend on genetic variation of the glucagon recep-
tor  To investigate the effect of genetic variation in the gluca-
gon receptor on the same metabolic outcomes as above, we 
identified individuals with genetic variants of the glucagon 
receptor from whole-exome sequencing data. We grouped 
the glucagon receptor variants the following way: (1) the 
SNP G40S, previously associated with non-insulin-depend-
ent diabetes, hypertension and adiposity [21–23], but nor-
mal cAMP signalling and reduced β-arrestin signalling [5], 
(2) the missense variants V368M, R378C, R225H, R308W 

and D63N were grouped as ‘cAMP LoF’ based on previous 
research [5], and (3) variants annotated as frameshift or stop-
codon gained were grouped as ‘Frameshift’ variants (ESM 
Table 2). Figure 4a–c outlines the number of individuals in 
each group in the UK Biobank cohort and the sub-cohort 
included in the proteomics analysis.

Although only 11 individuals heterozygous for a cAMP 
LoF variant were included, we observed an elevation in 
proglucagon compared with the wild-type reference group 
(β 0.85; 95% CI 0.04, 1.66; p=0.04) (Fig. 4d). G40S or 
frameshift variants were not associated with proglucagon 
levels, implying that cAMP rather than β-arrestin signalling 
may be involved in metabolic processes directly or indirectly 
regulating proglucagon levels.

In the frameshift variant group including 17 individuals, 
liver fat was increased compared with the wild-type refer-
ence group (β 0.49; 95% CI 0.03, 0.95; p=0.04) (Fig. 4e). 
None of the glucagon receptor variant groups were associ-
ated with BMI as a continuous or binary trait. We observed 
no difference in the prevalence of type 2 diabetes between 
individuals carrying G40S and the wild-type reference group 
(Fig. 4f). The sample size of type 2 diabetes was inadequate 
for cAMP LoF and Frameshift variant groups.
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Fig. 2   (a) Kaplan-Meiner survival curves for incident type 2 dia-
betes during the follow-up period, differentiated by tertiles of base-
line proglucagon levels. The shaded areas represent 95% CI. Tertile 
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glucagon (NPX) was the independent variable and age (5 year incre-
ment) and sex were included as covariates
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To test if the association between plasma proglucagon and 
type 2 diabetes and BMI, respectively, was dependent on the 
glucagon receptor genotype, we performed logistic and linear 
models stratified on the variant groups with inclusion of the 
interaction term proglucagon×genotype. Interestingly, although 
plasma proglucagon was associated with type 2 diabetes in the 
whole cohort (Fig. 1d,e), this was not the case in individuals 
with G40S (p=0.1) (Table 1). The interaction term between 
G40S and proglucagon was p=0.073. The effect of plasma pro-
glucagon on BMI was larger in carriers of the G40S variants 
compared with carriers of the wild-variant (β 0.68; 95% CI 
0.43, 0.93 vs β 0.33; 95% CI 0.29, 0.36; p=0.013) (Table 1). 
The effect of plasma proglucagon on BMI in carriers of cAMP 
LoF and frameshift variants were not different from individuals 

with wild-type receptors; however, the results are limited by the 
low sample size (11 and 24, respectively) (Table 1).

Circulating amino acids and proteins may not be altered by 
LoF glucagon receptor variants  Plasma levels of the individ-
ual and the sum of amino acids did not show notable varia-
tions between individuals with the glucagon receptor variant 
groups and those with the wild-type variant (Table 2).

We next performed differential expression analysis on the 
proteomics dataset (~1500 proteins measured in each sample) to 
identify plasma proteins potentially regulated by glucagon recep-
tor signalling. After correction for multiple testing, no proteins 
reached statistical significance. A list of the top ten up- and down-
regulated proteins for each variant group is provided in Table 3.

Creatinine

 (5 mmol/l increase)

Age

 (5 year increase)

Sex (male)

Change in proglucagon per increment

a

Amino acids

BCAA

Glucose

 homeostasis

Glycine

Glutamine
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Alanine
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Tyrosine

Leucine
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Isoleucine
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HbA
1c

Change in proglugacon per metabolite SD
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0.33

0.24

0.13

0

−0.01

0.52
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0.47
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β

(0.36, 0.40)
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(0.45, 0.49)
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95% CI
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-16
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2.15×10
-12

p value
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nb
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Fig. 3   Effects of circulating metabolites on plasma proglucagon 
levels. (a) Simple linear regression analyses were performed with 
plasma proglucagon in NPX units as the dependent variable and the 
indicated confounders as independent variables. Increments were set 

to 5 years for age and 5 mmol/l for creatinine. (b) Multiple linear 
regression analyses were adjusted for BMI, sex, age, creatinine and 
fasting time. The x-axis is the effect size in SDs of the metabolite. p 
values were adjusted using false discovery rate (FDR) correction
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Discussion

Using UK Biobank data encompassing multiple omics data, 
MRI imaging and hospital registers, we here demonstrated 
that increased plasma levels of proglucagon are indepen-
dently associated with obesity, MASLD and type 2 diabetes. 
In addition, proglucagon levels were significant predictors 
of the risk of type 2 diabetes development over a 14-year 
follow-up period. Although causality cannot be established, 
our data support the idea that increased proglucagon directly 
contributes to development of type 2 diabetes [24].

One of the two antibodies in the Olink proglucagon 
assay binds within the first 100 amino acids of proglucagon, 
whereas the binding site of the other antibody is propri-
etary information and has not been disclosed. It is therefore 
unknown which section(s) of the proglucagon-derived pep-
tide is measured by the assay, and to what extent. We previ-
ously performed a pilot in vitro analysis of human plasma 
spiked with 100 pmol/l of glucagon, GLP-1 7–36, GLP-1 
9–36, GLP-2 and oxyntomodulin. The proglucagon assay 
from Olink measured both forms of GLP-1, whereas neither 
glucagon, GLP-2 or oxyntomodulin were detected (https://​
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(−0.3, 0.08)
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ne

d

f

GCGR

G40S

Frameshift
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−1.5

Fig. 4   Association of LoF variants with plasma proglucagon and 
metabolic traits. (a) Number of individuals within each glucagon 
receptor variant group in the UK Biobank cohort and the proteomics 
sub-cohort. Heterozygous, 0/1; homozygous, 1/1. (b) The Frameshift 
variant group divided into the sequence ontology terms included in 
the group. (c) The cAMP LoF variant group divided according to the 
missense mutations included in the group. (d) Variant groups were 
tested for association with plasma proglucagon in a multiple linear 
model adjusted for age, sex, BMI, fasting time and plasma creatinine. 
G40S heterozygous and homozygous were pooled. (e) Variant groups 

were tested for associations with quantitative traits in multiple linear 
models adjusted for age and sex. For liver fat, the x-axis is the effect 
size (β) in 5% increments. For HbA1c and BMI, β is given in SDs of 
the phenotype. (f) Variant groups were tested for association to binary 
traits with logistic regression with Firth correction adjusted for age 
and sex. Obesity was defined as BMI ≥30 and controls as BMI <25. 
n indicates the number of individuals in each model (d, e) and the 
number of cases within each variant group (f). G40S was included 
as a numeric predictor in the linear and logistic models (1, heterozy-
gous; 2, homozygous). UKB, UK Biobank; WT, wild-type

https://github.com/nicwin98/Olink
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github.​com/​nicwi​n98/​Olink). Antibodies raised against 
GLP-1 have the (dis)advantage of measuring all molecular 
forms containing the amino acid sequence of GLP-1. Impor-
tantly, this includes MPGF and GLP-1 1–36, both of which 
derive from alpha cell processing of proglucagon [25, 26]. 
In fact, an older study revealed that elevated levels of fasting 
and arginine-induced immunoreactive GLP-1 in individuals 
with type 2 diabetes turned out to be the pancreatic peptides 
MPGF and GLP-1 1–36 [27]. Thus, to interpret analyses 
of GLP-1 concentrations, it is essential to know if the anti-
bodies used are N-terminal wrapping (i.e. specific for the 
full-length [1–36], active [7–36], or total [9–36] GLP-1), 

C-terminal wrapping, or binding anywhere in the middle of 
the peptide, in which case the assay would measure all forms 
as well as MPGF.

We observed that proglucagon was elevated in indi-
viduals with type 2 diabetes (Fig. 1b). Numerous studies 
have described that GLP-1 may be reduced, and glucagon 
increased, in type 2 diabetes [28, 29]. This suggest that the 
proglucagon assay is likely measuring a pancreatic pep-
tide that includes the GLP-1 amino acid sequence (possi-
bly MPGF). In line with this hypothesis, we observed an 
increase in plasma proglucagon in carriers of cAMP LoF 
variants of the glucagon receptor (Fig. 4d). Since glucagon 

Table 1   Effect of interaction 
between plasma proglucagon 
and genotype on type 2 diabetes 
and BMI

For type 2 diabetes, model 1 was a logistic model with type 2 diabetes as the dependent variable and pro-
glucagon as independent variable adjusted for age, sex, fasting time, creatinine and BMI, and stratified on 
the genotype G40S. Model 2 included the interaction between proglucagon and G40S. For BMI, model 1 
was a linear model with BMI as the dependent variable and proglucagon as independent adjusted for age, 
sex, fasting time, creatinine and type 2 diabetes, and stratified on the glucagon receptor variant groups. 
Model 2 for each variant group included the interaction between proglucagon and variant group
T2D, type 2 diabetes; WT, wild-type

Genotype n Effect of plasma proglucagon 
(Model 1)

Interaction between plasma 
proglucagon and genotype 
(Model 2)

β 95% CI p value p value

Type 2 diabetes
  WT 36,819 (control)

776 (T2D)
0.46 (0.43, 0.5) <0.0001

  G40S 630 (control)
39 (T2D)

0.21 (−0.04, 0.46) 0.107 0.073

BMI
  WT 38,662 0.33 (0.29, 0.36) <0.0001
  G40S 669 0.68 (0.43, 0.93) <0.0001 0.013
  cAMP LoF 11 2.98 (−4.65, 10.62) 0.339 0.141
  Frameshift 24 −0.15 (−1.85, 1.55) 0.853 0.389

Table 2   Association between glucagon receptor variant groups and plasma amino acids

The associations were tested in linear models with the genotype as predictor and age, sex, BMI and fasting time as covariates. β (effect size) is 
given in amino acid SD
AA, amino acids

cAMP LoF G40S Frameshift SD

β 95% CI p value n β 95% CI p value n β 95% CI p value n

Alanine 0.20 −0.04, 0.45 0.10 63 −0.01 −0.04, 0.02 0.66 3868 −0.06 −0.22, 0.1 0.44 151 0.08
Glutamine 0.04 −0.2, 0.29 0.72 63 0.03 −0.01, 0.06 0.10 3863 0.11 −0.05, 0.26 0.18 151 0.08
Glycine −0.20 −0.43, 0.03 0.09 63 0.02 −0.01, 0.05 0.12 3860 −0.06 −0.21, 0.09 0.42 151 0.07
Histidine −0.03 −0.28, 0.21 0.79 63 −0.02 −0.05, 0.01 0.26 3861 0.08 −0.08, 0.24 0.33 151 0.01
Isoleucine −0.02 −0.26, 0.22 0.88 63 0.01 −0.02, 0.04 0.55 3869 0.02 −0.13, 0.18 0.76 151 0.02
Leucine −0.03 −0.26, 0.21 0.83 63 0.00 −0.03, 0.03 0.99 3869 0.03 −0.12, 0.18 0.68 151 0.03
Valine −0.13 −0.36, 0.1 0.28 63 0.00 −0.03, 0.03 0.93 3866 0.01 −0.14, 0.16 0.88 151 0.04
Phenylalanine −0.12 −0.36, 0.12 0.34 63 0.03 0, 0.06 0.08 3867 −0.06 −0.22, 0.09 0.42 151 0.01
Tyrosine −0.03 −0.27, 0.21 0.79 63 0.02 −0.01, 0.05 0.18 3863 −0.02 −0.18, 0.13 0.77 151 0.02
Total AA −0.01 −0.26, 0.23 0.92 63 0.02 −0.01, 0.05 0.27 3845 0.01 −0.15, 0.17 0.94 151 0.21

https://github.com/nicwin98/Olink
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resistance in MASLD results in a compensatory increase 
in glucagon levels [30], similar mechanisms may underlie 
the finding of increased proglucagon (alpha cell-derived) 
in individuals with reduced glucagon receptor cAMP 
signalling.

Plasma proglucagon showed a positive association with 
BCAA. BCAA catabolism is not regulated by glucagon, and 
BCAA do not directly stimulate glucagon secretion [31, 32]. 
However, BCAA stimulate GLP-1 secretion [33] and play 
an important role in the pathogenesis of insulin resistance 
[34, 35]. A limitation of the current study is the lack of 
markers of insulin resistance, such as plasma insulin lev-
els. We previously observed that glucagon resistance and 
insulin resistance may coexist but importantly also occur 
independently of each other, highlighting the differential 
pathophysiological mechanisms underlying glucagon and 
insulin resistance [36].

In agreement with previous studies, we found a link 
between MASLD and glucagon. We used MRI–PDFF to 
diagnose MASLD, but we lacked data on the severity of 
fibrosis, which is the most critical predictor of clinical out-
comes in MASLD. Given the probable close relationship 
between glucagon and the metabolic alterations in MASLD, 
the degree of liver fat is likely to indicate the risk of devel-
oping cardiometabolic conditions, including diabetes. Our 
findings therefore support speculations that there is a two-
way connection between MASLD and diabetes and suggest 
that glucagon could be a main factor in the pathogenesis.

Consistent with prior research, we identified an associa-
tion between plasma proglucagon and prevalent type 2 dia-
betes. Metformin treatment is known to increase GLP-1 and 
reduce glucagon secretion, thus, the increase in proglucagon 
by metformin in individuals with type 2 diabetes may repre-
sent increased plasma GLP-1 levels. Conversely, insulin is 
an effective inhibitor of glucagon secretion from alpha cells, 
and the markedly lower levels of proglucagon in individuals 
on insulin is most likely a consequence of lower glucagon 
levels. Collectively, these data support the hypothesis that 
the proglucagon assay measures a combination of intestinal 
and pancreatic proglucagon products (probably GLP-1 and 
MPGF, respectively).

Type 2 diabetes is often diagnosed by general practition-
ers, and only ~41% of diabetes diagnoses are registered in 
hospital records [17]. Primary care data are linked to the UK 
Biobank for ~45% of the participants up until 2016 (Eng-
land) and 2017 (Scotland and Wales), so to get a longer 
follow-up period, incident type 2 diabetes was defined 
from secondary care ICD-10 diagnostic codes. This is a 
limitation of this study and may explain the flattening of 
the Kaplan–Meier curve (Fig. 2a) in the later years of the 
follow-up period, as hospital diagnoses may be registered at 
a later point than the primary care diagnosis. Furthermore, 
UK Biobank is not representative of the UK population with 

evidence of a selection bias towards more healthy volun-
teers regarding obesity, smoking, and alcohol consumption 
[37]. There are more female than male participants in the 
UK Biobank, and to address potential confounding effects 
related to sex differences, we have included sex as a covari-
ate in all our analyses. Another limitation is that quantifica-
tion of liver fat is obtained from the MRI scan performed 
~10.5 years after the baseline data was obtained.

Traditionally, the primary focus on glucagon receptor 
signalling has centred on the adenylate cyclase/cAMP/pro-
tein kinase A pathway as the predominant mediator of the 
hepatic glucose-mobilising actions of glucagon. However, 
compelling evidence suggests that the PLC/IP3 pathway may 
be even more important for physiological levels of glucagon, 
compared with pathologically or pharmacologically elevated 
levels [38]. Further investigation into the impact of rare mis-
sense variants on this pathway is warranted.

The most common missense variant in the glucagon 
receptor, G40S, has normal to mildly reduced cAMP sig-
nalling [39–41], and substantially decreased β-arrestin sig-
nalling [5]. G40S has previously been linked to non-insu-
lin-dependent diabetes and central adiposity in France and 
Sardinia [21, 22], but interestingly not in Japan or Finland 
[42, 43]. We did not find an increased prevalence of type 2 
diabetes or obesity in heterozygotes or homozygotes of the 
G40S variant in the UK Biobank. However, there appeared 
to be an interaction between plasma proglucagon and G40S, 
with proglucagon having a stronger association with BMI 
in carriers of G40S compared with carriers of the wild-
type variant (Table 1). In contrast, the association between 
proglucagon and type 2 diabetes was weaker in individuals 
with G40S compared with the wild-type variant (p=0.107, 
Table 1). Together with the divergent literature on the effects 
of G40S on metabolic disorders, our results suggest that 
G40S may play a role in the development of type 2 diabetes 
and obesity, but that this may require parallel metabolic dis-
ruptions leading to altered proglucagon levels.

Previous research has indicated a potential association 
between cAMP LoF variants and an increased risk of obesity 
[5]. Since then, exome sequencing data was increased to 
cover the whole UK Biobank. After an approximate dou-
bling of the sample size of carriers of a cAMP LoF vari-
ant, this tendency disappeared, both when BMI was treated 
as a continuous and dichotomised variable. However, the 
increased plasma levels of proglucagon in this group of indi-
viduals suggest that cAMP signalling is involved in the regu-
lation of a factor, that in turn regulates proglucagon levels 
in a feedback manner. This has previously been suggested 
to be amino acids, with alanine being particularly important 
for this feedback system, termed the liver–alpha cell axis 
[44–46]. In line with this, there was a tendency to increased 
alanine (p=0.1) in individuals with cAMP variants adjusting 
for age, sex, BMI, fasting time and creatinine. Because the 



1613Diabetologia (2024) 67:1602–1615	

cAMP LoF variants are very rare, we aimed at creating the 
most homogenous study population by excluding partici-
pants who were not categorised as white, and participants 
with sex chromosome aneuploidy. This lack of diversity may 
restrict the generalisability of our findings to other ethnic or 
racial groups.

The Frameshift category of glucagon receptors was defined 
rather broadly. Yet, carriers of one of the Frameshift vari-
ants were associated with higher levels of liver fat compared 
with carriers of the wild-type variant. This was not observed 
in G40S or the cAMP LoF variant groups, suggesting that a 
signalling pathway other than cAMP and β-arrestin is likely 
involved. Further functional subdivision and in silico pre-
dictions may help select and group variants that are phar-
macologically characterised by more stratified LoF pheno-
types. Other research groups have found ubiquitination and 
β-arrestin to be essential for the signalling and internalisation 
of the glucagon receptor [4, 47], whereas others report only a 
minor internalisation of the glucagon receptor [48], suggest-
ing that this pathway may not be a major regulator of glucagon 
receptor signalling. The multiple factors impacting signalling 
pathways are complex and warrant further exploration.

In conclusion, our study supports the involvement of gluca-
gon signalling in metabolic disorders such as type 2 diabe-
tes and MASLD and that increased proglucagon levels may 
predispose to type 2 diabetes. Furthermore, the presence of 
hyperglucagonaemia in obesity, MASLD and type 2 diabe-
tes indicates that distinct mechanisms may drive increased 
alpha cell secretion. Signalling pathways other than cAMP 
and β-arrestin recruitment may be important for the metabolic 
effects of glucagon such as the regulation of liver fat. Identi-
fication of the specific molecular characteristics responsible 
for the beneficial effects of glucagon on hepatic lipid turnover 
may be crucial in developing improved glucagon co-agonists 
for the treatment of MASLD and obesity.
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