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Abstract
Switching of light polarization on the sub-picosecond timescale is a crucial functionality for applications in a variety of
contexts, including telecommunications, biology and chemistry. The ability to control polarization at ultrafast speed
would pave the way for the development of unprecedented free-space optical links and of novel techniques for
probing dynamical processes in complex systems, as chiral molecules. Such high switching speeds can only be
reached with an all-optical paradigm, i.e., engineering active platforms capable of controlling light polarization via
ultrashort laser pulses. Here we demonstrate giant modulation of dichroism and birefringence in an all-dielectric
metasurface, achieved at low fluences of the optical control beam. This performance, which leverages the many
degrees of freedom offered by all-dielectric active metasurfaces, is obtained by combining a high-quality factor
nonlocal resonance with the giant third-order optical nonlinearity dictated by photogenerated hot carriers at the
semiconductor band edge.

Introduction
A plethora of light-matter interaction phenomena

occurring across physics, chemistry or biology are
intrinsically polarization dependent. As such, light polar-
ization is a pivotal degree of freedom to exploit both for
applications and fundamental investigations. Active (i.e.
transient and reversible) and ultrafast polarization control
would allow high-speed data encoding and signal pro-
cessing (both from a classical1 and quantum information2

perspective), e.g. for free-space optical links transmitting
optical bits (even in the visible/near-infrared) at GHz
rates, as well as the modulation of pseudospin properties
for the development of advanced quantum electronic
devices3. Similarly, it could be possible to implement THz
speed tuning or switching of material processes such as
lattice excitations4 or modifications of molecular
dynamics5,6. Additionally, the study of enantiomers in
organic chemistry, and in general the control and

detection of chiral systems and chiroptical effects7, which
are ubiquitous in biology8 and can be also inorganic9 or
hybrid10,11, would benefit from the capability of manip-
ulating polarization on sub-picosecond timescales12.
To overcome the fundamental speed limits of electro-

optical approaches, an all-optical paradigm for polariza-
tion control has been proposed. It consists in triggering a
third-order nonlinearity in an active medium by an
ultrashort control laser pulse, which transiently modulates
the material permittivity experienced by a low-intensity
(probe) beam. By carefully engineering the material plat-
form, it is thus possible to achieve control of light by light.
Many approaches have been proposed for the all-optical
manipulation of light’s fundamental degrees of free-
dom13–20. Active tailoring of amplitude, phase and
polarization has been demonstrated in a variety of sys-
tems, from semi-metal thin films21, to nonlinear meta-
materials based on plasmonics22–24 and epsilon-near-zero
architectures25.
Despite these recent exciting advancements, practical

applications of all-optical polarization control require
extreme flexibility of the selected structure, a higher
compactness (with close to normal-incidence operation
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for better alignment) and superior modulation efficiency
(of the order of 100% under a control beam fluence one or
two orders of magnitude lower than the typical damage
threshold of ~mJ cm-2). A possible route towards the
ultimate limit of photonic integration has been disclosed
by flat optics26, specifically by resorting to photonic
metasurfaces27–36. These are quasi two-dimensional
arrangements of resonant nanostructures, packed in
subwavelength configurations. By exploiting optical
resonances — which concentrate fields locally, at the
individual scatterer scale – it is possible to achieve high
levels of field enhancement, thus strongly outperforming
unpatterned thin films. Moreover, flexibility is granted by
the large number of geometrical degrees of freedom, to be
leveraged during the design process.
In the last decade, high-index semiconductor-based

architectures have attracted increasing interest for all-
optical modulation37–39. Indeed, they present several
advantages40: on one hand, they enable the onset of high
quality factor resonances, including magnetic Mie-type
resonances41–43 and quasi-bound states in the continuum
(BICs)44,45. Furthermore, semiconductors feature lower
absorption losses compared to plasmonic materials. Most
importantly, one of the physical phenomena presiding
over the optical nonlinearity of semiconductors is the
photogeneration of free carriers, which is very efficient for
direct bandgap materials38. Throughout their relaxation,
these photoexcited carriers drive a transient permittivity
modulation via different effects46, encompassing Drude-
like plasma formation, band filling and bandgap renor-
malization. By tuning several parameters (e.g., the oper-
ating spectral range or the pump fluence), the interplay of
these mechanisms and their relative weights can be
regulated.
We have investigated these aspects in recent studies47,48

on Aluminum Gallium Arsenide (AlGaAs) nanoantennas
for nonlinear applications. The key role of the band filling
effect was highlighted when operating at energies near the
bandgap of the material, with very efficient modulations
of the permittivity. Interestingly, band filling is respon-
sible for a purely real modification of permittivity at
energies below the bandgap, whereas it also entails a
negative imaginary part contribution for probe energies
above bandgap (that is, describing a reduction of loss
channels, possibly a transient gain)46. The effect of such a
mechanism on a macroscopic optical observable (for
instance reflection or transmission) has not been
explored, since research on similar dielectric nanos-
tructures has mainly focused on the transparency window
of the semiconductors38.
Here, we theoretically predict and experimentally

demonstrate, using ultrafast pump-probe spectroscopy,
giant all-optical dichroism and birefringence modulation
in a custom designed AlGaAs-based metasurface. By

tuning free-carrier permittivity modulation at the band
edge, and a polarization-selective nonlocal resonance at
bandgap, we obtain unprecedented polarization modula-
tion efficiency at moderate excitation levels. Specifically,
we observe up to 470% differential reflection in the
dichroism experiment, with control beam fluence of
70 μJ cm-2; up to a π/2 transient phase shift between the
components, in the birefringence experiment, with con-
trol fluence of 180 μJ cm-2. Numerical simulations, based
on a multi-step procedure including dynamic modelling
of free-carriers and full-wave electromagnetic computa-
tions for the optical response, are in good agreement with
experimental data. This allows us to disentangle the
physical phenomena taking place after photoexcitation,
pinpointing the synergy of band filling with the resonant
response of the structure as responsible for the excellent
modulation performance.

Results
We designed a metasurface consisting in an array of

Al.18Ga.82As nanowires on top of a ~ 900 nm AlOx layer
with a GaAs substrate, as depicted in Fig. 1a. The fabri-
cation procedure is detailed in the Supporting Informa-
tion section S1. The inset on the left shows the unit cell
cross-section in the x–y plane, with the relevant geome-
trical parameters—wire width W and height H, periodi-
city P.
On the right of Fig. 1a, the probe illumination condi-

tions for the static characterization and dichroism
experiment are sketched: the beam is impinging on the
sample with an angle of incidence α ~ 9°, and it is polar-
ized either in the x–y plane (i.e., perpendicular to the
wires, TM polarization) or along the z-axis (parallel to the
wires, TE polarization). The measured reflectance spectra
in unperturbed (static) conditions for TE and TM polar-
izations are reported in Fig. 1b. The anisotropy of the
sample affects the optical response, granting a strongly
dichroic behavior. For TM polarization, a sharp resonance
is found at 758 nm, just below the bandgap, which is at
750 nm for these values of Al concentrations49. This is an
extended-state resonance (see Supporting Information
section [S2]), enabled by the metasurface configuration
designed to provide a nonlocal response. Instead, the TE
reflectance presents a narrow asymmetric peak, which can
be identified as a quasi-BIC state, at slightly longer
wavelengths (~770 nm). These features match our needs
towards an efficient switching and synthesis of light
polarization, since, according to the metasurface design,
they are located precisely in the spectral region of interest,
near the AlGaAs bandgap.
We used polarization-resolved ultrafast pump-probe

spectroscopy to characterize transient dichroism and
birefringence. In the first experiment, we measured the
differential reflection, ΔR/R= (R’-R)/R, where R’ and R are
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the reflectance spectra of the perturbed (after pump) and
unperturbed (pump is not applied) metasurface, for both
TM and TE probe polarizations. A comparison between
ΔR/R maps allows to assess the efficiency of the platform
in modulating its dichroic properties.
To illustrate the capability of birefringence modulation,

in a second experiment we set a mixed polarization for the
incident probe beam (precisely, it is linearly polarized at
135° in the plane defined by the TM and TE directions,
see below for details). Then, a modified detection line,
including a quarter-waveplate and a polarizer, enables us
to perform an ultrafast polarimetry measurement, aimed
at investigating the transient modulations of the polar-
ization ellipse of the reflected light.
A simplified scheme of the experimental setup is pre-

sented in Fig. 1c. Notice that the sketch describes the
optical components used for the birefringence experi-
ment, while for the dichroic experiment the quarter
waveplate (λ/4) is removed. Details of the apparatus can
be found in the Methods section.

Dichroism
Results of the ultrafast dichroism experiment are sum-

marized in the upper panels of Fig. 2. ΔR/R maps for TM
and TE polarized probe (panels 2a, 2c) demonstrate that
optical pumping produces a remarkable enhancement of
the dichroic response of the sample. The spectra reveal an
anisotropic modulation: on one hand, we observe a giant
signal (up to 470%) in the TM case in a narrow band
around 750 nm. This is a genuine property of the transient

optical response, as it corresponds to a giant photo-
induced increase of the reflectance from the static value,
R ~ 10% (refer to Fig. 1b) to a transient value of almost
60%. On the other hand, TE reflectivity is also modulated,
but only up to a maximum ΔR/R of ~70%, with complex
and varied broadband features, and a relatively low value
of about -10% at 748 nm, where the TM reflectivity
modulation is peaked. This indicates a giant ultrafast
transient dichroism at ≈ 750 nm wavelength under a
pump fluence F= 70 μJ cm-2, which is low for semi-
conductors38,47,48. The reflectivity modulation peak of
~470% is up to 5 times higher than in previous studies38

and is achieved at a much lower pump fluence; more
importantly, the fluence here employed is at least one
order of magnitude below the damage threshold, which
for AlGaAs is ~ 1mJ cm-2.
These remarkable features are even more evident when

examining temporal and spectral sections of the maps of
Fig. 2. Figure 2e shows the temporal dynamics of ΔR/R at
selected wavelengths for the TM (solid lines) and TE
(dashed lines) polarization. The modulation peak is not
instantaneous but is reached at 2 ps delay with respect to
the arrival of the pump pulse. A ΔR/R spectrum at this
time delay is presented in Fig. 2g. As expected, there is a
close relation between the spectral positions of the
unperturbed resonances shown in Fig. 1b and the peaks
(dips) in the ΔR/R spectrum.
To interpret these results, we applied a multistep

semiclassical modeling approach48. Here we briefly
describe the physical processes contributing to the optical
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nonlinearity (see the Methods section and the Supporting
Information section S4 for further details). The 400-nm
pump pulse excites AlGaAs above its bandgap, producing
free carriers. Since the nanowires are remarkably thick
(H= 400 nm) compared to the skin depth of AlGaAs at
the pump photon energy (~16 nm)48, the absorption is
spatially inhomogeneous. Electron-hole pairs generation
is concentrated in hot-spots at the top of the structure,
and diffusion processes take place within the first few
picoseconds after pump arrival48. Then, nonradiative
relaxation of carriers occurs, mainly through a trap-
assisted recombination process mediated by surface defect
states. This mechanism dominates over the Auger
recombination (which is the most relevant in bulk con-
figurations), thanks to the wire high surface-to-volume
ratio38. Conservation of energy implies that recombina-
tion events are associated with the emission of phonons,
increasing the lattice temperature.
In these terms, photo-absorption can be described

through the evolution in time of three variables: n1(t),
carrier density in the hot-spot region, driven by pump-
intensity; n2(t), carrier density in the bulk of the wire,
increasing gradually in time with diffusion from the skin,
and depleting with recombination; ΘL(t), the lattice
temperature. A simple rate equation system (three-tem-
perature model, 3TM) describes these dynamics (see
Methods section). In turn, each of these internal degrees
of freedom is responsible for a transient permittivity

change. Free carriers modify both intraband and inter-
band transitions at the sub-picosecond timescale, via a
Drude-like and a band filling effect, respectively. The
latter can be described as a saturation of absorption
channels due to Pauli exclusion principle46. A weak probe
impinging on the medium cannot promote electrons to
the conduction band, since its lower part is already filled
following pump arrival. Thus, band filling gives rise to a
negative modulation of the imaginary permittivity at
energies above the bandgap, as well as a broadband real
permittivity modulation highly dispersed across the
bandgap. Due to the Kramers-Kronig relations, band
filling also modifies the real part of Δε in the band edge
wavelength range. Lastly, an increase of the lattice tem-
perature triggers a thermo-optical permittivity variation
(to a comparatively negligible extent, given the moderate
lattice temperature increase, see section S4.4 in the SI
document). Once the permittivity is computed via semi-
classical formulas46–48, the optical response can be
retrieved with full-wave electromagnetic simulations, as a
function of both probe wavelength and time.
The results of this model are summarized in the bottom

panels of Fig. 2, to be compared with the corresponding
measurements in the upper panel. The agreement is
excellent for both polarizations (panels 2b-2d), apart from
a small underestimation of the ΔR/R in the TE case. In
fact, simulations can quantitatively reproduce both the
temporal dynamics—including the delayed peak (Fig. 2f),
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crucially linked to the free-carriers diffusion time48—and
the spectral features (Fig. 2h).
We also use the model to elucidate the origin of the

giant ΔR/R signal for TM polarization. In Fig. 3a, lines
from darker to lighter shade correspond to the TM
reflectivity spectrum, respectively, in unperturbed con-
ditions (Rstatic as directly measured, see the blue curve in
Fig. 1b), at 850 fs and at 2 ps after pump arrival (derived
from pump-probe experiments of Fig. 2, using the
simple formula R(t)= {[ΔR/R(t)]measured+ 1} Rstatic).
The static resonance experiences an ultrafast blueshift,
manifested already at 850 fs, in agreement with the
evidence that the peak in the ΔR/R is attained at a
wavelength which is ~10 nm shorter than the peak
wavelength in the static reflectivity (see Fig. 1b); besides,
a reshaping of the peak occurs, with a clear-cut increase
of the reflectivity at 2 ps. This underpins the 470% dif-
ferential signal peak shown of Fig. 2a. Our simulation, in
Fig. 3b, predicts the same peculiar evolution in time. To
disentangle the effects arising from free carriers and
lattice temperature on the optical nonlinearity, we plot
the contributions to permittivity variation Δε at the peak
of the pump-probe signal, namely at 2 ps, for the
interesting spectral range. We report the results in
Fig. 3c: solid (dashed) lines correspond to real (ima-
ginary) modulation, whereas color coding marks the
Drude, band filling, and thermo-optic contributions.
Lattice effects are essentially zero, as expected, since
they become significant on the ~10 ps timescale48.
Importantly, the permittivity change due to the Drude
mechanism is much smaller than the one caused by
band filling (up to one order of magnitude at bandgap,
for the real part, and almost two orders of magnitude in
the high-energy band edge for the imaginary part).
Thus, simulations confirm that band filling presides over
the most relevant features of the transient optical

response in this spectral region, given its vicinity to the
material band-edge.
Notice that the real part of the total Δε has a broadband

negative sign. This directly translates into a spectral
blueshift of the optical response, as observed in the
experiment. On the other hand, the imaginary part of Δε
has a negative sign for wavelengths up to 750 nm, con-
sistent with a reduction of loss channels. Since the
increase of the resonant peak is at a probe wavelength
(748 nm) slightly below the bandgap – where the
absorption drops – it is crucial to inspect the imaginary
part of the total perturbed permittivity, ε(t)= ε0+Δε(t),
where ε0 is its static value. Figuer 3d shows the imaginary
part of the permittivity: Im(ε0) along with Im(ε), the latter
evaluated at 850 fs and 2 ps. A narrow spectral window
(738 – 750 nm) where the sign of ε is negative opens
within the first ps, as seen from the dark light blue curve,
and broadens for increasing delay (lighter trace): this is a
clear-cut mark of the onset of optical gain in this region.
In other terms, the photo-injection of carriers through
photoexcitation generates a population inversion. Upon
arrival of the probe, stimulated emission occurs. The
efficient increase in reflection is thus explained as
the combination of this phenomenon and the presence of
the high quality-factor TM resonance in this precise
spectral range.
Considering the complex interplay of mechanisms

included in our modeling, the discrepancies between the
experimental results of Fig. 3a and the simulations of
Fig. 3b are minimal, and of quantitative character only. In
particular, the simulations retrieve narrower spectral
features compared to the experiment. Also, contrary to
the reflectivity peak, whose evolution from 760 nm –
750 nm is well reproduced in the simulations, the simu-
lated spectral dip is always red shifted compared to the
experimental one. We attribute such discrepancies to the
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fact that spatial inhomogeneities, defects and finite size
effects are not taken into account in the electromagnetic
calculations.

Birefringence
Results of the birefringence experiment also show pro-

minent features in the 740 nm–750 nm region, caused by
the same physical mechanisms, although having a more
complex origin and temporal evolution. Indeed, change in
the polarization state is an interplay between the mod-
ulation of both the amplitude and phase of the two
orthogonal components in the polarization plane. To
formalize the problem, we employ Jones vector analysis,
and describe the incident and reflected waves as follows.
For the incident wave, we use a frame of reference ana-
logous to the one schematically sketched in Fig. 1a: the
polarization plane, perpendicular by definition to the
k-vector (kin in Fig. 1c), is spanned by the TM and TE unit
vectors ûTM, ûTE. The probe beam is linearly polarized in
the direction of the bisector of the II–IV quadrant of this
plane, namely at 135° with respect to the TM direction.
Thus, we can write the normalized incident electric field
as the Jones vector

Einc
TM

Einc
TE

� �
¼ 1ffiffiffi

2
p 1

�1

� �

We proceed similarly to define the polarization for the
beam reflected by the sample, referred to the plane
orthogonal to the appropriate wave vector (kout in Fig. 1c),

with signs consistent with the right-hand rule for the
triplet (k,ûTE;ûTM) as before. We can write the normal-
ized reflected field as

Er
TM

Er
TE

� �
¼ ρTMe

iφTM

ρTEe
iφTE

� �

where ρTM , ρTE are positive real numbers representing
the amplitudes, whereas φTM , φTE are the phases in the
(-π,π) interval. Since we aim to demonstrate phase-
sensitive functionality such as that of a transient optical
waveplate, it is useful to define the relative phase between
the components, φ¼ φTM � φTE , as a figure of merit for
the ellipticity of the wave. The pump-probe scheme is the
same as in the dichroism experiment, with higher, but
still moderate level of excitation (pump fluence of
~180 μJ cm-2).

Results of the experiments in terms of φ as a function of
probe wavelength are reported in Fig. 4, top panels.
Specifically, Fig. 4a compares the static (φ, blue line) and
nonequilibrium (φ’, red line) responses at 2 ps, whereas
Fig. 4c shows the variation Δφ ¼ φ0 � φ. A value of Δφ
~ π/2 implies that, after pumping, the metasurface
introduces an additional π/2 phase shift between the TM
and TE components. That is, if in static conditions the
reflected beam is linearly polarized, in the perturbed case
the detected polarization is circular. This is very similar to
what happens at 749 nm, as can be seen in Fig. 4e, by
inspecting the complete polarization ellipse as retrieved
from the measurements. Indeed, pump absorption grants
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switching of a quarter-waveplate functionality at the red
wing of the TM resonance. Instead, at 736 nm, corre-
sponding to the blue-wing of a dip in the Δφ spectrum,
the polarization is efficiently converted from elliptical to
almost linear. Simulations (Figs. 4b, 4d and 4f) show a
good agreement with experimental results, although
predicting a sharper drop in phase at 742 nm, which
marks the position of the shifted dip in the TM polar-
ization. Again, this slight discrepancy with experiments is
attributed to defects and imperfections in the physical
sample, causing broadening and smoothing of the shar-
pest optical features.

Discussion
We have presented an all-dielectric metasurface work-

ing in reflection and capable of extremely efficient mod-
ulation of both dichroism and birefringence. As revealed
by our model, these performances are enabled by the
tuning of extended state resonances near the bandgap of
the semiconductor, which allows full exploitation of the
band filling effect due to photogenerated free carriers.
A narrow gain window at the blue edge of the bandgap,

opened following pump absorption, also contributes to
the achievement of the giant dichroism reported in the
experiments. While stimulated emission from optical
pumping of semiconductors is well known and has been
exploited e.g. in lasing applications50,51, also with AlGaAs-
based structures52, its engineering in an all-optical mod-
ulation scheme was still unexplored.
In parallel, the sample birefringence modulation also

arises from the outlined physical mechanisms, albeit in a
subtler way. Transient phase change between the two
polarization components can be ascribed to the free car-
rier induced blueshift of the optical response (Figs. 4a and
4b). Indeed, the efficient birefringence modulation stems
from a significant (negative) change in the real part of
AlGaAs permittivity, which is maximum at band edge
(Fig. 3c), boosted by the high quality-factor nonlocal
resonance for TM-polarized light. The transient gain due
to a negative change in the imaginary part of AlGaAs
permittivity, achieved precisely in the same spectral range
of the TM nonlocal resonance, further enhances the
metasurface all-optical modulation performance. In this
respect, our metasurface is active also in a more specific
sense, i.e., it also behaves as an ultrathin optical amplifier
capable of narrowing, on an ultrashort temporal window,
the nonlocal resonance with which the probe signal is
interacting.
A detailed comparison with relevant results previously

reported on the concept of optical dichroism and bire-
fringence modulation with metasurfaces using ultrafast
lasers (see Supporting Information section [S3], Table S1)
indicates, in a clear-cut way, the better performance of
our approach in the visible and near infrared. In terms of

power efficiency, we achieved a record high 6.7% transient
dichroism (ΔR/RTM –ΔR/RTE) per µJ cm-2 of pump flu-
ence. This outperforms the results obtained by some of
the present authors with a plasmonic metasurface (0.005%
transient dichroism per µJ cm-2 pump fluence)19 mostly
because of the much lower losses and thus higher quality
factor enabled by semiconductor nanostructures. How-
ever, we reiterate the concept that such superior perfor-
mance with semiconductor metasurfaces is enabled by a
combination of factors, including, in particular, the pre-
cise tuning of a nonlocal resonance at the band-edge of
AlGaAs, in order to benefit both from the very low
material losses (enabling high quality factor resonances)
and the intense permittivity modulation. This is ascer-
tained by comparison with preliminary results achieved
from a similar, though not optimized, AlGaAs-based
metasurface design, where the dichroic performance was
remarkable, but still 10 times lower53. The dramatic
improvement achieved with the optimized configuration
here demonstrated is also at the origin of the record high
birefringence modulation, with a phase change and
polarization rotation as large as 90°. Finally, it is worth
noticing that, when considering other operation wave-
lengths, a similar dichroic/birefringence performance has
been reported for metasurfaces operating in the
0.2–2.2 THz range54, but with much slower switching
times (of about 1 ns) compared to our few ps modulation
speed.
Although the operation mechanism behind our

approach is intrinsically associated with a relatively (here
~15 nm) narrow bandwidth dictated by the spectral
position of the band-edge, our design strategy can be
easily extended to engineer AlGaAs-based devices oper-
ating efficiently on different spectral windows, since the
bandgap energy can be tuned with Al percentage to be in
the desired spectral range. Moreover, due to the generality
of the described phenomena, our results suggest the
versatility of direct-bandgap semiconductors as platforms
for ultrafast light control. Engineering the interplay
between band filling effect and resonances having even
higher quality-factor can enhance the effects of all-optical
modulations enabled by nonlinear metasurfaces. Lastly,
an extension of our model to comprise not only transient
amplification effects but also ultrafast light generation
(spontaneous emission and amplified spontaneous emis-
sion) in AlGaAs nanomaterials can disclose for novel
opportunities in the design of a broader class of active
metadevices.

Methods
Experimental setup
The ultrafast transient dichroism and birefringence

were measured using a home-built polarization-resolved
pump-probe apparatus. The fundamental wavelength
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laser pulses, emitted at 800 nm with a temporal duration
of 100 fs, were generated by a 1 kHz amplified Ti:sapphire
laser system (Libra, Coherent). To produce the pump
beam, we focused a portion of the fundamental laser
output onto a β-barium borate (BBO) crystal, resulting in
the generation of second harmonic pulses at 400 nm
wavelength. The remaining fraction of the fundamental
beam was directed into a near-IR optical parametric
amplifier (OPA) to generate pulses centered at 1240 nm
with an approximate bandwidth of 120 nm. The output of
the OPA was then focused onto a YAG plate to create a
broadband white light continuum probe beam, covering
the spectral range of 550–950 nm. To control the relative
time delay between the pump and probe pulses, we
inserted an optical delay stage (PI Instruments) into the
pump beam line and modulated the pump with a
mechanical chopper (MC200B, Thorlabs) at a frequency
of 500 Hz. Both the pump and probe beams were then
non-collinearly focused on the sample with the probe
beam incident at quasi-normal angles (α ~ 9°). The spot
sizes on the sample were measured as Gaussian beam
profiles with full width at half maximum (FWHM) values
of 240 µm and 100 µm, respectively. After being reflected
from the sample, the probe beam was re-collimated and
directed into a visible-NIR spectrometer (Princeton
Instruments) coupled with a linear photodetector array to
record the differential spectral reflectance (ΔR/R) of the
probe beam.
The polarization of the pump beam was fixed along the

TM direction or 0° (defined with respect to the kin
direction, Fig. 1c inset) for all measurements. The pump
beam angle of incidence, estimated to be around 15°, has a
very minor quantitative impact on the all-optical mod-
ulation performance, due to the absence of high-quality
resonances in this wavelength range. The pump fluence
was set to 70 μJ cm-2 and 180 μJ cm-2 for the ultrafast
transient dichroism and birefringence experiments,
respectively.
For the birefringence experiment, note that the scheme

presented in Fig. 1c is just a compact version of the full
apparatus: a second mirror is placed after the sample,
before the detection line, to properly direct the beam to
the spectrometer. Thus, the measured polarization is
resulting from the addition of the sample and the mirror
effects.

Modelling
The first step in our modelling approach describes the

dynamics of the system internal degrees of freedom n1(t),
n2(t) and ΘL(t). The 3TM is a slight modification of the
one presented in refs. 47,48, considering that our system is
a metasurface, that we modelled in 2D (with translational
invariance in the direction of the wires length). We adopt
the same reduced model approach to the carrier diffusion

in the bulk of the structure, assuming that the diffusion is
ambipolar and 1D from the top to the bottom of the
structure. Since the nanowires have the same height as the
pillars in ref. 48 and are excited at the same pump wave-
length (400 nm), we set the same value of the character-
istic diffusion time τd ¼ 1:3 ps48. We consider the
diffusion and recombination processes to be segregated,
with an effective recombination time τr ¼ 8 ps48.
The equations of the 3TM are as follows:

dn1
dt

¼ qF
f hskin

1
hνP

gðtÞ � n1
τd

dn2
dt

¼ n1
τd

hskin
H

� n2
τr

dΘL

dt
¼ EG

cL

n2
τr

In the first equation, the drive term includes q= 0.58,
the fraction of pump energy absorbed by the wire (cal-
culated via full-wave simulations), F, the pump fluence,
some geometric factors (f and hskin, the filling fraction of
the active medium in the cell and the skin depth,
respectively), the energy hνP of the pump photons, and
the temporal profile g(t) of the pump pulse:

gðtÞ ¼
ffiffiffiffiffiffiffiffiffi
4ln2
π

r
1

τFWHM
exp � 4ln2 t2

τ2FWHM

� �

Here, τFWHM is the pulse full width at half maximum: in
our case τFWHM ¼ 100 fs. The fluence in the simulations
is reduced with respect to experiments (F= 35 μJ cm-2

and F= 100 μJ cm-2 for the dichroism and birefringence
ones), to compensate for model overestimation18. Other
relevant parameters are the bandgap energy EG ¼ 1:6528
eV, estimated according to ref. 22 for AlGaAs with 18.5%
Aluminum (nominal value 18%), the AlGaAs lattice heat
capacity cL = 1.86 × 106 J m-3 K-1 (ref. 49), and the height
of the AlGaAs wires H= 400 nm.
The second step in our model consists in employing

semiclassical formulas for the optical transitions in
semiconductors. For the band filling effect, we follow the
steps outlined in refs. 46–48. We work in the parabolic
band approximation with contributions both from light
holes (lh) and heavy holes (hh). Specifically, the popula-
tion densities n1(t) and n2(t) contribute to modulating the
absorption coefficient for probe wavelengths shorter than
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λG ¼750 nm according to

Δαni ¼ Δαlh;ni þ Δαhh;ni ¼
λprobeffiffi

c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

λprobe
� 1
λG

s
ðClhGlh;niðλprobeÞ

þChhGhh;niðλprobeÞÞ

where c is the speed of light in vacuum, Clh ¼ 3:85 ´ 1013

m-1 s-1/2, Chh ¼ 7:81 ´ 1013 m-1 s-1/2 are constants, depen-
dent on AlGaAs material parameters17. Instead,

Glh;ni ¼ FðEal; EFV ;ni ;TÞ � FðEbl; EFc;ni ;TÞ � 1

Ghh;ni ¼ FðEah; EFV ;ni ;TÞ � FðEbh;EFc;ni ;TÞ � 1

where F is the Fermi−Dirac distribution at temperature T,
corresponding to the lattice temperature; the quasi-Fermi
levels EFV ;ni , EFC ;ni , which are carrier-dependent, and the
energies Eal, Ebl , Eah, Ebh are evaluated according to
equations 6a-6b, 8a-8b in ref. 46. The effective masses are
me= 0.084m0, mlh= 0.099m0, and mhh= 0.573m0, for the
electrons, light and heavy holes respectively, m0 being the
free electron mass.
The modification of the absorption coefficient translates

into a modulation of the imaginary part of the AlGaAs
refractive index (N+iK) of ΔKni ¼ λprobeΔαni=2. Kramers-
Kronig formulas allow to retrieve the relative real part
modulation ΔNni . Then the band filling permittivity
modulation is

ΔεBFni ¼ 2½NΔNni � KΔKni � þ i2½NΔKni þ KΔNni �

The population densities n1(t) and n2(t) also contribute
to permittivity modulation via a Drude-like mechanism,

ΔεDniðλprobe; tÞ ¼ ReðΔεDniÞ þ iImðΔεDniÞ :

ReðΔεDniÞ ¼ � e2niðtÞ
m�ε0½ð2πc=λprobeÞ2 þ Γ2Drude�

ImðΔεDniÞ ¼ �ReðΔεDniÞ
λprobeΓDrude

2πc

Here, e is the electron charge, ε0 the vacuum permit-
tivity, c the speed of light in vacuum, and m� ¼
ð 1
me

þ 1
m�hÞ

�1 is the reduced mass for the electron-hole
plasma, with m�

h defined as follows:

m�
h ¼

m3=2
hh þm3=2

lh

m1=2
hh þm1=2

lh

The Drude damping term ΓDrude has a value of
4:11 ´ 1013 rad/s (which is of the order of the value

reported in ref. 48 and estimated from GaAs carrier
mobility), fitted on the experimental data.
Finally, the permittivity change caused by the lattice

temperature increase with respect to the environment
ΔΘL ¼ ΘL � T env, due to thermo-optic effects, can be
expressed as ΔεTOðλprobe; tÞ ¼ ReðΔεTOÞ þ iImðΔεTOÞ,
where

ReðΔεTOðλprobe; tÞÞ ¼ 2½NðλprobeÞη�ΔΘLðtÞ

ImðΔεTOðλprobe; tÞÞ ¼ 2½KðλprobeÞη�ΔΘLðtÞ

The parameter η is the AlGaAs thermo-optic coeffi-
cient, which is in general dispersed in wavelength,
increasing as the band edge is approached. It is set to a
constant mean value η ¼ 1 ´ 10�3 K-1 following the same
approach as in ref. 55. Likewise, thermo-optic modulations
of the imaginary refractive index were neglected.
The total, complex-valued Δε can be computed as the

sum of these terms. For the free carriers, each of the
populations n1(t) and n2(t) is responsible for permittivity
modulations in the corresponding region of the structure
(hot spots at the wire top and bulk, respectively). To
simplify the calculations of the optical response, we divi-
ded the simulated wire geometry in two regions, a thin
16 nm layer on top, and the wire bulk below. In our cal-
culations, the bulk experiences a modification due only to
the second population, namely Δε=Δε(n2). On the con-
trary, we consider the top part of the wire to be subjected
to both contributions, Δε=Δε(n1)+Δε(n2), as the n1
population gradually depletes. Plugging the values of the
perturbed permittivity in our full-wave numerical simu-
lation, we can retrieve the optical response as a function
of time and probe wavelength. To this aim, we used
commercial software COMSOL Multiphysics 6.1,
employing finite element numerical methods to solve
Maxwell equations; we set periodic Floquet boundary
conditions on the sides of the unit cell, and port boundary
conditions on the top-bottom edges (air and GaAs sub-
strate). The simulated geometrical parameters, slightly
differing from the nominal ones, are adjusted to match the
static optical response: W= 150 nm, H= 400 nm,
P= 400 nm. These discrepancies are likely due to fabri-
cation defects on one hand, and to simulation limits on
the other. Specifically, finite-size effects are expected to be
particularly relevant, since the probe spot size was bigger
than the patterned area of the sample. In this respect, we
also take the substrate response into account, as detailed
in the Supporting Information document, section S4.2.
Lastly, we also included a rounding of the upper part of
the wire and added a flat loss contribution of 0.03 to
AlGaAs imaginary part of the permittivity, to mimic
sample imperfections causing the broadening of the
optical features.

Crotti et al. Light: Science & Applications          (2024) 13:204 Page 9 of 11



Polarization reconstruction
We report here the technique used for the unperturbed

conditions; we proceeded similarly also for the dynamic
phase reconstruction. See the Supporting Information
document, section S5, for details on the error estimation
process and statistical analysis.
To reconstruct the polarization of the reflected beam,

we used a rotating quarter-waveplate and a polarizer, with
the fast axis fixed at γ= 135° with respect to the ûTM

direction in the polarization plane. We performed several
measurements of the reflected beam intensity, corre-
sponding to different angles of rotation β of the waveplate
fast axis. Here, β is also defined with respect to ûTM and
its values are β= [30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°,
120°, 130°, 140°, 150°, 160°, 170°]. We employed groups of
four of these measurements to solve the equation system
presented in ref. 56 to obtain different estimates of the
Stokes parameters I, M, C, S for each probe wavelength:

Rðβ; γÞ ¼ 1
2 Iþ ½Mcosð2βÞ þ C sinð2βÞ� cosð2ðγ� βÞÞf
þ S½sinð2ðγ� βÞÞ�g

We then computed the phase φ as a function of the C, S
parameters. Lastly, we used statistical analysis to obtain
the most reliable estimate for I, M, C, S and φ, from the
ones obtained as mentioned and plotted the experimental
polarization ellipse.
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