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GeneAI 3.0: powerful, novel, 
generalized hybrid and ensemble 
deep learning frameworks 
for miRNA species classification 
of stationary patterns 
from nucleotides
Jaskaran Singh 1, Narendra N. Khanna 2, Ranjeet K. Rout 3, Narpinder Singh 4, 
John R. Laird 5, Inder M. Singh 6, Mannudeep K. Kalra 7, Laura E. Mantella 8, Amer M. Johri 8, 
Esma R. Isenovic 9, Mostafa M. Fouda 10, Luca Saba 11, Mostafa Fatemi 12 & Jasjit S. Suri 13*

Due to the intricate relationship between the small non-coding ribonucleic acid (miRNA) sequences, 
the classification of miRNA species, namely Human, Gorilla, Rat, and Mouse is challenging. 
Previous methods are not robust and accurate. In this study, we present AtheroPoint’s GeneAI 
3.0, a powerful, novel, and generalized method for extracting features from the fixed patterns 
of purines and pyrimidines in each miRNA sequence in ensemble paradigms in machine learning 
(EML) and convolutional neural network (CNN)-based deep learning (EDL) frameworks. GeneAI 
3.0 utilized five conventional (Entropy, Dissimilarity, Energy, Homogeneity, and Contrast), and 
three contemporary (Shannon entropy, Hurst exponent, Fractal dimension) features, to generate 
a composite feature set from given miRNA sequences which were then passed into our ML and DL 
classification framework. A set of 11 new classifiers was designed consisting of 5 EML and 6 EDL for 
binary/multiclass classification. It was benchmarked against 9 solo ML (SML), 6 solo DL (SDL), 12 
hybrid DL (HDL) models, resulting in a total of 11 + 27 = 38 models were designed. Four hypotheses 
were formulated and validated using explainable AI (XAI) as well as reliability/statistical tests. 
The order of the mean performance using accuracy (ACC)/area-under-the-curve (AUC) of the 24 DL 
classifiers was: EDL > HDL > SDL. The mean performance of EDL models with CNN layers was superior 
to that without CNN layers by 0.73%/0.92%. Mean performance of EML models was superior to SML 
models with improvements of ACC/AUC by 6.24%/6.46%. EDL models performed significantly better 
than EML models, with a mean increase in ACC/AUC of 7.09%/6.96%. The GeneAI 3.0 tool produced 
expected XAI feature plots, and the statistical tests showed significant p-values. Ensemble models 
with composite features are highly effective and generalized models for effectively classifying miRNA 
sequences.
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Abbreviations
AI	� Artificial intelligence
ACC​	� Accuracy
ADASYN	� Adaptive synthetic sampling approach for imbalanced leaning
ANOVA	� Analysis of variance
AUC​	� Area-under-the-curve
BC	� Binary classification
BiGRU​	� Bidirectional GRU​
BiLSTM	� Bidirectional LSTM
BiRNN	� Bidirectional RNN
CNN	� Convolutional neural network
DL	� Deep learning
DT	� Decision trees
ET	� Extra trees
EDL	� Ensemble deep learning
EML	� Ensemble machine learning
FD	� Fractal dimension
FN	� False negative
FP	� False positive
GPU	� Graphics processing unit
GRU​	� Gated recurrent unit
HDL	� Hybrid deep learning
HE	� Hurst exponent
HINN	� Hierarchical input neural networks
KNN	� K-nearest neighbors
LDA	� Linear discriminant analysis
LGBM	� Light gradient boosting model
lncRNA	� Long non-coding RNAs
LR	� Logistic regression
LSTM	� Long short-term memory
MCC	� Multiclass classification
miRNA	� MicroRNA
ML	� Machine learning
mRNA	� Messenger RNA
NB	� Naïve Bayes
ORF	� Open reading frame
RF	� Random forest
ROC	� Receiver operating curves
RNA	� Ribonucleic acid
RNN	� Recurrent neural network
SDL	� Solo deep learning
SHAP	� Shapley additive explanations
SE	� Shannon entropy
SML	� Solo machine learning
SVM	� Support vector machine
TP	� True positive
TN	� True negative
XAI	� Explainable AI
Xgboost	� Extreme gradient boost

Symbols
η	� Accuracy
R	� Recall
P	� Precision
F	� F1-score
µ	� Arithmetic mean
A	� Adenine
U	� Uracil
C	� Cytosine
G	� Guanine
XC	� Co-occurrence matrix
XC

′	� Normalized co-occurrence matrix
St	� MiRNA sequence
n	� Length of miRNA sequence
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p	� Probability of Bernoulli process
DN	� Binary miRNA sequence
fSet	� Final feature set representation
�(n)	� Difference between maximum and minimum instances of the binary miRNA sequence
V(n)	� Standard deviation of the Binary miRNA sequence
T̃miRNA	� Nucleotides representation: {A, U, C, G}
LCCE	� Categorical cross-entropy Loss
η(m,K10)	� Accuracy of model ‘m’ summarized over all D datasets over K10 protocol
η(d, K10)	� Accuracy achieved over dataset ‘d’ over all M Models over K10 protocol
ηsys	� Overall system accuracy over M models and D datasets
α(m, K10)	� AUC of model m summarized over all D datasets
α(d, K10)	� AUC achieved over dataset d over all M Models
αsys	� Overall system AUC over M models and D datasets
M	� Total number of Models used in study
D	� Total number of Datasets used in study
 ⊕ 	� Concatenation of two models

MicroRNAs (miRNAs) are short RNA molecules that play a crucial role in regulating gene expression1,2. Typi-
cally consisting of 20–25 nucleotides, they are formed through the transcription of longer RNA molecules 
by cellular enzymes. By binding to target messenger RNA (mRNA), miRNAs can inhibit mRNA’s translation, 
thereby controlling the expression of specific genes. This mechanism influences various biological processes such 
as proliferation3, apoptosis4, development5,6, and differentiation7. Disruptions in miRNA expression have been 
associated with diseases like cancer8–10 and cardiovascular disease11–13. Accurately classifying miRNA sequences 
based on their origin14–16 is crucial due to the diverse roles that miRNA sequences play in disease development 
across different species17–19. This classification enables the identification of conserved miRNA sequences and their 
target genes, contributing to a better understanding of miRNA function and the detection of potential threats20–22.

Machine learning’s application has been constantly observed in multiple bioinformatics studies23–33, including 
several tools have gained attention in the field of miRNA identification. These tools include Mipred25, Triplet34, 
HeteroMirPred35, micropred36, PlantMiRNAPred37, and mirnaDetect38. They have the ability to extract pre-
miRNAs from protein-coding regions that exhibit stem-loop structures similar to genuine pre-miRNAs but have 
not been identified as such. In addition, numerous computational methods have been developed to enhance 
miRNA identification. These methods include MatureByes39, MiRMat40, MiRRim241, MiRdup42, MaturePred43, 
MiRPara44, mirExplorer45, Matpred46, and MiRduplexSVM47. MiRNA identification can be performed using de 
novo methods, which involve computational tools, or by utilizing next-generation sequencing data48,49. These 
methods focus on identifying pre-miRNA sequences that exhibit hairpin-like structures in the input data. They 
are categorized based on expression-based features or computed sequences.

The intricate nonlinear nature of miRNA sequences poses challenges for these methods, primary due to the 
high-dimensional feature spaces associated with the sequences50. To address these challenges, primitive methods 
like ensemble ML (EML) methods that employ voting mechanisms51–53 have been introduced. This was follwed 
by deep learning (DL) models, such as Convolutional Neural Networks (CNN) and Long Short-Term Memory 
(LSTM)54,55. DL models have the capability to capture the nonlinear complexity of miRNA sequences, making 
them well-suited for characterization and classification tasks54–57. Despite the promising results achieved by 
solo DL (SDL) models in miRNA classification, they often require large labeled datasets and are susceptible to 
overfitting58, which hinders their generalization capabilities59. To further improve classification performance, 
hybrid DL (HDL) and ensemble DL (EDL) models have been proposed60,61. These models leverage the strengths 
of multiple DL architectures62–64.

Extracting additional features from miRNA sequences is a valuable strategy for overcoming the aforemen-
tioned limitations. Although features like k-mer frequency and dinucleotide composition effectively capture 
sequence-specific details65–67, they have inherent limitations in extracting comprehensive information. To address 
these challenges, conventional features such as Energy, Contrast, and Entropy can be employed to capture struc-
tural characteristics68–71. Additionally, contemporary features like Shannon Entropy and Hurst Exponent can be 
derived to obtain additional insights. By combining both sequence-specific and structural features into a com-
posite feature set, the effectiveness of DL models can be further enhanced, resulting in a more robust approach. 
Further, incorporation of CNN layers in this paradigm enhances classification by capturing local patterns and 
spatial dependencies. Hence usage of CNN-based EDL models with extracted composite features is paramount 
in building a robust and state-of-the-art framework for miRNA classification.

In the spirit of improving species classification by employing EDL and EML classifiers, along with novel 
composite feature extraction we built an extensive set of ensemble-based AI classifiers, focusing on four main 
hypotheses. First, we investigate the benefits of using EML models with voting compared to SML models for 
miRNA species classification in binary classification (BC) and multiclass classification (MCC) scenarios. Second, 
we validate the superiority of EDL models over HDL and SDL models. Additionally, we explore the advantages 
of incorporating CNN layers in miRNA species classification, comparing them to models without CNN layers. 
Lastly, we examine the advantage of transitioning from EDL models to EML models in ensemble-based spe-
cies classification. By introducing composite features and enhancing ensemble learning, our approach brings a 
fresh perspective to design and improves the reliability of genomic sequence testing. Consequently, it enhances 
the accuracy of miRNA sequence classification, surpassing previous research that relied solely on statistical 
techniques.
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Figure 1 presents an overall block diagram of GeneAI 3.0 (AtheroPoint LLC, Roseville, CA, USA). With the 
input of miRNA species data containing gene sequences, the system performs an intensive data preparation 
(elliptical preprocessing block), which includes binary encoding of the gene sequence, scaling, augmentation 
using Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN)72, and interpolation. It then 
performs an elaborated feature extraction (elliptical feature extraction block), where it derives composite features 
from the binary miRNA sequence. GenAI 3.0 then incorporates 38 extensive AI models (classification block): 
nine SML, five EML, six SDL, twelve HDL and six EDL models, and classifies the species along with performance 
metrics (performance block), consisting of statistical tests and explainable AI (XAI) graphs.

Our research findings validated the advantages of utilizing EDL models in gene classification by conduct-
ing experiments that establish the model order as EDL > HDL > SDL. We have also validated the benefits of 
EML models over SML models in the miRNA classification. Furthermore, we have assessed the performance 
improvements achieved using EDL models compared to EML models, as well as the advantages gained from 
incorporating CNN layers in DL models. Alongside our primary contributions, we have investigated the impact 
of training data size on the model’s performance and validated the reliability and stability of our approach through 
statistical tests. Finally, we have employed XAI plots to interpret our classification findings and offer insights 
into species classification.

The paper starts elaboration on the methodology which discusses the extracted features, employed classi-
fiers and optimization parameters along with experimental protocols in “Methodology” section. The results are 
presented in “Results” section, while “Performance evaluation” section provides a performance evaluation with 
Receiver Operating Characteristic (ROC) curves, and influence of training data size. “Reliability analysis using 
statistical tests” section demonstrates reliability using statistical tests, while “Explainable artificial intelligence” 
section uses XAI plots used to enhance the interpretability. “Discussion” section presents a discussion of the 
principal findings, a benchmarking with previous studies, and an overview of the study’s strengths, weaknesses, 
and extensions. Finally, “Conclusion” section concludes the paper.

Methodology
In order to explore the connection between miRNA sequences and their corresponding species, we employed 
statistical ML and DL models for classification in our methodology. The initial stage involved collecting the 
primary dataset that would serve as the foundation for classification, ensuring its suitability for utilization in 
the classifiers. Next, we conducted quality control procedures, including categorical encoding of the miRNA 
sequences, data scaling, oversampling of the minority class, interpolation of missing sequences, and label encod-
ing of the class labels. We also computed both conventional and contemporary features from the dataset. Sub-
sequently, we meticulously designed the architecture of all the AI models used, along with the hyperparameter 
tuning approaches, loss functions, and training details employed to train these models. Lastly, we defined the 
performance metrics and experimental protocols utilized in our study.

Data and data preparation
This study utilized the miRNA Database available at http://​www.​mirba​se.​org/ for experimental design, data 
collection, and discussion purposes. The database encompasses miRNA sequences from various species, includ-
ing Humans, Gorillas, Mouse, and Rat. Th dataset used in this study consisted of 2654 Human, 369 Gorilla, 
1978 Mouse, and 764 Rat miRNA sequences. A ribonucleic acid (RNA) molecule is composed of a backbone 
comprising sugar ribose and phosphate groups. In contrast to deoxyribonucleic acid (DNA), the sugar ribose 
lacks deoxyribose and is connected to one of four bases: adenine (A), uracil (U), cytosine (C), or guanine (G). 
To convert miRNA sequences containing these four bases into binary sequences, we applied a set of rules that 
mapped each base to a corresponding binary digit73,74:

(1)A/G → 1 and C/U → 0

Figure 1.   Global architecture of GenAI 3.0 (AtheroPoint LLC, CA, USA). SML: Solo machine learning; EML: 
Ensemble machine learning; SDL: Solo deep learning; HDL: Hybrid deep learning; EDL: Ensemble deep 
learning.

http://www.mirbase.org/
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This was done using truncation of sequence75–77. This resulted in four datasets of binary sequences from the 
four species: Humans, Gorillas, Mouse, and Rat. Table 1 lists the specifications of each dataset.

The class labels for the four species (Human, Gorilla, Mouse, and Rat) were encoded between 0 and 3 to be 
used as target classes in the classifiers. This label encoding was employed to convert the category labels for each 
species into numerical values, allowing for the application of DL techniques to analyze the relationships between 
miRNA sequences and the different species.

To facilitate this analysis, six binary class datasets and four multiclass datasets were prepared. These datasets 
were carefully curated and preprocessed to cover various scenarios among the four species. In the binary class 
datasets, two species were compared using a binary classification approach. The objective was to accurately dif-
ferentiate between the two species using the provided dataset features. We created multiple datasets with the 
aim of achieving generalization78–81 in species classification. The purpose behind this initiative was to train our 
model on a variety of datasets, ensuring its effectiveness in real-life scenarios. This approach allows any gene 
sequence to be pre-processed, features extracted, and utilized by our model. The binary datasets consisted of 
the following pairwise species comparisons: Human vs. Gorilla, Human vs. Rat, Human vs. Mouse, Mouse vs. 
Gorilla, Mouse vs. Rat, and Gorilla vs. Rat. For the multiclass datasets, the methodology used was "one vs. all." 
Each species was considered as one class, while the other three species were treated as the second class. The four 
multiclass datasets created were: Human vs. All, Rat vs. All, Gorilla vs. All, and Mouse vs. All. By utilizing these 
processed datasets, researchers could leverage DL techniques to gain insights into the relationships between 
miRNA sequences and different species.

Data availability/availability of data and materials
Due to its propriety nature, supporting data cannot be made available openly but are available from the cor-
responding author on reasonable request.

Quality Control
There is an unbalanced distribution of data points among the various classes in the dataset we acquired for our 
study. Data size in particular plays a vital role both in generalization vs. memorization protocols. When data size 
is low, we have seen studies where two types of data augmentation have been adopted74,79,82–87. If it is an image 
data, the data augmentation consisted of increasing the data size by flipping and rotating the images82–87. On the 
other hand, if the data is a point or tabular data, then the augmentation can be accomplished using SMOTE74 or 
ADASYN protocols88. To address this issue, we utilized the ADASYN technique, as depicted in Fig. 1. ADASYN 
is a method that generates synthetic samples for the minority class, thereby achieving a more balanced distribu-
tion of data points among the different classes. This approach is beneficial because imbalanced data can hinder 
the performance of supervised ML algorithms, which often prioritize the majority class and may exhibit poor 
performance on the minority classes. By employing ADASYN and balancing the representation of the classes in 
the dataset, we can enhance the performance of various classifiers. Some examples of classifiers that can benefit 
from this balanced data include Gradient Descent Boosting89, Support Vector Machine (SVM)77, and Logistic 
Regression (LR)88.

We also employed linear interpolation to handle missing values within the "Human" class. Linear interpola-
tion is a method that estimates the missing values by assuming a linear relationship between the available data 
points. By applying linear interpolation to the four instances with missing values, we successfully completed the 
dataset and ensured the integrity of the data for further analysis.

Additionally, to improve the performance of our algorithms on the imbalanced dataset, we implemented data 
scaling techniques73,74 to standardize the features and ensure their similarity in scale. This enabled faster conver-
gence of the algorithms and enhanced the accuracy of predictions. We specifically employed the Min–Max Scaler 
method, which rescales the data to a fixed range between 0 and 1. This is achieved by subtracting the minimum 
value and dividing by the range73,74. By utilizing this method, we standardized the features and reduced their 
values, which expedited the training process for both ML and DL models.

Feature representation and composite features extraction
The miRNA sequence St consists of four nucleotide bases: A, C, U, and G, which can be arranged in different 
combinations. The presence of these nucleotides in the miRNA sequence signifies their interdependencies, and 
through the analysis of their patterns, distinct characteristics can be identified to distinguish between various 
species. In order to differentiate species based on feature representations of miRNA sequences, we developed 
an innovative approach to uncover these nucleotide co-occurrences. To demonstrate the possible arrangements 

Table 1.   Specifications of the miRNA dataset.

Dataset name Dataset size

Human 2654

Gorilla 369

Mouse 1978

Rat 764

Combined classes 5765



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7154  | https://doi.org/10.1038/s41598-024-56786-9

www.nature.com/scientificreports/

of these nucleotides in miRNA gene sequences, we utilized co-occurrence matrices generated through vector 
combinations, as depicted in the provided Table 2.

In order to gain insights into the inherent patterns of miRNA, it is essential to investigate the co-occurrences 
of nucleobases and analyze both their stationary and non-stationary patterns. To extract valuable information 
from these patterns, we employed the widely utilized grey-level co-occurrence matrix90, a technique commonly 
employed in texture analysis and pattern recognition91. We have adopted the same feature extraction namely 
entropy, contrast, energy, homogeneity, dissimilarity as previously published by our group92–96 Such algorithms 
are being used for tissue characterization in medical imaging97,98. For each miRNA sequence, we computed mul-
tiple co-occurrence matrices, namely I, J, K, L, M, N, O, and P. These matrices captured diverse patterns formed 
by the nucleobases A, C, U, and G. In Tables (ST1–ST8), we present these co-occurrence matrices, which offer 
an overview of the different nucleobase arrangements and their corresponding frequencies.

The primary objective of constructing co-occurrence matrices from the miRNA sequence St is to analyze the 
occurrence frequency of specific combinations and offsets of the nucleobases A, C, U, and G. The co-occurrence 
matrix XC has a size of q × 4 for a given offset, where q represents the number of distinct nucleobase combinations 
found in sequence St. Each element in the co-occurrence matrices presented in Tables (ST1–ST8), denoted as 
the ( l  , m)th position, indicates the frequency of the l th and mth nucleobases occurring in the sequence St, which 
has a length of n . This relationship can be mathematically expressed using the following equation:

The computation of matrix XC is contingent upon the spatial relationship defined by the offset ( �i , �j ). 
These co-occurrence matrices are utilized to analyze the frequency of various combinations of the nucleobases 
A, C, U, and G in the sequence St. In order to extract distinctive and discriminative features, the XC matrices 
are subjected to normalization, resulting in the transformed matrices XC′.

Subsequently, the normalized co-occurrence matrix XC′ is utilized to compute several properties, which 
include Entropy, Contrast, Energy, Homogeneity, and Dissimilarity95,99–101. The mathematical equations for these 
properties can be found in Table 3. These properties serve as quantitative measures to characterize different 

(2)XC =

n
∑

i=1

n
∑

j=1

{

1, XC
(

i, j
)

= l�XC
(

i +�i, j +�j
)

= m
0, otherwise

(3)XC
′

=
X

∑q
l=0

∑q
m=0 X(l,m)

Table 2.   Possible sets of occurrences of nucleobases A, C, U, and G in an RNA sequence formed by the 
combination of vectors, where I, J, K, L, M, N, O, and P are the co-occurrence matrices.

X Y XT*Y

X1 = (A, C, U, G) (A, C, U, G) I4x4 = (X1 T)4x1 x (Y)1x4

X2 = (AA, CC, UU, GG) (A, C, U, G) J4x4 = (X2 T)4x1 x (Y)1x4

X3 = (AC, AU, AG, CU, CG, UG) (A, C, U, G) K6x4 = (X3 T)6x1 x (Y)1x4

X4 = (CA, UA, GA, UC, GC, GU) (A, C, U, G) L6x4 = (X4 T)6x1 x (Y)1x4

X5 = (ACU, ACG, AUG, CUG) (A, C, U, G) M4x4 = (X5 T)4x1 x (Y)1x4

X6 = (CAU, CAG, UAG, UCG) (A, C, U, G) N4x4 = (X6 T)4x1 x (Y)1x4

X7 = (AUC, AGC, AGU, CGU) (A, C, U, G) O4x4 = (X7 T)4x1 x (Y)1x4

X8 = (UCA, GCA, GUA, GUC) (A, C, U, G) P4x4 = (X8 T)4x1 x (Y)1x4

Table 3.   Features extracted from a co-occurrence matrix XC′ of miRNA sequence St. XC
′.

Feature Mathematical formula

Energy
q
∑

l=0

q
∑

m=0

XC
′

(l,m)2

Entropy
q
∑

l=0

q
∑

m=0

−XC
′

(l,m) X ln(XC
′

(l,m))

Homogeneity
q
∑

l=0

q
∑

m=0

XC
′

(l,m)
(

1+(l−m)2
)

Contrast
q
∑

l=0

q
∑

m=0

XC
′

(l,m) X (l −m)2

Dissimilarity
q
∑

l=0

q
∑

m=0

XC
′

(l,m) X |(l −m)|
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aspects of the co-occurrence patterns captured in the matrix XC′ . Afterwards, the features outlined in Table 3 
are computed for each co-occurrence matrix Tables (ST1–ST8), and the corresponding feature vectors are pre-
sented in Table 4. Consequently, these feature vectors are utilized to construct the final feature set representation, 
denoted as fSet, for an RNA sequence of a miRNA sequence St:

Shannon entropy
Shannon Entropy (SE) is a valuable metric for quantifying the information content or uncertainty within a given 
sequence. It assesses the entropy of information in a Bernoulli process where two possibilities (0/1) occur with a 
probability of p 102–105. The SE signifies the degree of uncertainty present in a binary string and can be computed 
using the following formula:

where pi represents the probability of a binary sequence having two distinct values. When p = 0, indicating that 
the event is impossible, there is no ambiguity, and the SE is 0. Likewise, when p = 1, indicating a certain outcome, 
the SE is also 0. In the case where p = 1/2106, the level of uncertainty is at its highest, resulting in an SE value of 1.

Hurst exponent
Hurst Exponent (HE) is a measure that characterizes the autocorrelation properties of a time series107 and finds 
applications in applied mathematics. It takes values between 0 and 1, where values in the range of [0, 0.5] indi-
cate negative autocorrelation in the time series108–110. Positive autocorrelation, on the other hand, is indicated 
by values in the range of [0.5, 1]. A HE value of 0.5 suggests that the variable is uncorrelated with its previous 
values, indicating a random series. HE score increases with the strength of the correlation between successive 
values. The following equation is used to calculate the HE of a binary sequence D of length n , where Di represents 
the ith element of the binary sequence D.

where

fSet =
(

fI, fJ, fK, fL, fM, fN, fO, fP
)

.

(4)SE = −

1
∑

i=0

pi log2(pi)

(5)
�(n)

V(n)
=

(n

2

)HE

(6)�(n) = max (Y1 . . .Yn)−min (Y1 . . .Yn)

(7)V(n) =

√

√

√

√

1

n

[

n
∑

i=1

(Di − µ)2

]

(8)Yt =

t
∑

i=1

(Di − µ), ∀t = 1, 2, 3 . . . n

(9)µ =
1

n

n
∑

i=1

Di

Table 4.   Extracted Feature vectors from the cooccurrence matrices.

Feature vector Co-occurrence matrix

fI = (f1, f2, f3, f4, f5) I (Table ST1)

fJ = (f6, f7, f8, f9, f10) J (Table ST2)

fK = (f11, f12, f13, f14, f15) K (Table ST3)

fL = (f16, f17, f18, f19, f20) L (Table ST4)

fM = (f21, f22, f23, f24, f25) M (Table ST5)

fN = (f26, f27, f28, f29, f30) N (Table ST6)

fO = (f31, f32, f33, f34, f35) O (Table ST7)

fP = (f36, f37, f38, f39, f40) P (Table ST8)
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Fractal dimension
The Fractal Dimension (FD) of miRNA sequences is a widely used feature for analyzing their structural complex-
ity. The first step in calculating the FD involves transforming each miRNA sequence into indicator matrices111,112. 
The four nucleotides {A, U, C, G}c are represented by the symbol T̃miRNA , and DN represents a miRNA sequence 
of length N composed of four symbols chosen from T̃miRNA . The indicator function for each miRNA sequence 
is defined by the following equation:

Here the indicator matrix will be:

To convert the miRNA sequence into a binary representation, a 2D dot-plot image is generated using the 
I(N ,N) matrix, which consists of values 0 and 1. This binary image visually represents the distribution of zeros 
and ones in the sequence, where white dots represent 0 and black dots represent 1. The FD can be computed 
from an indicator matrix by averaging the sigma σ(k) values of 1 randomly selected from an N  × N  indicator 
matrix112–114. The following equation is used to calculate the FD based on the sigma σ(k) value:

Machine learning and deep learning classifiers
In this comprehensive data analysis, we developed a total of fourteen ML models, including nine SML models 
and five EML models. Additionally, we constructed 24 DL models, consisting of six SDL models, twelve HDL 
models, and six EDL models.

Machine learning classifiers
For simplicity and availability, we selected the following ML models: LR115,116, Linear SVM117–119, Decision 
Tree (DT)120, RF121–123, Extra Trees (ET)124,125, Extreme Gradient Boost (XGBoost)88,126, K-Nearest Neighbors 
(KNN)127,128, Linear Discriminant Analysis (LDA)129,130, Light Gradient Boosting Machine (LGBM)131,132, and 
Naive Bayes (NB)133. We specifically chose six nonlinear models (DT, RF, ET, XGBoost, KNN, LGBM) as they 
are suitable for nonlinear classification tasks, which is crucial for effectively classifying binary-encoded miRNA 
species. Each model possesses unique strengths and weaknesses, and by evaluating multiple models, we can 
compare their performances and select the most effective one. Furthermore, we created five EML models: (i) 
LR and SVM, (ii) DT and KNN, (iii) DT and RF, (iv) RF, DT, and ET, and (v) ET, XGBoost, and LGBM. These 
models were constructed using a voting-based ensemble classifier approach.

Solo deep learning classifiers
Among the DL models, we developed six SDL models: GRU (Gated Recurrent Unit), Bidirectional GRU (BiGRU), 
RNN (Recurrent neural network), Bidirectional RNN (BiRNN), LSTM, and Bidirectional LSTM (BiLSTM). 
These models were specifically designed to capture the temporal dependencies and intricate patterns present 
in the miRNA sequences, further enhancing the classification performance. We conducted rigorous evaluation 
and testing to assess the performance and effectiveness of each SDL model, for the selection of the most suitable 
architecture for miRNA species classification.

Hybrid deep learning classifiers
While these SDL models have shown limited success in miRNA classification, combining them into HDL mod-
els has proven to be beneficial in overcoming data scarcity and improving performance82,84,134,135. HDL models 
can effectively address domain-specific challenges and enhance accuracy in tasks such as miRNA classification 
by leveraging multiple architectural components. Considering these advantages, we constructed twelve HDL 
models: (i) LSTM-GRU, (ii) BiLSTM-BiGRU, (iii) LSTM-CNN, (iv) BiLSTM-CNN, (v) GRU-CNN, (vi) BiGRU-
CNN, (vii) BiRNN-CNN, (viii) BiGRU-GRU, (ix) BiLSTM-LSTM, (x) BiRNN-RNN, (xi) RNN-CNN, and (xii) 
LSTM-GRU-CNN.

Ensemble deep learning classifiers
Furthermore, we created six EDL models: (i) BiLSTM-BiGRU and LSTM-GRU, (ii) BiLSTM-BiGRU and BiRNN-
RNN, (iii) BiGRU-GRre U and LSTM-CNN, (iv) BiRNN-CNN and GRU-CNN, (v) BiLSTM-LSTM and RNN-
CNN, and (vi) BiLSTM-CNN and BiGRU-CNN by concatenating their output vectors. By combining these 
multiple vectors, we can leverage the strengths and advantages of each individual model. The EDL models are 
depicted in Figures F1, F2, F3, F4, F5, and F6 in the supplementary material. All constituent models are utilized 
without their output layers and are truncated until the dropout layers. These model components are then con-
catenated using a concatenate layer and further employed as input to a dense layer network. Finally, the network 
is connected to a softmax layer for predicting the species.

(10)F : DN × DN → {0, 1}, andDN = {0, 1}

(11)I(N ,N) =

{

1, si = sj
0, si �= sJ

where si , sjǫDN

(12)FD = −
1

N

N
∑

k=2

log(σ (k))

log k
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Hypertuning parameters and optimization
During the study, the models were trained using a batch size of 64. The loss function chosen for training was 
categorical cross-entropy, which is commonly used for multi-class classification tasks. This loss function quanti-
fies the dissimilarity between the predicted and actual probability distributions136,137.

The objective is to minimize the discrepancy between these distributions, leading to a reliable system that 
generates predicted probabilities that closely align with the true distribution. Categorical cross-entropy ensures 
that the differences between all probabilities are minimized. The mathematical equation for categorical cross-
entropy is provided below:

where N represents the total number of miRNA sequences, TC denotes the number of species categories, and 
1yiǫTCc  indicates that the h observation belongs to the cth category. Table ST9 in the supplementary material 
provides details on the number of epochs, initial learning rates, and optimizers utilized for each EDL model. 
The implementation of the study was carried out using Python 3.8 and the TensorFlow framework. The system 
execution occurred on a machine that featured a 12 GB NVIDIA P100 16 Graphics Processing Unit (GPU), an 
Intel Xeon Processors processor, and 12 GB of RAM.

Performance metrics
The proposed models were assessed for both binary and multiclass classification tasks, with the multiclass 
approach utilizing the "one vs. all" strategy138,139 for each species. To evaluate the models, several parameters 
were considered: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). A sample 
belonging to a specific species is considered a TP if it is correctly classified as such. Likewise, a sample not 
belonging to the species is labeled as a TN if it is correctly classified as not belonging. However, if a sample not 
belonging to the species is incorrectly classified as belonging, sample not belonging to the species is incorrectly 
classified as belonging, it is a FP, and if a sample belonging to the species is incorrectly classified as not belonging, 
it is a FN. These parameters allow the derivation of various performance evaluation (PE) metrics, including: (i) 
Accuracy (η): Indicates the proportion of correct overall predictions out of the total predictions made. (ii) Recall 
(R): Represents the ratio of correctly predicted positive class instances to all positive members in the dataset. (iii) 
Precision (P): Measures the ratio of correctly predicted positive class instances to the total number of classified 
positive predictions. (iv) F1-score (F): The F1-score is the harmonic mean of precision and recall, serving as a 
valuable metric for evaluating model performance, especially on imbalanced datasets. (v) Area-under-the-curve 
( α ): It quantifies the two-dimensional area beneath the plotted ROC curve and is commonly used to assess model 
performance in both binary and multiclass classification problems.

In this study, we introduce formulations to measure the overall robustness of the model. To achieve this, six 
quantities are measured in this section, including η(m, K10) , which represents the accuracy of model m sum-
marized over all D datasets, η(d, K10) , which indicates the accuracy of dataset d achieved by summarizing M 
models, ηsys , which represents the overall system accuracy achieved by averaging accuracy over M models and 
D datasets, α(m, K10) , which summarizes the AUC of model m over all D datasets, α(d, K10) , which indicates 
the robustness of dataset d achieved by summarizing the AUC over M models, and αsys , which represents the 
overall system robustness achieved by averaging the AUC over M models and D datasets. These formulations 
are measured in each section for a combination of ML, SDL, HDL, and EDL models, as well as a combination 
of six binary and four multiclass datasets and their combinations. All these formulas were computed using the 
default K10 partition protocol.

(13)LCCE=
1

N

N
∑

i = 1

TC
∑

c = 1

1yiǫTCc logamodel(yiǫTCc )

(14)η =
TP + TN

TP + FP + FN + TN

(15)R =
TP

TP + FN

(16)P =
TP

TP + FP

(17)F = 2 ∗
P * R

P + R

(18)η(m, K10)=

∑D
d = 1 η(m, d, K10)

D

(19)η(d, K10)=

∑M
m = 1 η(m, d, K10)

M
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Experimental protocols
To verify our hypothesis, we trained nine SML, six EML, six SDL, twelve HDL, and six EDL models, totalling 38 
AI models, using a composite feature set. The feature set consisted of conventional features, including Entropy, 
Dissimilarity, Energy, Homogeneity, and Contrast, as well as contemporary features, such as Shannon entropy, 
Hurst exponent, and Fractal dimension. To test the resilience of the features on the AI models, we created various 
subsets of data with ten different datasets (six binary class and four multiclass).

Experiment 1: EDL Models vs. HDL Models vs. SDL Models
The main objective of this study is to examine and compare the effectiveness of SDL, HDL, and EDL models in 
classifying species using miRNA sequences. To achieve this, we trained and evaluated the performance of 24 AI 
models: six SDL, twelve HDL, and six EDL. The models were trained and tested using six binary and four multi-
class balanced composite feature datasets. To evaluate the performance of these 24 AI models, their predictions 
were averaged across all ten datasets (6 binary class and 4 multiclass), and a comprehensive comparison was 
performed. To ensure the reliability of the results, the experiment utilized the K10 Cross-Validation protocols.

Experiment 2: EDL Models with CNN layers vs. without CNN layers
This study focuses on examining and comparing the impact of employing CNN layers into EDL models for spe-
cies classification using miRNA sequences. The training and evaluation were conducted on twelve AI models, 
comprising four CNN-Based HDL models and two Non-CNN-Based HDL models. The models were trained and 
tested using six binary and four multiclass balanced composite feature datasets. To evaluate the performance of 
these 6 AI models, their predictions were averaged across all ten datasets (6 binary class and 4 multiclass), and 
a comprehensive comparison was performed. To ensure the reliability of the results, the experiment utilized the 
K10 Cross-Validation protocols.

Experiment 3: EML Models vs. SML Models
The primary aim of this study is to assess and contrast the efficacy of EML models versus SML models in the 
classification of species using miRNA sequences. The training and evaluation process involved 14 AI models, 
including nine SML models and five EML models. The models were trained and tested using six binary and four 
multiclass balanced composite feature datasets. To evaluate the performance of these 14 AI models, their predic-
tions were averaged across all ten datasets (6 binary class and 4 multiclass), and a comprehensive comparison was 
performed. To ensure the reliability of the results, the experiment utilized the K10 Cross-Validation protocols.

Experiment 4: EDL Models vs. EML Models
The final objective of this study is to evaluate and compare the advantages offered by EDL models over EML 
models in stratifying species using miRNA sequences. A total of eleven AI models were trained and evaluated, 
including five EML models and six EDL models. The models were trained and tested using six binary and four 
multiclass balanced composite feature datasets. To evaluate the performance of these AI models, their predictions 
were averaged across all ten datasets (6 binary class and 4 multiclass), and a comprehensive comparison was 
performed. To ensure the reliability of the results, the experiment utilized the K10 Cross-Validation protocols.

Results
The protocols were employed to conduct tests on miRNA data from ten datasets, comprising of six binary class 
datasets and four multiclass datasets. The binary datasets included Human vs. Gorilla, Human vs. Rat, Human 
vs. Mouse, Mouse vs. Gorilla, Mouse vs. Rat, and Gorilla vs. Rat datasets. Additionally, there were four multi-
class datasets, namely Human vs. All, Rat vs. All, Gorilla vs. All, and Mouse vs. All. To analyze the data, a total 
of fourteen ML models and eighteen DL models were utilized. The ML models consisted of nine SML models 
and five EML models. The DL models consisted of six SDL models, twelve HDL models and six EDL models 
The training process involved using the TensorFlow and Sklearn frameworks, and a Tesla P100 GPU on the K10 
partition protocol was utilized for executing the training process. Experimental results were obtained based on 
these procedures.

(20)ηsys=

∑D
d = 1

∑M
m = 1 η(m, d, K10)

M × D

(21)α(m, K10)=

∑D
d = 1 α(m, d, K10)

D

(22)α(d, K10)=

∑M
m = 1 α(m, d, K10)

M

(23)αsys=

∑D
d = 1

∑M
m = 1 α(m, d, K10)

M× D
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EDL models vs. HDL models vs. SDL models
In this experiment, we conducted a comparison of six SDL classifiers, twelve HDL models and six EDL models. 
The performance evaluation involved calculating the average mean accuracy (ACC) and area-under-the-curve 
(AUC) for all the models across ten datasets, consisting of six binary class datasets and four multiclass datasets. 
The binary datasets comprised Human vs. Gorilla, Human vs. Rat, Human vs. Mouse, Mouse vs. Gorilla, Mouse 
vs. Rat, and Gorilla vs. Rat, while the multiclass datasets included Human vs. All, Rat vs. All, Gorilla vs. All, and 
Mouse vs. All. The results of the experiment are presented in Tables ST10, ST11, ST12, and ST13 given in the 
supplementary material.

Table ST10 shows that the SDL4 classifier (BiLSTM) achieved the best performance among all SDL models, 
with an ACC/AUC of 90.06%/0.9112. In Tables ST11 and ST12, the HDL2 classifier (BiLSTM-BiGRU) performed 
the best among all HDL models, with an ACC/AUC of 92.53%/0.9306. Furthermore, in Table ST13, the EDL6 
classifier (BiLSTM-CNN ⊕ BiGRU-CNN) achieved the highest performance among all HDL/EDL models, with 
an ACC/AUC of 93.38%/0.9407. Table 5 presents the mean comparison, indicating that EDL/HDL classifiers 
outperformed SDL classifiers on all datasets. The mean accuracy and AUC differences between HDL and SDL 
across all datasets were 2.17% and 2.4%, respectively. The mean accuracy and AUC differences between EDL 
and HDL across all datasets were 2.01% and 1.52%, respectively. Additionally, the mean accuracy and AUC dif-
ferences between EDL and SDL across all datasets were 4.18% and 3.92%, respectively.

These results validate our hypothesis that HDL classifiers perform better due to the complex nature of miRNA. 
HDL models can capture intricate nonlinear relationships between input features and output labels by recursively 
splitting the data into smaller subsets, enabling accurate predictions. Furthermore, combining multiple models 
in EDL/HDL classifiers allows them to leverage the strengths of different models, leading to improved perfor-
mance. The ability to customize and adjust these models based on specific problem domains further enhances 
their effectiveness.

EDL models with CNN layers vs. EDL models without CNN layers
In this experiment, we conducted a comparison to assess the impact of adding CNN layers in the architecture 
of EDL models. Specifically, we evaluated the performance of four CNN-based EDL classifiers (EDL3, EDL4, 
EDL5, and EDL6) and two non-CNN-based EDL classifiers (EDL1 and EDL2) on ten datasets, comprising of six 
binary class datasets and four multiclass datasets. The evaluation metrics of average mean accuracy and AUC 
were calculated and reported in Table 6. The results of our experiment demonstrated that incorporating CNN 
layers in the EDL models significantly enhanced their classification performance. By utilizing feature extraction 
techniques, the models exhibited improved accuracy and AUC scores. The mean absolute difference in accuracy 
and AUC across all datasets, resulting from the feature extraction process using contemporary features, was 

Table 5.   Comparison of SDL vs. HDL vs. EDL models. η (%) represents accuracy and α (0-1) represents 
AUC. ηSDL : Mean accuracy of SDL models; αSDL : Mean AUC of SDL models; ηHDL : Mean accuracy of 
HDL models; αHDL : Mean AUC of HDL models; ηEDL : Mean accuracy of EDL models; αEDL : Mean AUC 
of EDL models;ηD1 : Mean absolute accuracy difference (HDL vs. SDL); ηD1(% )=|ηHDL − ηSDL| ; αD1 
: Mean absolute AUC difference (HDL vs. SDL); αD1 (% ) = |αHDL − αSDL| × 100 ; ηD2 : Mean absolute 
accuracy difference (EDL vs. HDL); ηD2(% ) = |ηEDL − ηHDL| αD2 : Mean absolute AUC difference (EDL 
vs. HDL); αD2 (% ) = |αEDL − αHDL| × 100 ; ηD3 : Mean absolute accuracy difference (EDL vs. SDL); 
ηD3(% ) = |ηEDL − ηSDL| ; αD3 : Mean absolute AUC difference (EDL vs. SDL); αD3 (% ) = |αEDL − αSDL| × 100

. Significant values are in [bold].

Comparison for six binary classifiers and four multiclass classifiers of SDL, HDL and EDL Models

Dataset

SDL HDL EDL Absolute difference (%)

ηSDL(%) αSDL[0–1] ηHDL(%) αHDL[0–1] ηEDL(%) αEDL[0–1] ηD1 αD1 ηD2 αD2 ηD3 αD3

Binary Class (BC) Classification

 Human vs. Gorilla 89.31 0.8998 92.19 0.9336 95.29 0.9575 2.88 3.38 3.1 2.39 5.98 5.77

 Human vs. Mouse 81.21 0.8203 82.99 0.8384 85.77 0.8636 1.78 1.81 2.78 2.52 4.56 4.33

 Human vs. Rat 83.19 0.8397 85.57 0.8766 87.92 0.8851 2.38 3.69 2.35 0.85 4.73 4.54

 Mouse vs. Gorilla 94.11 0.9518 96.68 0.9704 97.28 0.9737 2.57 1.86 0.6 0.33 3.17 2.19

 Mouse vs. Rat 91.23 0.9212 94.3 0.9575 95.66 0.9735 3.07 3.63 1.36 1.6 4.43 5.23

 Rat vs. Gorilla 92.31 0.9295 95.38 0.9611 96.03 0.9696 3.07 3.16 0.65 0.85 3.72 4.01

 Mean of 6 BC 88.56 0.8937 91.19 0.923 92.99 0.9372 2.63 2.93 1.8 1.42 4.43 4.35

Multiclass (MC) Classification

 Human vs. All 85.1 0.8545 85.88 0.8738 88.65 0.8934 0.78 1.93 2.77 1.96 3.55 3.89

 Gorilla vs. All 93.53 0.9421 95.95 0.9702 97.45 0.9765 2.42 2.81 1.5 0.63 3.92 3.44

 Rat vs. All 89.43 0.9104 90.54 0.9174 93.06 0.939 1.11 0.7 2.52 2.16 3.63 2.86

 Mouse vs. All 87.68 0.8947 89.3 0.9046 91.74 0.924 1.62 0.99 2.44 1.94 4.06 2.93

 Mean of 4 MCC 88.94 0.9004 90.42 0.9165 92.73 0.9332 1.48 1.61 2.31 1.67 3.79 3.28

Binary class + Multiclass Classification

 Mean of 10 Classifiers 88.71 0.8964 90.88 0.9204 92.89 0.9356 2.17 2.4 2.01 1.52 4.18 3.92
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found to be 0.73% and 0.92%, respectively. These findings validated our hypothesis that incorporating CNN 
layers in DL models can enhance their effectiveness in classifying miRNA sequences. This improvement stems 
from the ability of CNN layers to capture both temporal and spatial dependencies within the data, enabling the 
models to learn hierarchical representations. The combination of temporal and spatial information allows for 
more comprehensive and accurate classification of miRNA sequences.

EML models vs. SML models
In this experiment, we conducted a comparison of nine SML classifiers and five EML models. The performance 
evaluation involved calculating the average mean accuracy and AUC for all the models across ten datasets, 
consisting of six binary class datasets and four multiclass datasets. The binary datasets comprised Human vs. 
Gorilla, Human vs. Rat, Human vs. Mouse, Mouse vs. Gorilla, Mouse vs. Rat, and Gorilla vs. Rat, while the mul-
ticlass datasets included Human vs. All, Rat vs. All, Gorilla vs. All, and Mouse vs. All. The results obtained from 
the experiment are presented in Tables ST14 and ST15 in the supplementary material. Table ST14 displays the 
performance results of the SML models, where the ET classifier achieved the highest performance with an ACC/
AUC of 90.33%/0.9049. It was followed by RF with an ACC/AUC of 89.31%/0.8922 and LGBM with an ACC/
AUC of 88.06%/0.8896. In Table ST15, the EML4 classifier (DT ⊕ RF ⊕ ET) demonstrated the best performance 
among all the EML models, achieving an ACC/AUC of 91.14%/0.9171.

Table 7 presents the mean comparison, indicating that the EML classifiers outperformed the SML classi-
fiers on all datasets. The average accuracy and AUC differences between EML and SML across all datasets were 
6.24% and 6.46%, respectively. These findings validate our hypothesis that EML models perform better due to 
the complex nature of miRNA, as they can capture intricate nonlinear relationships by recursively partitioning 
the data into smaller subsets, enabling accurate predictions. The use of a voting classifier in EML models allows 
them to combine the strengths of different models, leading to improved performance.

EDL models vs. EML models
In this experiment, we conducted a comparison of five EML classifiers and six EDL models. The performance 
evaluation involved calculating the average mean accuracy and AUC for all the models across ten datasets, 
consisting of six binary class datasets and four multiclass datasets. The binary datasets comprised Human vs. 
Gorilla, Human vs. Rat, Human vs. Mouse, Mouse vs. Gorilla, Mouse vs. Rat, and Gorilla vs. Rat, while the mul-
ticlass datasets included Human vs. All, Rat vs. All, Gorilla vs. All, and Mouse vs. All. Table 8 presents the mean 
comparison, indicating that the EDL classifiers outperformed the EML classifiers on all datasets. The average 
accuracy and AUC differences between EDL and EML across all datasets were 7.09% and 6.96%, respectively.

These findings validate our hypothesis that EDL models outperform EML models due to their ability to 
capture complex patterns and relationships in the data through multiple layers of non-linear transformations. 

Table 6.   Comparison of EDL models with CNN vs. without CNN layers. η (%) represents accuracy and α 
(0-1) represents AUC. ηwoCNN : Mean accuracy of EDL models without CNN layers; αwoCNN : Mean AUC of 
EDL models without CNN layers; ηwCNN : Mean accuracy of EDL models with CNN layers; αwCNN : Mean 
AUC of EDL models with CNN layers; ηC1 : Mean absolute accuracy difference (with vs. without CNN 
layers); ηC1(% )=|ηwCNN − ηwoCNN| ; αC1 : Mean absolute AUC difference (with vs. without CNN layers); 
αC1 (% ) = |αwCNN − αwoCNN| × 100. Significant values are in [bold].

Comparison for six binary classifiers and four multiclass classifiers of DL Models with and without CNN Layers

Dataset

woCNN wCNN

Absolute 
difference 
(%) wCNN > woCNN

ηwoCNN(%) αwoCNN[0–1] ηwCNN(%) αwCNN[0–1] ηC1 αC1 Acccuracy (%) AUC (%)

Binary Class (BC) Classification

 Human vs. Gorilla 95.21 0.9528 95.33 0.9598 0.12 0.7 0.12% Increase 0.7% Increase

 Human vs. Mouse 83.89 0.8435 86.7 0.8737 2.81 3.02 2.81% Increase 3.02% Increase

 Human vs. Rat 86.89 0.8727 88.44 0.8914 1.55 1.87 1.55% Increase 1.87% Increase

 Mouse vs. Gorilla 96.44 0.9712 97.7 0.9749 1.26 0.37 1.26% Increase 0.37% Increase

 Mouse vs. Rat 95.58 0.9674 95.7 0.9765 0.12 0.91 0.12% Increase 0.91% Increase

 Rat vs. Gorilla 95.85 0.9693 96.12 0.9697 0.27 0.04 0.27% Increase 0.04% Increase

 Mean of 6 BC 92.31 0.9295 93.33 0.941 1.02 1.15 1.02% Increase 1.15% Increase

Multiclass (MC) Classification

 Human vs. All 88.44 0.8904 88.75 0.895 0.31 0.46 0.31% Increase 0.46% Increase

 Gorilla vs. All 97.18 0.975 97.58 0.9772 0.4 0.22 0.4% Increase 0.22% Increase

 Rat vs. All 92.9 0.932 93.14 0.9426 0.24 1.06 0.24% Increase 1.06% Increase

 Mouse vs. All 91.61 0.9207 91.81 0.9256 0.2 0.49 0.2% Increase 0.49% Increase

 Mean of 4 MCC 92.53 0.9295 92.82 0.9351 0.29 0.56 0.29% Increase 0.56% Increase

Binary class + Multiclass Classification

 Mean of 10 Classifiers 92.4 0.9295 93.13 0.9387 0.73 0.92 0.73% Increase 0.92% Increase
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Table 7.   Comparison of SML vs. EML models. η (%) represents accuracy and α (0-1) represents AUC. ηSML : 
Mean accuracy of SML models; αSML : Mean AUC of SML models; ηEML : Mean accuracy of EML models; αEML : 
Mean AUC of EML models; ηM1 : Mean absolute accuracy difference (EML vs. SML); ηM1(% )=|ηEML − ηSML| ; 
αM1 : Mean absolute AUC difference (EML vs. SML); αM1 (% ) = |αEML − αSML| × 100. Significant values are in 
[bold].

Comparison for six binary classifiers and four multiclass classifiers of SML and EML 
Models

Dataset

SML EML

Absolute 
difference 
(%)

ηSML(%) αSML[0–1] ηEML(%) αEML[0–1] ηM1 αM1

Binary Class (BC) Classification

 Human vs. Gorilla 79.82 0.8044 88.32 0.8893 8.5 8.49

 Human vs. Mouse 67.82 0.6975 74.69 0.7431 6.87 4.56

 Human vs. Rat 76.13 0.7792 83.69 0.846 7.56 6.68

 Mouse vs. Gorilla 84.23 0.8603 90.84 0.9179 6.61 5.76

 Mouse vs. Rat 81.6 0.826 86.97 0.8792 5.37 5.32

 Rat vs. Gorilla 85.18 0.8552 92.03 0.9273 6.85 7.21

 Mean of 6 BC 79.13 0.8037 86.09 0.8672 6.96 6.35

Multiclass (MC) Classification

 Human vs. All 75.73 0.7514 79.12 0.8094 3.39 5.8

 Gorilla vs. All 84.91 0.8464 91.39 0.9096 6.48 6.32

 Rat vs. All 81.24 0.8113 86.94 0.8829 5.7 7.16

 Mouse vs. All 78.95 0.7825 84.04 0.8546 5.09 7.21

 Mean of 4 MCC 80.21 0.7979 85.37 0.8641 5.16 6.62

Binary class + Multiclass Classification

 Mean of 10 Classifiers 79.56 0.8014 85.8 0.866 6.24 6.46

Table 8.   Comparison of EML vs. EDL models. η (%) represents accuracy and α (0-1) represents AUC. ηEML : 
Mean accuracy of EML models; αEML : Mean AUC of EML models; ηEDL : Mean accuracy of EDL models; αEDL : 
Mean AUC of EDL models; ηE1 : Mean absolute accuracy difference (EML vs. EDL); ηE1(% )=|ηEDL − ηEML| ; 
αE1 : Mean absolute AUC difference (EML vs. EDL); αE1 (% ) = |αEDL − αEML| × 100. Significant values are in 
[bold].

Comparison for six binary classifier.s and four multiclass classifiers of EML and EDL Models

Dataset

EML EDL
Absolute 
difference (%) EDL > EML

ηEML(%) αEML[0–1] ηEDL(%) αEDL[0–1] ηE1 αE1 Acccuracy (%) AUC (%)

Binary Class (BC) Classification

 Human vs. Gorilla 88.32 0.8893 95.29 0.9575 6.97 6.82 6.97% Increase 6.82% Increase

 Human vs. Mouse 74.69 0.7431 85.77 0.8636 11.08 12.05 11.08% Increase 12.05% Increase

 Human vs. Rat 83.69 0.846 87.92 0.8851 4.23 3.91 4.23% Increase 3.91% Increase

 Mouse vs. Gorilla 90.84 0.9179 97.28 0.9737 6.44 5.58 6.44% Increase 5.58% Increase

 Mouse vs. Rat 86.97 0.8792 95.66 0.9735 8.69 9.43 8.69% Increase 9.43% Increase

 Rat vs. Gorilla 92.03 0.9273 96.03 0.9696 4 4.23 4% Increase 4.23% Increase

 Mean of 6 BC 86.09 0.8672 92.99 0.9372 6.9 7 6.9% Increase 7% Increase

Multiclass (MC) Classification

 Human vs. All 79.12 0.8094 88.65 0.8934 9.53 8.4 9.53% Increase 8.4% Increase

 Gorilla vs. All 91.39 0.9096 97.45 0.9765 6.06 6.69 6.06% Increase 6.69% Increase

 Rat vs. All 86.94 0.8829 93.06 0.939 6.12 5.61 6.12% Increase 5.61% Increase

 Mouse vs. All 84.04 0.8546 91.74 0.924 7.7 6.94 7.7% Increase 6.94% Increase

 Mean of 4 MCC 85.37 0.8641 92.73 0.9332 7.36 6.91 7.36% Increase 6.91% Increase

Binary class + Multiclass Classification

 Mean of 10 Classifiers 85.8 0.866 92.89 0.9356 7.09 6.96 7.09% Increase 6.96% Increase
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This can be attributed to their complex architecture, which allows them to automatically learn hierarchical rep-
resentations of miRNA data, capturing both local and global patterns.

Performance evaluation
The evaluation process encompassed a comprehensive analysis of the models’ performance, employing various 
visualization techniques such as ROC curves and bar charts to visualize the performance of the models. To ensure 
the system’s stability, its robustness and model stability are evaluated through observing effect of training data 
size on classifiers. This allowed us to provides insight into the reliability and stability of the models and identify 
areas for improvement.

Receiver operating curves, mean accuracy curves, and mean AUC for classifier models
We plotted ROC curves of two best models, with all their classifiers, on all six binary datasets: Human vs. Gorilla, 
Human vs. Rat, Human vs. Mouse, Mouse vs. Gorilla, Mouse vs. Rat, and Gorilla vs. Rat. The performance of the 
models across their complete operating range was thoroughly evaluated, as shown in Fig. 1. In Fig. 2, the ROC 
curve for the EML4 Model is presented. The AUC score for Rat vs. Gorilla is the highest at 0.9909, followed by 
Mouse vs. Gorilla with an AUC score of 0.9713. This is followed by Human vs. Gorilla with an AUC of 0.9496 and 
Mouse vs. Rat with an AUC of 0.9448. The AUC score for Human vs. Rat is 0.9015, and Human vs. Mouse has 
the lowest AUC score of 0.7908. Figure 3 displays the ROC curve for the best-performing EDL (EDL6) Model. 
Among the comparisons, Mouse vs. Rat has the highest AUC score of 0.9815, followed by Rat vs. Gorilla with 
an AUC score of 0.9797. The AUC score for Mouse vs. Gorilla is 0.9761, and Human vs. Gorilla has an AUC of 
0.9548. The AUC score for Human vs. Rat is 0.8893, and Human vs. Mouse has the lowest AUC score of 0.8854.

Figure 2.   ROC curves for EML (EML4) model using K10 protocol.

Figure 3.   ROC curves for EDL (EDL6) model using K10 protocol.
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Furthermore, to establish the statistical significance of our results, p-values were computed for all species in 
each dataset. Our findings indicate that the p-values were less than 0.01, signifying a high confidence level in 
the observed differences between the species.

Bar charts are effective visual tools for presenting table data. Figure 4 illustrates the accuracy of nine SML, 
five EML, six SDL, twelve HDL, and six EDL models averaged across multiple binary and multiclass datasets. The 
mean accuracy increased progressively from 79.56% (SML) to 85.8% (EML), 88.71% (SDL), 90.88% (HDL), and 
92.83% (EDL) models. Additionally, Fig. 5 depicts the AUC of the same models, showing a similar progressive 
increase in mean accuracy from 0.8014 (SML) to 0.866 (EML), 0.8964 (SDL), 0.9204 (HDL), and 0.933 (EDL) 
models when averaged across multiple binary and multiclass datasets.

Effect of training data size on classifier performance: varying partitional protocols
In this experimental study, we investigated the influence of varying training data sizes on the performance of DL 
models. Performance metrics were evaluated using different Cross-Validation protocols, namely K10 (default), 
K5, K4, and K2. Our analysis, presented in Table 9, revealed a gradual decline in performance metrics across these 
protocols. The evaluation included 24 DL classifiers, consisting of 6 SDL, 12 HDL, and 6 EDL models, applied 
to ten datasets encompassing both binary class and multiclass datasets. The average mean accuracy and AUC 
were computed, indicating a decrease in mean accuracy from 90.82% (K10) to 85.96% (K2), corresponding to 
a 4.86% reduction. Similarly, the AUC decreased from 0.9175 (K10) to 0.8634 (K2), indicating a 5.41% decline. 

Figure 4.   Comparison of Accuracy of SML vs. EML vs. SDL vs. HDL vs. EDL models using K10 protocol.

Figure 5.   Comparison of AUC of SML vs. EML vs. SDL vs. HDL vs. EDL models using K10 protocol.
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Despite the reduced amount of training data in the K2 (50:50) validation protocol, our DL models demonstrated 
reliable performance metrics. This finding emphasizes the effectiveness of our approach, particularly the benefits 
gained from using ensemble models along with feature extraction. Hence, our models exhibit strong performance 
even in scenarios with limited training data, demonstrating their ability to maintain consistent performance 
under such conditions.

Reliability analysis using statistical tests
The stability of the system was thoroughly assessed and validated using three statistical tests conducted on the 
EDL models across all ten testing sets. There are several published studies which uses statistical tests for establish-
ing the reliability and stability of the AI system80,81,140,141. These tests are conducted on the employed models, and 
the specific tests we carried out are all showcased in the manuscript, namely Adjusted R2, Z (Two-Tailed), and 
ANOVA tests. The purpose of these tests was to determine the significance of the predicted data and monitor 
the p-value in the ANOVA test, ensuring it was less than 0.01 (p < 0.01). Detailed results of these tests, conducted 
following the methodology outlined in96,142–145, are presented in Table ST16 in the supplementary material. The 
outcomes revealed that all six EDL models (EDL1, EDL2, EDL3, EDL4, EDL5, and EDL6) exhibited statistical 
significance with p < 0.01 in the ANOVA test, indicating strong outcomes and highlighting the models’ reliability, 
stability, and clinical importance. The adjusted R-squared test evaluated the accuracy of the models by measuring 
the extent of feature variance, while the Z-score in the two-tailed tests indicated the deviation of the score from 
the mean population in terms of standard deviation. Therefore, these statistically validated findings reinforce 
the significance of our results and provide strong support for the reliability of the EDL models in this study.

Explainable artificial intelligence
To gain further insights into the decision-making process of the ML algorithms, we employed XAI techniques, 
specifically utilizing the SHapley Additive exPlanations (SHAP) method146–150. By leveraging SHAP, we were 
able to delve into the impact of different features on the classification outcomes, enhancing our understanding 
of species-specific information and the distinctive effects of individual features on each species. This invaluable 
information contributes to a deeper comprehension and differentiation among the various species.

Using the SHAP explainer151, we developed an interpretable AI classifier as discussed in Fig. 1 that provided 
insights into the significance of different features for each species. The SHAP-generated graphs presented in 
Figs. 6, 7, 8 and 9 revealed that the "Fractal" feature played a crucial role in classifying all species except for the 
Mouse. In the case of the Mouse species, the most important feature was "f3," followed by "Hurst" and "f9." For 
the other three species, "Fractal" was the primary feature, accompanied by "Shannon" for Humans and "f4" for 
Gorilla and Rat. The importance of the remaining features, derived from the co-occurrence matrix as detailed in 
Table 4, gradually decreased. These findings emphasize the significance of feature selection when constructing 
accurate and dependable classifiers, particularly in biology and ecology152.

Discussion
Principal findings
After conducting an extensive study, we obtained valuable insights and drew conclusions pertaining to our 
research problem: (i) We devised four hypotheses and developed a total of 38 AI classifiers, which consisted 
of nine SML classifiers, five EML classifiers, six SDL classifiers, twelve HDL classifiers, and six EDL classifiers, 
in order to test them. (ii) For our experimental analysis, we utilized ten pre-processed datasets, comprising six 
binary classification datasets and four multiclass classification datasets. (iii) To enhance the processing and con-
version of miRNA sequences into co-occurrence features, we implemented a novel quality control phase for our 
system. This involved performing scaling and binary encoding of the sequences. (iv) Our findings indicate that 
EML classifiers outperformed SML classifiers, yielding a mean accuracy increase of 6.24% and a 6.46% increase 
in AUC. Furthermore, HDL classifiers exhibited a significant advantage over SDL classifiers, with an increase 
in accuracy and AUC of 2.17% and 2.4%, respectively. (v) Also, EDL classifiers further improved upon HDL 
classifiers, with a mean accuracy of 2.01% and an AUC of 1.52%. (vi) Additionally, EDL classifiers significantly 
improved upon EML classifiers, with a mean accuracy increase of 7.09% and an AUC of 6.96%. (vii) We also 

Table 9.   Mean performance of 24 DL models on different Cross-Validation protocols. D1: Absolute difference 
in performance metrics between K10 and K5 Cross-Validation protocols. D1 = K10 -K5. D2: Absolute 
difference in performance metrics between K10 and K4 Cross-Validation protocols. D2 = K10 -K4. D3: 
Absolute difference in performance metrics between K10 and K2 Cross-Validation protocols. D3 = K10 -K2. 
Significant values are in [bold].

Performance Metrics K2

Cross-Validation Results Absolute Difference (%)

K4 K5 K10 D1 D2 D3

Accuracy (%) 85.96 87.2 88.54 90.82 2.28 3.62 4.86

AUC [0–1] 0.8634 0.8863 0.9019 0.9175 1.56 3.12 5.41

Recall (%) 86.06 87.73 88.98 91.39 2.41 3.66 5.33

Precision (%) 85.18 86.59 87.67 90.01 2.34 3.42 4.83

F1 Score (%) 85.62 87.16 88.32 90.69 2.37 3.53 5.07
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observed that utilizing CNN-based HDL models with a feature extraction methodology greatly improved per-
formance compared to non-CNN-based HDL models, yielding a mean accuracy increase of 0.73% and a 0.92% 
increase in AUC. (viii) We ensured the reliability and stability of our system by subjecting the classifiers to statisti-
cal tests. (ix) In order to verify the system’s stability with smaller gene data sizes, we conducted a power analysis 
on the six binary class and four multiclass datasets, thereby validating the precision of the GeneAI 3.0 system. 

Figure 6.   Feature Importance of Gorilla Species by SHAP explainer for EDL (EDL6) model using K10 protocol.

Figure 7.   Feature Importance of Human Species by SHAP explainer for EDL (EDL6) model using K10 
protocol.

Figure 8.   Feature Importance of Mouse Species by SHAP explainer for EDL (EDL6) model using K10 protocol.
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(x) We evaluated the impact of training data size by implementing Cross-Validation protocols in an increasing 
order. (xi) Finally, we utilized the SHAP explainer to interpret the classification results of the best (EDL6) model. 
This allowed us to gain insights into the significance of each species’ features in their respective classifications.

Benchmarking: a comparative analysis
Numerous methods have been suggested for miRNA classifiers and species-independent lncRNA predictors, 
such as Precursor miRNAs classification, Non-coding RNA classification, and cross-species miRNA identifica-
tion. These methods have undergone extensive validation and proven effective in identifying and categorizing 
miRNA and lncRNA. In contrast, this study introduces a unique approach to classify miRNA based on station-
ary patterns derived from gene sequences. The primary aim is to determine the species of origin by analyzing 
specific parameters associated with each species family. While this approach is innovative, its effectiveness and 
practicality need to be assessed through a comparative analysis with existing methods. Comparing different 
approaches is crucial for advancing the field of miRNA classification and enhancing our comprehension of 
miRNA biology. Therefore, it is essential to evaluate the proposed approach’s accuracy, efficiency, and generaliz-
ability in comparison to established methods.

Table 10 focused on six studies that focused on developing classifiers for miRNA and lncRNA. Yousef et al.153 
employed a RF classifier and created a specific feature set called k-mer, which consisted of k-mer Distance, k-mer 
location distance, and k-mer first-last distance. These features were added to the basic k-mer features to classify 
Precursor miRNA. The evaluation of their method was conducted using a database obtained from USEARCH. 
Cao et al.154 explored the utilization of an RF model with incremental feature selection and the Pearson correla-
tion coefficient. Their objective was to predict lncRNA from both lncRNA and mRNA transcripts in a dataset 
consisting of six species. The dataset used in their study was sourced from Ensemble data repository.

Gu et al.155 introduced an Ensemble Learning approach for miRNA-related disease classification using a multi-
classifier system based on associated probabilities. Their method aimed to discover new potential associations 
between miRNA and diseases. The results were validated using various versions of the HMDD database, mak-
ing it a reliable approach that does not rely on known associations between miRNA and diseases. Zhao et al.156, 
introduces an improved paradigm for miRNA target prediction was presented. They utilized a DT-based meta-
strategy and a multi-threshold sequential voting method for meta-prediction. This approach aimed to enhance 
the accuracy of existing miRNA target prediction schemes.

Jiang et al.157 implemented a neural network-based scheme for end-to-end classification of pre-miRNA. They 
utilized a database consisting of 98 features, including n-gram frequency, structural sequence, structural diversity, 
and energy. The approach incorporated primary and secondary structure information to identify pre-miRNA 
in seven different species. Amin et al.158 employed a comprehensive feature extraction approach for non-coding 
RNA classification. They constructed an extensive feature database and trained it using LR and RF models. The 
database consisted of peptide features, open reading frame (ORF) features, and whole sequence features, with 
classifiers individually applied to each feature class. A hierarchical majority voting mechanism was utilized to 
combine the features.

In our proposed work (R7), we introduce a novel approach for miRNA classification based on species of 
origin. Multiple LSTM, GRU, CNN, and RNN-based SML, EML, SDL, HDL, and EDL models are employed. 
A feature extraction module is used to extract both conventional features like entropy and energy, as well as 
contemporary features such as Shannon entropy, Hurst exponent, and fractal dimension. This integration of 
different features helps build a more robust model. Our study focuses on achieving generalization, employing 
XAI as part of scientific validation, and conducting thorough testing to ensure the reliability and stability of the 
GeneAI 3.0 system.

Figure 9.   Feature Importance of Rat Species by SHAP explainer for EDL (EDL6) model using K10 protocol.
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Table 10.   Benchmarking table showing studies that were implemented for miRNA and lncRNA classification. 
*CVP Cross-Validation Protocol; ACC​ Accuracy (%); BC Binary Class; MC Multiclass Classification; XAI 
Explainable AI; ML Machine Learning; SDL Solo Deep Learning; HDL Hybrid Deep Learning; EDL Ensemble 
Deep Learning; LR Logistic Regression; RF Random Forest; CNN Convolutional Neural Networks; ANN 
Artificial Neural Networks; K#: Cross-Validation protocol having the ratio of training: testing data sets; K2: 
50%:50%; K4: 75%:25%; K5:80%:20%; K10: 90%:10%.

Author & Year Objective Method Model
Feature 
Extraction Dataset Class Type Performance CVP*

Clinical 
Validation

Yousef et al.153
Precursor 
miRNAs clas-
sification

Addition of 
K-mer Distance, 
K-mer Location 
Distance, and 
K-mer First-Last 
Distance to the 
core K-mer 
Features for 
Classification

RF K-mer Distance 
Features

USEARCH (16 
Species) BC & MC

ACC: 93%
ACC: 86% (Lau-
rasiatheria)

K100 Monte 
Carlo ×

Jiang et al.157
Precursor 
miRNA clas-
sification

Backpropaga-
tion Neural net-
work model was 
used to identify 
microRNA 
precursors using 
98-dimensional 
novel features

ANN Conventional 
Features

Carleton 
(SMIRP) BC ACC: 93.42% K5 ×

Cao et al.154 Predicting 
lncRNAs

Predict-
ing lncRNA 
from lncRNA 
and mRNA 
transcripts, a RF 
classifier with 
incremental 
feature selection 
and the Pearson 
correlation coef-
ficient was used

RF Incremental fea-
ture selection

Ensembl v97, 
GreeNC (6 Spe-
cies)CD-hit

Class Specific ACC: 91.09% K10 Adjusted 
p-value; Z-value

Zhao et al.156 Predicting 
lncRNAs

Improvement 
paradigm for 
miRNA target 
prediction using 
DT-based meta-
strategy and 
multi-threshold 
sequential-
voting

DT-based voting 
sytem

Multi-threshold 
sequential-
voting for meta-
prediction

MiRTarBase BC ACC: 91.09% × ×

Gu et al.155 Predicting 
lncRNAs

Ensemble 
Learning based 
approach using 
a multi-classifer 
based system to 
miRNA related 
to disease by 
discovering 
new potential 
associations

Multi-classifiers 
voting

Similarity 
and structural 
feature data

HMDD V2.0 BC AUC: 0.9229 K5 ×

Amin et al.158
Non-coding 
RNA classifica-
tion

Development of 
a Feature data-
base of Peptide, 
ORF, and Whole 
sequence and 
selection using 
separate clas-
sifiers with Hier-
archical majority 
voting

LR
RF

Extensive Fea-
ture selection 
based on data-
base, species 
and ncRNA type

RNACentral (16 
Species) BC

ACC: 
91.928%(All 
Features)
F1-score: 
94.885% (All 
Features)

Nested K10 Chi-squared (in 
model)

Singh et al. 
Proposed

miRNA clas-
sification

Using Shannon 
Entropy, Hurst 
Exponent and 
Fractal Dimen-
sion along with 
contemporary 
features like 
Entropy, and 
Diversity to 
predict Species 
from MicroRNA 
gene sequence

ML
SDL
HDL
EDL

Stationary 
Patterns of 
Nucleotides

miRNA Data-
base (4 Species) BC & MC

Best ACC 
(EDL): 97.41% 
Best EDL AUC: 
0.97 (EDL1 in 
supplementary 
material)

K2, K4, K5, and 
K10 (Default)

R2, Z-two 
tailed, ANOVA



20

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7154  | https://doi.org/10.1038/s41598-024-56786-9

www.nature.com/scientificreports/

Special note on ensemble‑based feature extraction in miRNA classification
Ensemble-based feature extraction techniques have emerged as a powerful approach in miRNA classification 
tasks. By combining multiple feature extraction methods, using concatenation and splitting, these ensembles 
can effectively capture diverse aspects of miRNA sequences, leading to improved classification performance. The 
ensemble architecture allows for the fusion of features extracted from different methods, such as structural and 
compositional information, enabling the neural network to leverage complementary information and capture 
complex patterns in miRNA data. This approach not only enhances the classification accuracy but also helps 
mitigate overfitting by providing a regularization effect. Additionally, by incorporating different ensemble archi-
tectures, including completely different paradigms, the ensemble-based feature extraction further enriches the 
classification process, allowing for a more comprehensive and robust miRNA classification.

The effectiveness of ensemble-based techniques in miRNA classification is not limited to DL but also observed 
in traditional ML approaches. Techniques like RF and stacked ML models employ ensembles of multiple ML 
models to enhance classification performance. The ensemble architectures, such as weighted averaging, hard vot-
ing, and soft voting, play a crucial role in combining the predictions or features extracted from different models, 
leveraging their complementary strengths, and achieving better classification outcomes in miRNA analysis. By 
harnessing the collective intelligence of multiple models, ensemble-based feature extraction offers a powerful 
framework to improve the accuracy, sensitivity, and specificity of miRNA classification models. These ensemble-
based approaches pave the way for more reliable and robust miRNA classification, enabling researchers to gain 
deeper insights into the complex world of gene expression and regulation.

Special note on generalization
For generalizations, the models have to undergo training and testing on multiple datasets. Our group has done 
several methods for generalization78–81. In81, we developed an ensemble-based transfer learning paradigm, suc-
cessfully classifying skin lesion images from two different and diverse datasets. We trained on one set and 
classified lesions from the other set. Study80 focused on our work in depression detection, where we developed 
a generalized model for text classification with the primary goal of detecting depression. Study79 attempted to 
achieve generalization in Covid-19 patients’ lung segmentation across five different combinations of data by 
employing unseen data tests and statistical analyses. Finally, Study78, focusing on COVID-19 lung computed 
tomography segmentation, achieved generalization by testing on two unseen datasets, pairing 72 Italian and 80 
Croatian patients.

We achieved generalization in these systems by simplifying the model, enabling it to work across multiple 
domains effectively in various situations through the mixing of domains. In Study80, we trained a model to be 
robust enough for depression detection as well as sentiment analysis by facilitating inter-dataset (cross-domain) 
training and leveraging knowledge from a multi-domain dataset. Our model demonstrated the capability to 
detect depression even when trained on a sentiment dataset, while also analysing sentiment when trained on a 
depression dataset. Likewise in this study, we conducted both multi-class and binary class classification, compris-
ing a total of 10 datasets, where the model demonstrated satisfactory performance. This generalization ensures 
the effectiveness of our models for use in real-life scenarios, as any gene sequence can be pre-processed, features 
extracted and utilized by our model.

Strengths, weakness, and extensions
Our study presents a novel approach to gene dataset analysis using 38 AI classifiers, which consisted of nine SML 
classifiers, five EML classifiers, six SDL classifiers, twelve HDL classifiers, and six EDL classifiers. Through rigorous 
evaluation, we found that these models demonstrated exceptional performance in both binary and multiclass 
classification tasks. Furthermore, our study involved building an extensive composite feature set, generating 
new features such as Shannon entropy, Hurst exponent, and Fractal dimension, which were incorporated with 
existing co-occurrence features to enhance the AI system’s performance. Additionally, our study addressed the 
challenge of interpretability by incorporating XAI techniques, allowing us to gain insights into the inner work-
ings of the models. This enables us to leverage feature-specific knowledge and concentrate on further research 
for each species independently. It provides a critical overview of the important features that individually impact 
the likelihood of a miRNA sequence belonging to a specific species. This knowledge, derived from the feature 
plots, is crucial for the practical implementation of the machine learning model in our study. It will significantly 
influence how we hypertune our model and, on a biological level, understand which features (both conventional 
and contemporary) matter more for each species. Notably, our proposed methodology demonstrated robustness 
through its consistent performance in multiple statistical tests, including the Adjusted R2 Test, paired T-test, 
ANOVA, and null-hypothesis significance testing (p-value). Across all six binary and four multiclass datasets, 
our methodology consistently provided interpretable, reliable and accurate results, highlighting its potential to 
improve classification accuracy in gene species classification.

One limitation of our gene classification approach is the potential for model generalization and overfitting 
due to the limited size of the available training data, especially in binary class classification tasks. Although 
ensemble-based models have been employed to mitigate this issue, there is room for improvement by utiliz-
ing Generative Adversarial training-based mechanisms to synthesize additional data. Another weakness is the 
absence of attention mechanisms, which could hinder the model’s ability to mitigate overfitting and enhance 
its overall robustness. To address these limitations, incorporating attention-based techniques can offer a more 
focused and streamlined classification of species, ultimately improving the accuracy and reliability of the gene 
classification scheme.

In the future, we can further enhance our gene classification scheme by addressing limitations and imple-
menting potential improvements. One major limitation is the lack of diversity in the dataset, which can hinder 
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the model’s ability to generalize. To overcome this, we can incorporate a wider range of gene species and 
sequences into the dataset. This can be achieved by leveraging big data sources159 or exploring other public data 
repositories160,161. By expanding the dataset, we can train more complex models that exhibit improved accuracy 
and generalization performance. In dealing with gene sequence data, graph neural networks and attention-
enabled mechanisms show promise162–164. These approaches can better capture the intricate relationships between 
gene sequences and the species of origin. By leveraging these techniques, we can enhance the accuracy and 
interpretability of our gene classification scheme. To address the scarcity of data available for training models, we 
can consider employing Generative Adversarial training-based schemes. These schemes can generate synthetic 
data, thereby augmenting the training set and helping to overcome the data dearth165–167. We also plan to enhance 
our model by employing a cross-domain-based framework. This involves training on one gene sequence dataset 
and testing on another from a different database. More gene data can be selected, evaluated to prove the deep 
learning methods. Another avenue to explore is the utilization of Autoencoders in gene classification. Autoen-
coders have the ability to reduce dimensionality and extract essential features from the data. By incorporating 
an Autoencoder-based paradigm, we can improve the efficiency and accuracy of gene classification tasks168–170. 
Additionally, applying pruning strategies for AI models141 and studying the comorbidity effect in genomics can 
contribute to enhancing the classification system. Pruning techniques optimize the model’s architecture and 
computational efficiency, while investigating comorbidity sheds light on the interconnected nature of genetic fac-
tors and disease manifestation171. By implementing these potential improvements, we can develop more accurate 
and robust models with broader applicability in the fields of genetics and bioinformatics.

Conclusion
This study presents a novel paradigm for feature extraction in miRNA classification using EDL and EML models. 
Specifically, we utilized 38 types of AI models (nine SML, six EML, six SDL and twelve HDL and six EDL) archi-
tectures, to extract features from co-occurrence-based binary-coded sequences. The extracted composite features 
combined contemporary and conventional features, resulting in a total of 43 generated features. We conducted 
a thorough data analysis using 10 classification algorithms, including binary and multiclass classifiers, and 
four experimental protocols to evaluate the effectiveness of our proposed scheme. Our results showed that our 
proposed scheme outperformed existing methods regarding accuracy, sensitivity, and specificity. Furthermore, 
we conducted Cross-Validation to ensure the robustness of our model, and our results demonstrated that our 
model was highly reliable even with limited training data. Finally, we conducted statistical tests to demonstrate 
the reliability and stability of our Artificial Intelligence system.

Data availability
The datasets generated during and analyzed during the current study are not publicly available due to their 
propriety nature but are available from the corresponding author on reasonable request.

Code availability
The code used during the current study are not publicly available due to due to their propriety nature but are 
available from the corresponding author on reasonable request.
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