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Abstract

In protein design, the ultimate test of success is that the designs function as

desired. Here, we discuss the utility of cell free protein synthesis (CFPS) as a

rapid, convenient and versatile method to screen for activity. We champion

the use of CFPS in screening potential designs. Compared to in vivo protein

screening, a wider range of different activities can be evaluated using CFPS,

and the scale on which it can easily be used—screening tens to hundreds of

designed proteins—is ideally suited to current needs. Protein design using

physics-based strategies tended to have a relatively low success rate, compared

with current machine-learning based methods. Screening steps (such as yeast

display) were often used to identify proteins that displayed the desired activity

from many designs that were highly ranked computationally. We also describe

how CFPS is well-suited to identify the reasons designs fail, which may include

problems with transcription, translation, and solubility, in addition to not

achieving the desired structure and function.
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1 | INTRODUCTION

Protein design is not 100% successful. Current machine-
learning approaches have dramatically increased the
probability that a designed protein folds and functions as
intended (Notin et al., 2024). Not only are functional pro-
tein mutants more feasible to design, but also entirely de
novo proteins (Ferruz et al., 2022; Watson et al., 2023).
Nevertheless, making and characterizing the designed
proteins is still the ultimate test. The challenge now is to
identify (from the order of 10 to 100 top ranked designs)
those which function as desired. Moreover, it is impor-
tant to delineate why designs fail: to distinguish between
those which are problematic with regard to expression or

solubility and those which do not adopt the correct func-
tional structure (Huang et al., 2016).

Cell free protein synthesis (CFPS) provides a conve-
nient approach both for identifying functional designs,
and for understanding the reasons designs do not behave
as desired (Jin & Hong, 2018). In CFPS, the DNA encod-
ing the desired protein is incubated with a cell extract,
appropriately supplemented with amino acids, tRNA
etc.—the majority of examples discussed here use E. coli
extracts (Gregorio et al., 2019; Perez et al., 2016). CFPS
using extracts from other prokaryotic and eukaryotic
organisms is also possible, with a variety of associated
advantages and disadvantages (Batista et al., 2021; Moore
et al., 2021; Tinafar et al., 2019).
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Alternatively, a fully defined system, known as PURE
(Shimizu et al., 2001), can be used, in which the minimal
components required for protein synthesis are purified
and combined. To date, PURE has only been applied
using E. coli-derived translation machinery, and it typi-
cally results in substantially lower yields of the desired
protein than E. coli extract-based CFPS (Garamella
et al., 2016; Lavickova & Maerkl, 2019).

CFPS offers many advantages in comparison to the
production of recombinant proteins in live microbes
(Laohakunakorn et al., 2020). First, because protein syn-
thesis is decoupled from cellular growth, the constraint
of host cell viability is removed, permitting the produc-
tion of cytotoxic proteins. Second, because all genomic
DNA is removed, the reaction is programmed solely with
the DNA of interest, either a plasmid or a linear PCR
product (Niederholtmeyer et al., 2015; Sun et al., 2014).
Third, because the reactions are open, conditions such as
ionic strength, pH, temperature, and redox potential can
be tailored for the production of specific proteins
(Michel & Wüthrich, 2012). Fourth, extremely small vol-
umes are used, making the protocol well-suited for a
screening step, whilst keeping costs low.

There are, however, challenges associated with the
use of CFPS. Perhaps the most significant is establishing
the protocols in a laboratory that is familiar with other
methods of protein production. We maintain that it is
worth overcoming this ‘activation barrier’ because there
are many advantages to using CFPS for screening on the
scale currently required. To address this issue, the CFPS
community are actively engaged in the development of
more robust and reproducible protocols (Dopp
et al., 2019).

One limitation that could be an issue for the produc-
tion of longer proteins by CFPS is incomplete translation.
This has been estimated as a ‘processivity loss per codon’
of about 10�3, corresponding to only about one third of
proteins synthesized being full length after 1 KB of trans-
lation (Doerr et al., 2021; Hurst et al., 2017; Sin
et al., 2016). Interestingly, premature truncation seems to
be less of a problem in eukaryotic CFPS, potentially due
a lower frequency of translational pausing
(Ramachandiran et al., 2000).

In this review we focus on two aspects of the applica-
bility of CFPS to protein design. First, as a convenient
way to make and test the function of designed proteins.
Second, as a way to explore why designs fail—delineating
transcription, translation, aggregation or folding prob-
lems. The number of different designs that can reason-
ably be screened manually in an open CFPS system is of
the order of hundreds. The use of 96 or 384 well plates or
microfluidic devices is typical. Reaction volumes are
commensurately small. It is this ‘medium throughput’

scale that has proven most accessible in the context of
screening designed proteins. Using CFPS as a platform to
not only test for desired protein activity, but also assess
why designs have failed provides a uniquely rich data set,
which can then be fed back into a model to inform the
next round of designs. Therefore, CFPS is a simple, infor-
mative and accessible technique to use in the protein
design and validation pipeline.

The strategy often followed is: design thousands of
sequences; rank them by desired property; choose ten to
a hundred designs to express in CFPS; determine the
activity of CFPS produced proteins and identify the best.
CFPS is well suited for this purpose as the open nature
(i.e., not within cells) allows for straightforward screen-
ing of desired function directly from solution
(Laohakunakorn, 2020). Based on the results of CFPS
characterization, it is typical to choose a few exemplar
proteins to express at a larger scale in bacteria, purify and
characterize. The rationale for standard purification after
initial CFPS screening, is that much larger quantities of
protein can be produced—suitable for more detailed
characterisations, including structure determination.
Larger amounts of material also allow the specific activity
of designed proteins to be readily determined (Figure 1).

2 | SCREENING FOR ACTIVITY

The focus of this review is medium throughput screening
methods and their use in combination with modern com-
putational protein design.

There are many examples, beyond the scope of this
review, where CFPS has been applied in a high through-
put format. For example, mutants of the membrane pro-
tein α-hemolysin were produced by CFPS, incorporated
into liposomes, and pore-forming activity identified using
high throughput microfluidic sorting (Fujii et al., 2013).
In another, encapsulation of cell-free reactions allowed
for genotype–phenotype linkage and directed evolution
of more active protease mutants (Holstein et al., 2021).

A recent report described a fully automated method
to explore the thermal stability/activity landscape of a
protein, using robotics combined with CFPS to screen
thousands of enzymes (Rapp et al., 2024). Mutant
enzymes were made by CFPS and screened for enhanced
thermal tolerance by incubation at various temperatures
before screening for retained enzymatic activity via a
fluorescence-based assay.

By combining CFPS screening for function with com-
putational protein design, the sequence space to be
assessed can be narrowed significantly. Many characteri-
sations can be performed within the CFPS reaction plate
or microfluidic device (Figure 2a–c). However, sometimes
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there is no convenient in situ fluorescence or colorimetric
assay, and samples must be taken, for example for mass
spectroscopy or gas chromatography analysis of the prod-
ucts of an enzymatic reaction (Figure 2d). Occasionally,
purification of the protein product is required before fur-
ther characterisations can be performed. These different
methods to screen protein designs are simplified by the
fact CFPS is an open system, and does not require a lysis
step after expression, which would reduce throughput.
Each of these approaches is exemplified by case studies
in the following paragraphs.

One design campaign sought to create a vanillin bio-
sensor by designing variants of the repressor, qacR, with
DNA binding activity modulated by binding vanillin
(rather than its natural inducer; de los Santos
et al., 2016). Over 1010 computational designs were
ranked and reduced to just 10 variants to be screened, fol-
lowed by testing of another 17 candidates—two of which
displayed the desired properties. Screening in CFPS used
a two-plasmid system, where successful binding of vanil-
lin by a re-designed repressor resulted in expression of
GFP. This allowed for fast screening of many mutants in
parallel, leading to easy identification of successful
mutants by increased green fluorescence (Figure 2a).
These experiments illustrate an additional point. The
authors first tested this system in E. coli cells, but found it
was not functional. They hypothesized the problem was
the impermeability of the cell wall to vanillin. The system
worked well in CFPS, demonstrating the advantage of an
open system.

A recent study reported the use of CFPS to screen
azoreductases (Rolf et al., 2022), characterizing
10 enzymes (5 of which were previously uncharacterised)
for activity against several different substrates and co-

substrates. By using PURE CFPS rather than lysate-based
CFPS to synthesize the enzymes, the activity of E. coli's
endogenous azoreductase was removed, thus decreasing
the background. Further, the authors demonstrated how
CFPS conditions could be optimized to increase soluble
protein yield: the addition of chaperone proteins, and
reduction of temperature for the CFPS reaction from
37�C to 20�C vastly improved the amount of soluble,
active enzyme produced. The essence of the screen was
to use CFPS to produce the enzyme, followed by a
microplate-based colorimetric assay to monitor changes
in the concentration of substrates over time (Figure 2b).

CFPS has been applied as a screening platform for
antibody discovery, specifically in the later-stages of func-
tional characterization of the binding characteristics of
around 100 different antibodies (in this case, Covid-19
neutralizing antibodies; Hunt et al., 2023). These anti-
bodies had already been identified by traditional
methods, but CFPS allowed for detailed characterization
of their binding specificity. In this example, CFPS
enabled ready manipulation of the solution conditions to
favor disulfide bond formation, in a fashion that would
not have been feasible within E. coli (Figure 2c).

Although a colorimetric or fluorescence-based assay
to readout activity is the most straightforward to imple-
ment, other assays can also be used to test samples taken
directly following CFPS. For example, mutants of Old
Yellow Enzyme were produced in CFPS and screened for
their capability to reduce different substrates, assaying
the activity via gas chromatography detection of products
(Quertinmont & Lutz, 2016; Figure 2d).

For some designed proteins it is desirable to synthe-
size them by CFPS, but then to purify using an affinity
tag before performing activity assays. For example,

FIGURE 1 Schematic representing the identification of functional protein designs. A large number of potential protein designs are

created computationally. These designs are ranked and the top designs identified. These computationally top-ranked designs are tested in

CFPS—for production and activity. The proteins that display the highest activity in CFPS are then studied further, for example by

purification and biophysical characterization.
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Madani and colleagues used large-language models to
generate thousands of designs for lysozyme from five dif-
ferent structural classes (Madani et al., 2023). They tested
100, across all five structural classes, using CFPS to pro-
duce the enzymes at small scale. CFPS protein produc-
tion was followed by purification and assessment of
enzymatic activity. About 80% of the enzymes could be
expressed in CFPS, and about 70% of the proteins pro-
duced by CFPS showed some activity. Interestingly, when
they tried E. coli expression and purification of five of
these proteins, one was not expressed, two were insolu-
ble, and two expressed in soluble form, but because of
their enzymatic activity they resulted in lysis of the E. coli
cells in which they were expressed. These results illus-
trate how CFPS allows for assessment of designs that
might fail due to insolubility in the more concentrated

environment of an E. coli cell, or that might kill the cell if
successfully expressed.

3 | SURFACE CAPTURE OF CFPS
PRODUCED PROTEIN

Surface capture of the protein product is highly desirable
when assessing protein function (Meldal &
Schoffelen, 2016). By capturing the protein product to the
solid support of the surface, it can be separated from
the CFPS reagents through washing of the surface. This
allows for testing the effects of different conditions on
protein activity, such as pH, temperature, buffer compo-
nents, and reactivity towards different substrates—with
the ability to test each mutant under multiple conditions

FIGURE 2 Examples of protein functionality that can be assessed using CFPS. In each example, we show in cartoon form how three

different designed proteins would behave in the assay. We represent more functional proteins by darker shades of blue. (a) Designing a

transcriptional repressor to bind to a small molecule inducer. In this case, designed proteins are screened for their ability to bind the inducer

(yellow). Proteins that function as desired are identified by an increase in GFP production in response to the presence of the small molecule.

(b) Identifying designed proteins with increased enzymatic activity via production of a colored or fluorescent product. (c) Screening for

binding. Protein variants that bind to another molecule (gray square) are identified via proximity induced fluorescence of the beads to which

the protein and molecule are attached, in an AlphaLISA® assay. Other methods of detection, such as FRET, could also be used. (d) In some

cases, detection of enzyme activity is only possible by removing and analyzing a sample from the CFPS, such as by gas

chromatography (GC).
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by simply washing the surface and replacing the reaction
buffer.

An early demonstration of cell-free expression and in
situ capture to a surface was the development of PISA
(Protein In Situ Array; He, 2001). PISA achieves surface
capture of the expressed protein of interest (which is
fused to a His-tag) using a nickel coated surface. The
principal has been extended to include also the surface
attachment of the DNA being transcribed (via biotin in
the DNA binding to an avidin coated surface;
Ramachandran et al., 2004), and has been adapted to a
microfluidic setting (Geertz et al., 2012). Recently, a self-
assembling protein surface has been used to covalently
capture cell-free synthesized proteins to the surface
(Thornton et al., 2022; Figure 3).

4 | CFPS TO IDENTIFY THE
REASONS WHY A DESIGN FAILED

A key issue with current protein design is that designs
may ‘fail’ for many reasons, in addition to the design not
achieving the desired structure and function (Huang
et al., 2016). CFPS allows the cause of protein design
failures—including issues with transcription, translation,
aggregation and misfolding, to be identified (Figure 4;
Dopp et al., 2019; Katzen et al., 2005; Kwon &
Jewett, 2015; Silverman et al., 2019; Swank et al., 2019;
Tsuboyama et al., 2023).

Transcription can be tested by adding a dye-binding
aptamer sequence to the end of the mRNA that encodes
the protein of interest (Ouellet, 2016). Successful

FIGURE 3 Examples of surface capture strategies from CFPS. (a) A His-tagged protein produced by CFPS is captured to a Ni-NTA

coated surface. (b) Biotinylated DNA is bound to an avidin coated surface. CFPS from this DNA produces the protein product fused to GST

(glutathione S-transferase), which can then be captured to the surface by anti-GST antibodies. (c) BslA-SpyTag forms a self-assembling

protein monolayer. SpyCatcher-protein fusion made by CFPS is captured via a covalent bond to the SpyTag of the BslA-SpyTag surface

coating.

FIGURE 4 Schematic illustration of the different points at which a protein design may fail. The point of failure can be identified

using CFPS.
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translation can be tested by a few different techniques.
The most straightforward method would be to fuse a fluo-
rescent protein to the end of the protein of interest (POI),
however this is quite a bulky addition to the POI and
therefore using fluorescence as a proxy for translation
might underestimate how much of the POI has been suc-
cessfully made. A recent study uses a tetra-cysteine mini
helix as a tag to the POI, which in combination with a
FlAsH dye, indicates protein concentration via fluores-
cence (Willi et al., 2024). Another approach is to incorpo-
rate radioactive amino acids into TCA (trichloroacetic
acid) precipitable proteins (Coleman et al., 2004).

Solubility can be tested either by incorporation of a
fluorescent lysine residue or a radioactive amino acid into
the protein of interest. The partitioning of the fluores-
cence or radioactivity between pellet and supernatant
can then be determined (Coleman et al., 2004).

Protein folding in CFPS has recently been examined
by a high-throughput proteolysis assay, allowing for the
fast assessment of protein folding of 100,000's of protein
designs (Tsuboyama et al., 2023).

Using approaches such as these, experimental data
can be collected to distinguish between different reasons
for design failures. Subsequently data-driven methods
can be used to identify the properties of designed proteins
that may lead to failure and the results of such analyses
incorporated into future protein design algorithms.

5 | SUMMARY

In summary, CFPS is well-suited to be incorporated
as an intermediary screen in many different protein
design campaigns. Although establishing it anew in a
laboratory may not be appealing, the benefits over
traditional methods of expression are significant. The
wide range of different functional assays that can be
implemented in a cell-free system also enables the
function (rather than just structure) of different
designs to be readily assessed. Moreover, researchers
in the CFPS field are continually improving the
scope and robustness of the method. The application
of machine-learning methods to the challenges of
protein design has resulted in a spectacular increase
in the frequency of successful designs (Sumida
et al., 2024; Yeh et al., 2023). Using more traditional
‘physics based’ or ‘physics plus statistics based’
approaches, often it would be necessary to screen
many potential designs to identify the one(s) with
the desired activity. For example, screening designs
for desired binding properties could include a yeast
display screen, with the capacity to screen around
5 � 105 different variants (Fleishman et al., 2011).

Current machine-learning based approaches can
achieve success rates up to 10 to 15% (Kortemme, 2024).
Thus, far fewer designs need to be screened in order to
identify the successful one(s). At the medium throughput
level, CFPS provides an accessible technique for
researchers to test many protein designs for functionality
in parallel. One can thus anticipate CFPS becoming an
even more significant tool to facilitate protein design in
the future.
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