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Background. Gastric cancer (GC) is the most common malignant tumor and ranks third in the world. LncRNA H19 (H19), one of
the members of lncRNA, is overexpressed in various tumors. However, many undetermined molecular mechanisms by which H19
promotes GC progression still need to be further investigated. Methodology. A series of experiments was used to confirm the undeter-
mined molecular mechanism including wound healing and transwell assays. Key Results. In this study, a significant upregulation of H19
expression was detected in GC cells and tissues. The poor overall survival was observed in GC patient with high H19 expression.
Overexpression of H19 promoted the migration of GC cells, while knockdown of H19 significantly inhibited cell migration.
Moreover, miR-148a-3p had a certain negative correlation with H19. Luciferase reporter assay confirmed that H19 could directly
bind to miR-148a-3p. As expected, miR-148a mimics inhibited cell migration and invasion induced by H19 overexpression. The
above findings proved that H19 functions as a miRNA sponge and verified that miR-148a-3p is the H19-associated miRNA in GC.
We also confirmed that SOX-12 expression was upregulated in GC patient’s samples. SOX-12 expression was positively correlated
with expression of H19 and was able to directly bind to miR-148a-3p. Importantly, in vitro wound healing assay showed that
knockout of SOX-12 could reverse the promoting effect of H19 overexpression on cell migration.Conclusion. In conclusion, H19 has
certain application value in the diagnosis and prognosis of GC. Specifically, H19 accelerates GCs tomigration andmetastasis bymiR-
138a-3p/SOX-12 axis.

1. Introduction

Gastric cancer (GC) is a common malignant tumor of the
digestive system, and its mortality rate ranks third among
malignant tumors [1]. Currently, the clinical treatment of
GC mainly includes surgery, radiotherapy, and chemother-
apy [2]. Despite the great progress made in early diagnosis
and treatment of GC, the 5-year survival rate for advanced
GC is still unsatisfactory [3]. Therefore, it is imperative to

deeply explore the molecular mechanisms of GC and to
identify possible therapeutic targets for the diseases.

Accumulated evidence shows that various long non-coding
RNAs (lncRNAs) are associated with disorders in tumors, and
only a few of these disordered lncRNAs are closely related to
predicting cancer prognosis [4]. LncRNAs are an RNAs that
are >200 nt in length and no protein-coding function, which
participate in various biological events by regulating chroma-
tin, transcription, and posttranscriptional gene expression [5].
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LncRNAH19 (H19), one of the members of lncRNA, is over-
expressed in various tumors including breast, colorectal, and
lung cancer [6]. Importantly, the elevation of H19 in GC can
predict poor prognosis of patients, and thus downregulation
of H19 expression can suppress the GC cells migration and
invasion [7, 8]. Zhang et al. [9] found that H19 level was
significantly elevated in GC tissues and was positively corre-
lated with worse overall survival (OS). In addition, H19 has
also been shown to play a critical part in regulating migration,
growth, and invasion of GC cell [7, 10]. However, the many
undetermined molecular mechanisms by which H19 pro-
motes GC progression still need to be further investigated.

In this study, we investigated the expression and regula-
tion of H19 in GC. The results founded that H19 expression
was remarkably elevated in GC tissue and correlated with
poor prognosis. Notably, H19 accelerates GCs to migration
and metastasis by miR-138a-3p/SOX-12 axis.

2. Materials and Methods

2.1. Human GC Tissues. The 25 clinical GC patients included
16 males (64%) and 9 females (36%). The GC tissues were
obtained from surgical patients who originated from Shenmu
Hospital affiliated with Northwestern University and gave
prior written informed consent (sm008, Table 1). Experimen-
tal procedures using human GC tissues conformed to the

principles outlined in the Declaration of Helsinki and were
performed with the approval by the Ethics Committees of
Shenmu Hospital. The histological evaluation was performed
by two pathologists in a double-blind manner.

2.2. Cell Lines and Treatment. For the specific culture meth-
ods of immortalized gastric mucosal epithelial cells (GES-1)
and five GC cell lines (MKN-45, BGC-823, MKN-28, AGS,
and MGC-803), please refer to the study of Zhang et al. [11].
AGS cell line was transfected with empty vector or H19 over-
expressing plasmid to establish H19 overexpressing cell lines.
Whereas BGC-823-shH19 cell line was established by lentivi-
rus infections.

Knockdown of human H19 was performed using the
lentiviral plasmids pLenti-siH19-GFP (Abcam, #i009382) and
pLenti-scrambled siRNA-GFP (Abcam, #LV015-G) was used as
a control. These siH19 plasmids allowed for direct nonviral
plasmid transfection for immediate expression (siH19) and
packaged into lentiviral particles for high-efficiency transduc-
tion and stably integrated expression (shH19). Of the four
siRNA target sequences we tested, two (shH19-C and shH19-
D) demonstrated a functional knockdown:

shH19-A 1483: GAAGCGGGTCTGTTTCTTTACTTC
CTCCA.
shH19-B 1551: ACCCACAACATGAAAGAAATGGTG
CTACC.
shH19-C 1589: CCTGGGCCTTTGAATCCGGACACA
AAACC.
shH19-D 1710: CCTCATCAGCCCAACATCAAAGAC
ACCAT.

For all experiments, shH19-C was used unless indicated
otherwise.

2.3. RNA Extraction and PCR. RNA extraction [12], reverse
transcription (miR-148-3p) [13], and qRT-PCR (mRNA and
lncRNA H19) were mentioned, as described previously [14].
The primers used in this study are shown as follows: H19,
Fw: 5′TCCTGAACACCTTAGGCTGG3′; Rev: 5′TGATGTT
GGGCTGATGAGGT3′; SOX-12, Fw: 5′GACATGCACAA
CGCCGAGATCT′; and Rev: 5′GTAATCCGCCATGTGCT
TGAGC′.

2.4. Luciferase Reporter Assay. HEK-293T cells were seeded
(1.0× 106 cells/well) for 24 hr before transfection. Cells were
cotransfected with the miR-148a-3p mimics and SOX-12
wild-type plasmids/mutant-type plasmids or H19 wild-type
plasmids/mutant-type plasmids. Then, the cells were incu-
bated for 24 hr and analyzed with a Dual-Luciferase Reporter
Gene Assay Kit (Beyotime, China) following the manufac-
turer’s instructions. Please refer to the study of Zhao et al.
[15] for specific operation steps.

2.5. Transwell Cancer Cell Migration and Invasion Assay. For
cell migration assay, a total of 5× 104 transfected GC cells
were placed in the upper chamber. Meanwhile, fresh medium
with 20% FBS was added into the lower chamber, which was
aimed to induce the migration of GC cells. For cell invasion

TABLE 1: Clinical characteristics of gastric cancer patients.

Characteristics n

Total cases 25
Gender

Male 16
Female 9

Age (years)
≤60 15
>60 10

Smoking history
Yes 7
No 18

Tumor location
Cardia of stomach 7
Fundus of stomach 2
Gastric body 4
Antrum of stomach 12

Tumor diameter (cm)
≤3 17
>3 8

Differentiation
High and moderate 12
Poor 13

TNM stage
Ⅰ 4
Ⅱ 7
Ⅲ and Ⅳ 14

Histological type
Ulcerative type 25
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assay, a total of 5× 104 transfected GC cells were seeded into
24-well insert transwell invasion chambers (Corning, NY,
USA), and the lower chamber contained medium with 20%
FBS was added into the lower chamber. Cells without migration
were removed with a cotton swab after 24hr of incubation. The
migrated cells were immobilized with methanol, then staining
with crystal violet and calculated by microscope (Olympus
Corporation, Tokyo, Japan). For a detailed description of the
transwell cancer cell migration and invasion assay, please
refer to Zhang et al.’s [16] study.

2.6. Wound Healing Assay. Transfected GC cells were seeded
in a 12-well plate with 80% of confluence. The vertical and a
horizontal line was drawn on the bottom of each well by using
a sterile pipette tip and cultured for 24 hr. The same view of
the scratch was captured, and the migration rate was evalu-
ated by Image J software.

2.7. In Vivo Metastasis Model of Nude Mice. Six-week-old male
nude mice (n= 5 per group) were used for in vivo assay. All
animal experiments were approved by the Animal Ethics Com-
mittee of Northwest University (NWU-AWC-20211001M).

Nude mice were sedated using 2% isoflurane inhalation
anesthesia, and the cells of BGC-823-shcontrol and BGC-823-
shH19 (a total of 1× 106/200 µl) were injected into the mice

via tail vain. The mice were sacrificed 6 weeks after induction.
The lungs were collected, and the number of metastasis
nodules was counted according to HE stains.

2.8. Statistical Analysis. Data are specified as mean Æ stan-
dard deviation. Statistical analysis was performed between
the two groups using t-test. Statistical comparisons among
groups were performed using analysis of variance (ANOVA).
All analyses data were performed by SPSS 21.0 software (IBM,
USA), and the two-tailed value was considered statistically
significant (p<0:05).

3. Results

3.1. H19 Was Highly Expressed in GC Tissues and Cell Lines.
To investigate the level and OS of H19 in GC, we analyzed
210 normal and 414 GC tissues in The Cancer Genome Atlas
(TCGA-GTEx) database. As shown in Figures 1(a)and 1(b),
H19 was overexpressed in the GC tissues, and the poor OS
was observed in GC patient with high H19 expression (vs.
normal group).We then examinedH19 expression in 25 clinical
GC samples and their matched adjacent tissues. Compared with
adjacent tissues, H19was highly expressed inGC tissues. Further-
more, H19 was higher in GC metastatic tissues than in nonme-
tastasis GC tissues, suggesting that elevated H19 expressionmay

Normal
(n = 210)

In
cR

N
A

 H
19

 ex
pr

es
sio

n
Lo

g 2
(T

PM
 +

 1
)

STAD
(n = 414)

5

4

3

2

1

0

6
p < 0.001

ðaÞ
Pr

ob
ab

ili
ty

 o
f s

ur
vi

va
l

Follow-up time (days)

Overall survival

Logrank p = 0.0281

100

80

60

40

20

0
0 1,000 2,000 3,000 4,000

Low H19 TPM
High H19 TPM

ðbÞ

Re
la

tiv
e I

nc
RN

A
 H

19
 le

ve
l

60

30

5
10

0
Adjacent tissues GC tissues

90
p < 0.001

ðcÞ

Re
la

tiv
e I

nc
RN

A
 H

19
 le

ve
l

80

60

40

20

0
Nonmetastasis Metastasis

100
p < 0.05

ðdÞ

Pr
ob

ab
ili

ty
 o

f s
ur

vi
va

l

Follow-up time (month)

0
0 20 40 60 80

100
Overall survival

50

p < 0.05

Low H19
High H19

ðeÞ

∗∗

∗

Re
la

tiv
e I

nc
RN

A
 H

19
 le

ve
l

20

10

0

G
ES

–1

M
KN

–2
8

BG
C–

82
3

M
G

C–
80

3

M
KN

–4
5

A
G

S

30

∗∗

∗∗

∗∗∗

ðfÞ
FIGURE 1: Long non-coding RNAs H19 was highly expressed in GC tissues and cell lines. (a) H19 was highly expressed in GC tissues from
TCGA database. (b) High expression of H19 was corrected with poor prognosis in GC tissues. (c) H19 was highly expressed in GC patients
tissues, n= 25. (d) H19 was higher in GC metastatic tissues than in nonmetastasis GC tissues. (e) High H19 expression was observed poor OS
in GC clinical samples. (f ) H19 was highly expressed in five human GC cell lines (MKN-28, BGC-823, MGC-803, MKN-45, and AGS).
∗p <0:05 level, ∗∗p <0:01, and ∗∗∗p <0:001.
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participate in the progression of GC (Figures 1(c) and 1(d),
p<0:05). More importantly, poor OS was observed in GC
clinical samples with high H19 expression (Figure 1(e),
p<0:05). In addition, we determined H19 levels in GC cell
lines widely used in piles of research, including MKN-28,
BGC-823, MGC-803, MKN-45, and AGS. We found that all
the GC cell lines showed increased expression of H19 com-
pared with normal GES. Based on the background level of
H19, we selected BGC-823 cell line, which showed the highest
H19 level, to construct H19 downregulation cell lines. Accord-
ingly, we overexpressed H19 in AGS cell line to perform fur-
ther study (vs. GES cell, Figure 1(f), p<0:05).

3.2. H19 Was Associated with the Metastasis Ability of GC In
Vitro and In Vivo. As mentioned above, BGC-823 cells showed
the greatest increase in expression of H19, and AGS cells
showed the lowest expression of H19. Therefore, in BGC-
823 cells, we constructed the lentiviral shRNAvector targeting
H19 to generate sh-H19. AGS cells were nucleotransfected
in the presence of H19 (H19-pcDNA3.1) or empty vector
(pcDNA3.1), which was used to construct overexpression
H19 (H19-OE). Successful overexpression and knockdown
of mRNA expression was confirmed with RT-qPCR analysis
(Figure 2(a)). Themigration of GC cells was enhanced byH19
overexpression, while knockdown of H19 dramatically inhib-
ited theGC cells migration using wound healing and transwell
assays (Figures 2(b) and 2(c)). To further confirm these find-
ings, we established a metastasis model in nude mice by tail
vein injection of BGC-823 cells. As expected, sh-H19 also
inhibited the migration of GC in vivo (Figure 2(d)) [17, 18].

3.3. miR-148a-3p Was Low Expressed in GC Cell Lines. Stud-
ies have found that H19 acted as a tumor promoter gene in
multiple cancer by modulating miR-148a-3p signaling path-
way [19, 20]. As shown in Figure 3(a), miR-148a-3p was
descended in H19 overexpression cell lines and upregulated
in H19 knockdown cell lines, suggesting that there may be a
negative correlation between H19 and miR-148a-3p. Then,
H19 could directly bind to miR-148a-3p by using luciferase
reporter assays (Figure 3(b)). Subsequently, we transfected
miR-148a-3p mimics into AGS cells, to explore the biological
function of miR-148a-3p in GC cells. The results, as shown
in Figure 3(c), indicated that miR-148a mimic suppressed
cell migration and invasion induced by H19 overexpression.
Moreover, miR-148a-3p mimic also suppressed GC migra-
tion effect of H19 overexpression by using wound healing
assay (Figure 3(d)). These results of this study strongly support
the view that H19 can act as amiRNA sponges and suggest that
miR-148a-3p is an H19-associated miRNAs in GC.

3.4. H19 Acted as a Sponge of miR-148a-3p that Directly
Targeted SOX-12. SOX-12 is overexpressed in GC and cor-
relates with poor prognosis, which plays a vital role in GC
progression and metastasis [17, 21]. To further affirm
whether SOX-12 is a direct target of miR-148a-3p, luciferase
reporter assay was carried out. These results indicate that
SOX-12 could directly bind to miR-148a-3p (Figure 4(a)).
Furthermore, knockdown of H19 downregulated SOX-12
while overexpression of H19 upregulated it in BGC-823 and

AGS cells, respectively (Figure 4(b)). Importantly, in vitro
wound healing assay confirmed that knockout of SOX-12
could reverse the promoting effect of H19 overexpression
on cell migration (Figure 4(c)). Similarly, SOX-12 expression
was upregulated in GC patient’s samples (Figure 4(d)). In
addition, SOX-12 expression was positively correlated with
expression of H19 (Figure 4(e)).More importantly, high levels
of SOX-12 predicted for poor survival in GC clinical samples
(Figure 4(f)).

4. Discussion

Late detection and poor prognosis are the main reasons that
threaten GC patients [22]. Although some progress has been
made in GC development, the prognosis of patients with GC
remains unfavorable [23]. LncRNAs (longer than 200 nt) have
limited protein-coding capacity, exert essential effects in cancer
progression and metastasis [24]. LncRNA-based clinical tools
are promptly evolving, including diagnostic, prognostic biomar-
kers, and therapeutic targets [25, 26]. Previous studies found the
function of H19 in multiple tumor types, but H19 expression in
GC and its clinical significance remain unclear [27, 28].

LncRNAs have important biological functions, and H19
is one of the first lncRNA to be discovered [29]. The gene
encoding H19 is located in the imprinted region of chromo-
some 11 near the insulin-like growth factor 2 (IGF2) gene,
and several transcripts are encoded from the H19/IGF2 locus
[30]. During embryonic development, H19 is highly expression
and is repressed in most tissues after birth [31]. A study linking
H19 to cancer reported that H19 was elevated in bladder cancer
and considered it a predictor of early cancer recurrence [32]. Since
then, H19 has been observed to be overexpressed in many
tumors, including GC, and plays an essential role in cancer
progression and metastasis [33]. Elevated levels of H19 have
also been examined in the plasma of GC patients as a potential
diagnostic marker [34]. In this study, evidently, upregulated
expression of H19 was detected in GC cells and tissues. The
poor OS was observed in GC patient with high H19 expression.
Moreover, the migration of GC cells was enhanced byH19 over-
expression, while knockdown of H19 dramatically inhibited the
GC cells migration by using wound healing and transwell assays.

Assessment of H19 on cell migration and invasion is a
key determinant of malignant progression and metastasis [35].
Liu et al. [36] confirmed the promotion of H19 on GC cell
epithelial–mesenchymal transition (EMT) andmetastasis in vitro
and in vivo.Mechanistically,H19 could induceβ-catenin to trans-
fer into nucleus and activate Wnt/β-catenin signaling, thus pro-
moting EMT and metastasis of GC cells [36]. Gan et al. [37] also
verified that the downregulation of H19 suppressed the pro-
liferation, invasion, migration, and EMT of GC cells in vitro
and suppressed tumor growth in vivo. Moreover, multiple
well-established research used tomimic themetastasis in vivo,
which is consistent with our study [35, 38, 39, 40]. In this
study, we found that H19 was associated with the metastasis
ability of GC in vitro and in vivo. The migration of GC cells
was enhanced by H19 overexpression, while knockdown of
H19 dramatically inhibited the GC cells migration. Subse-
quently, we established a metastasis model in nude mice by
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FIGURE 2: Long non-coding RNAs H19 was associated with the metastasis ability of GC in vitro and in vivo. (a) Overexpression or knockdown
of H19 was constructed with AGS or BGC-823 cells. (b) Transwell assays confirmed that H19 overexpression accelerated cell migration and
invasion. Knockdown of H19 suppressed cell migration and invasion. Scale bars, 10 µm. (c) Wound healing assay proved that H19 over-
expression accelerated metastasis of GC cells. H19 knockdown suppressed metastasis of GC cells. Scale bars, 10 µm. (d) Knockdown of H19
inhibited the migration of GC in a metastasis nude mouse model. Scale bars, 100 µm. ∗∗p <0:01 and ∗∗∗p <0:001:
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tail vein injection of BGC-823 cells. As expected, sh-H19 also
inhibited the migration of GC in vivo.

miRNAs, as small non-coding RNAs of about 22 nt, have
potential roles in the modulation of gene level at posttran-
scriptional level [41]. Growing evidence has elucidated the
key roles of aberrant miRNAs in regulating carcinogenesis

[42]. miR-148a-3p is an important regulator of multiple can-
cer (including pancreatic, breast, and lung cancer) via modu-
lating cell proliferation and apoptosis [42]. A study confirmed
that miR-148a-3p modulates MEG3 through targeting DNA
methyl transferase 1 in GC [43]. Moreover, miR-148a-3p can
also inhibit GC cell invasion and migration and is associated
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FIGURE 4: Long non-coding RNAs H19 acted as a sponge of miR-148a-3p that directly targeted SOX-12. (a) Luciferase reporter assays
confirmed that miR-148a-3p could directly bind to SOX-12. (b) SOX-12 was upregulated in H19 overexpression cell lines and downregulated
in H19 knockdown cell lines. (c) Wound healing assay showed shSOX-12 inhibited migration of GC cells induced by H19 overexpression.
Scale bars, 10 µm. ∗∗∗p<0:001 (pcDNA3.1-H19 vs. pcDNA3.1) and ##p <0:01 level (pcDNA3.1-H19+shSOX-12 vs. pcDNA3.1-H19). (d)
SOX-12 was highly expressed in cancer tissues from GC patients, n= 25. (e) H19 expression was positively correlated with SOX-12
expression in clinical GC sample. (f ) High SOX-12 predicted poor prognosis in GC patients. ∗∗p <0:01 and ∗∗∗p <0:001.
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with 5-year disease-free survival [44]. Moreover, miR-148a is
indeed a member of the miR family, which plays a crucial role
in regulating gene expression posttranscriptionally. In GC,
miR-148a, along with its family member’s miR-148b and
miR-152, has been found to be dysregulated, indicating its
potential significance in the pathogenesis of this disease. Nota-
bly, miR-148a, miR-148b, and miR-152 share the same seed
sequence. The seed sequence is a crucial region within the
miRNAmolecule that determines its target specificity. Despite
sharing this sequence, miRNAs can still have distinct functions
due to differences in other regions of their sequence or their
expression patterns. The dysregulation of miR-148a, along
with its family members, in GC underscores the complex reg-
ulatory networks involved in cancer development and progres-
sion. In this study, among various miRs that predicted could
interact with H19, miR-148a showed the most significant cor-
relate with H19, thus we focused on miR-148a [45, 46]. In this
study, H19 may be negatively correlated with miR-148a-3p,
and H19 could directly bind to miR-148a-3p. Furthermore,
miR-148amimics inhibited cell migration and invasion induced
by H19 overexpression. The above findings proved that H19
functions as a miRNA sponge and verified that miR-148a-3p
is the H19-associated miRNA in GC.

The transcription factor SOX-12 belongs to SOX family,
which participates in maintaining the pluripotency, self-renewal,
and differentiation of embryonic stem cells [47]. In hepato-
cellular carcinoma cells, overexpression of SOX-12 can induce
EMT, invasion, and metastasis, which is also considered to be
a potentially promising target for this disease [48]. SOX-12
has also been confirmed to be participate in the progression of
leukemia via modulation of β-catenin expression and inter-
ference of TGF/Wnt pathway [49]. Furthermore, knockdown
of SOX-12 expression suppresses the growth, migration, and
invasion of lung and breast cancer cells [50, 51]. Notably, Du
et al. [17] found that overexpression of SOX-12 promoted
GC cell migration, invasion, and metastasis, whereas SOX-
12 downregulation reversed these effects. These studies sug-
gest that SOX-12 plays an essential role in tumor progression
and metastasis. However, the effect of SOX-12 in human GC
with H19 and miR-148a-3p has not been clarified. In this
study, SOX-12 expression was upregulated in GC patient’s
samples. In addition, SOX-12 expression was positively cor-
related with expression of H19, and SOX-12 could directly
bind to miR-148a-3p. Importantly, in vitro wound healing
assay confirmed that knockout of SOX-12 could reverse the
promoting effect of H19 overexpression on cell migration.
These results suggest that SOX-12 may be a therapeutic target
and a prognostic marker for GC. However, due to the small
sample size in this study and the large individual variation in
GC patients, the differences were not satisfactory (but were
statistically significant), which is also a limitation of this study
and will hopefully be explored in depth in further studies.

5. Conclusion

In summary, these findings provide novel insight into the
potential regulatory roles of H19 in GC and suggest that the

H19/miR-148a-3p/SOX-12 axis may prove to be a promising
therapeutic target for the treatment of patients with GC.
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