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Currently, retinoids are known for their abundant benefts to skin health, ranging from reducing signs of aging and decreasing
hyperpigmentation to treating acne. However, it cannot be denied that there are various side efects associated with the use of
retinoids on the skin, one of which is irritation. Several approaches can be employed tominimize the irritation caused by retinoids.
Tis review article discusses topical retinoid formulation technology strategies to reduce skin irritation efects. Te methodology
used in this study is a literature review of 21 reference journals. Te sources used in compiling this review are from PubMed,
Scopus, ScienceDirect, and MEDLINE. Te fndings obtained indicate that the following methods can be used to lessen retinoid-
induced irritation in topical formulations: developing drug delivery systems in the formulation, such as encapsulating retinoids,
transforming retinoids into nanoparticles, forming complexes (e.g., with cyclodextrin), and binding retinoids with carriers (e.g.,
polymers, NLC, SLN), adding ingredients with anti-irritation activity, skin barrier improvement, and increased skin hydration to
retinoid formulations (e.g., combinations of glucosamine, trehalose, ectoine, sucralfate, omega-9, and 4-t-butylcyclohexanol,
addition of ethanolic bark extract of Alstonia scholaris R. Br).

1. Introduction

Retinoids are compounds that have been used topically and
systemically since the 1940s to address acne problems [1].
Over the past few decades, topical retinoids have seen in-
creasing development in their usage. Among various
treatments, topical retinoids are among the most commonly
used active ingredients and have been clinically tested [2].
Retinoids have been shown to successfully improve several
dermatological conditions, including photoaging/rhytides,
psoriasis, and acne vulgaris. Tey are also used of-label for
conditions, such as hyperpigmentation and keratosis
pilaris [3].

While retinoids ofer advantages in treating several skin
conditions, they can also have drawbacks, including retinoid

dermatitis, characterized by redness, peeling, burning, and
itching [4]. Te side efects that occur are typically dose-
dependent [5]. Te concentration of retinoids that can cause
skin irritation can vary depending on several factors, in-
cluding the specifc retinoid compound, the individual’s skin
sensitivity, and the frequency and duration of use. Generally,
higher concentrations of retinoids tend to cause more skin
irritation [6, 7].

Studies on the mechanism of irritation have shown that
retinoid-induced irritation can be mediated by various
pathways. Te mechanism of retinol irritation generates
broad and chronic infammation defned by immune cell
infltration and cytokine release, as well as breakdown of the
skin barrier caused by a genetic imbalance of components
linked with the cornifed envelope (CE) [8]. A study
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conducted by Kim et al. [9] demonstrated that retinoids can
generate a range of proteins associated with skin irritation,
such asMCP-1 and IL-8. However, the observations made so
far have not provided a comprehensive explanation for the
process behind retinoid-induced irritation, and as a result,
defnitive conclusions have yet to be established.

Tere are many ways to reduce skin irritation caused by
retinoid products. Te way a product is made afects how it
works on the skin. Research is ongoing to create products
that work well without causing irritation [3]. Diferent
methods, like liposomes and solid lipid nanoparticles, are
being studied to reduce irritation [10]. Tis review aims to
explore these methods to lessen skin irritation from using
retinoid products.

2. Method

Tis review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines, utilizing a search of articles from the
PubMed, Scopus, ScienceDirect, and MEDLINE databases.
Te search strategy employed Boolean operators, using the
syntax “Retinoid AND Irritation AND Formulation.” To
enhance the comprehensiveness of the review, no re-
strictions were placed on the publication year during the
literature search. Te retrieved articles were then collated
and evaluated for duplicates. Subsequently, screening of
titles and abstracts of the obtained articles was performed.
Further screening involved analyzing full-text articles to
assess their eligibility. Te eligibility of articles was de-
termined based on inclusion criteria, including studies
published in English, studies involving the use of retinoids as
an active ingredient in the formulations used, and studies
conducting irritation testing either in vitro, in vivo, or
clinically. Te exclusion criteria for this review encompassed
articles, such as reviews, notes, book chapters, conference
papers, short surveys, editorials, and letters. Te fow of
article selection leading to the identifcation of eligible ar-
ticles is depicted in Figure 1.

3. Topical Formulation of Retinoid

Retinoids have been shown to successfully treat several
dermatological conditions, including reducing signs of aging
(wrinkles, photoaging, rhytides), decreasing hyperpigmen-
tation, and treating acne, as well as other dermatological
illnesses, such as Kaposi’s sarcoma, psoriasis, and T-cell
lymphoma.

3.1. Reducing Signs of Aging (Wrinkle, Photoaging, and
Rhytides). Vitamin A and its derivatives, particularly reti-
nol, have demonstrated notable efcacy as pharmaceutical
agents for slowing down the aging process. Te efcacy of
topically administered formulations containing retinoids in
reducing wrinkles can be attributed to several mechanisms.
Tese mechanisms include the stimulation of keratinocyte
proliferation and collagen synthesis, enhancement of the
epidermal barrier function (EGFR), prevention of collagen
breakdown, reduction of transdermal water loss (TEWL),

and suppression of metalloproteinase activity. Hence, the
objective of this literature review is to provide a compre-
hensive overview of several approaches applied to mitigate
the occurrence of skin irritation as an adverse efect resulting
from the application of topical retinoids [11, 12]. Retinoids
are thought to exert their efects at the molecular level by
interacting with nuclear retinoic acid receptors, which act as
transcription factors in the regulation of gene expression
[13]. Retinol improves skin suppleness by eliminating
damaged elastin fbers, activating fbroblasts to produce
collagen fbers, increasing fbroblast number, and stimu-
lating angiogenesis. Collagen production declines with age,
leading to wrinkles and fne lines. Retinoids stimulate col-
lagen formation, which improves skin frmness and reduces
the depth of wrinkles [14, 15].

3.2. Decrease Hyperpigmentation. Retinoids can be used to
improve melanin distribution in the skin, reducing skin
discoloration and pigmentation by up to 60%. Tey are
employed to treat pigmentation disorders, such as melasma
and postinfammatory hyperpigmentation. Retinoids work
by inhibiting tyrosinase and dispersing epidermal melanin.
Additionally, they may cause the epidermis to shed faster,
interfering with pigment transfer to keratinocytes and ac-
celerating pigment loss. Tey also inhibit the activity of
active melanocytes and prevent melanin transfer to epi-
dermal cells. Long-term use of retinoids decreases melanin
levels while increasing the stratum corneum thickness
[15, 16].

3.3. Treating Acne. Topical retinoids are used for the
treatment of both noninfammatory and infammatory acne.
Currently, the Food and Drug Administration (FDA) has
approved three topical retinoids: adapalene, tazarotene, and
tretinoin [17]. Topical retinoids play a signifcant role in acne
treatment due to their proven efcacy in reducing visible
lesions and suppressing the development of micro-
comedones and new lesions [18].Tey function by inhibiting
keratinocyte growth and promoting cellular diferentiation,
thereby regulating the process of desquamation [18]. In
addition to their primary efects, topical retinoids have been
found to inhibit themigration of leukocytes, hinder the AP-1
pathway, and disrupt various other crucial infammatory
mechanisms triggered during the development of acne
[19, 20]. Furthermore, topical retinoids have been shown to
improve the penetration of additional topical acne medi-
cations and facilitate the healing of postinfammatory hy-
perpigmentation resulting from acne [21].

3.4. Kaposi’s Sarcoma. In the case of Kaposi’s sarcoma
(KSC), retinoids have been observed to indirectly inhibit its
initial growth. Te antiproliferative efects of retinoids can
occur due to the modulation of cytokines or receptors,
leading to changes in their expression. For example, reti-
noids can inhibit the production of oncostatin M through
the autocrine IL-6 pathway, thereby exerting anti-
proliferative efects. Additionally, retinoids can upregulate
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the expression of TGF-β, which hinders the normal pro-
liferation of endothelial cells. Furthermore, retinoids can
infuence the expression of TGF-β receptors, contributing to
their antiproliferative properties [19, 20, 22, 23].

3.5. Psoriasis. Retinoids are involved in the physiological
process of skin cell formation and possess a chemical
composition that bears resemblance to vitamin A. Te
mechanism of action of retinoids involves the inhibition of
keratinization, which refers to the process by which skin cells
thicken due to the deposition of protein within them. Ad-
ditionally, retinoids suppress excessive cell proliferation,
both of which are characteristic features observed in in-
dividuals with psoriasis [11, 24]. Te sole prescribed treat-
ment for psoriasis is the topical retinoid known as
tazarotene. Tazarotene undergoes hydrolysis in the tissues,
resulting in the formation of tazarotenic acid. Subsequently,
tazarotenic acid binds to the retinoic acid receptors. Te

interaction between the receptor and ligand is responsible
for controlling the expression of retinoid-responsive genes,
which play a role in cell proliferation and infammation.
Psoriasis, a condition characterized by increased epidermal
proliferation, is distinguished by the presence of cell pro-
liferation and infammation as prominent symptoms [25].

3.6. T-Cell Lymphoma. Retinoids, as a collective class, share
a common mode of action. However, it is important to note
that individual retinoids possess unique structural charac-
teristics and exhibit specifc binding afnities to receptors.
Tis molecular variability accounts for the diverse in-
dications and results associated with diferent retinoids. For
instance, bexarotene, a retinoid compound with specifcity
for the retinoid X receptor (RXR), is indicated as a suggested
therapeutic option for managing cutaneous T-cell lym-
phoma [26]. Bexarotene binds to and activates the RXR
nuclear receptors, resulting in the inhibition of the G1, G2,
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Figure 1: Flowchart of the search and selection process based on PRISMA guideline.
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and M phases of the cell cycle. Tis leads to a reduction in
cell proliferation and an increase in programmed cell death,
known as apoptosis [27].

3.7. Skin Irritation. While retinoids have proven benefcial
in dermatology, they can also cause skin irritation, with the
severity often corresponding to the dosage administered.
Symptoms of irritation may include erythema, pruritus,
a sensation of burning, xerosis, desquamation, or the de-
velopment of a condition known as “retinoid dermatitis” at
the application site of the retinoid [7, 28]. Retinoids have
been found to enhance the proliferation of cells in the
stratum corneum and basal layer of the epidermis, pro-
moting epidermal turnover. Consequently, the process of
shedding old and damaged skin cells is accelerated. Te
thinning of the stratum corneum due to increased cell
turnover can diminish the skin’s ability to act as a protective
barrier, contributing to heightened irritation and sensitivity.
Research conducted in vivo and clinical settings has dem-
onstrated that the application of topical retinoids often leads
to dry skin. However, there is no empirical evidence to
support the notion that sebum production is diminished as
a result of this treatment. Dry skin, characterized by faky
skin, is believed to arise from the normalization of kerati-
nocyte diferentiation, proliferation, and desmosome
weakening, leading to a reduction in cell adhesion [29].
Although topical retinoids have the ability to bind to reti-
noid receptors on sebocytes, resulting in decreased sebum
production, current research does not convincingly show
that topical retinoids have a sebosuppressive efect [30]. Te
administration of retinoids could interfere with lipid pro-
duction, essential for maintaining the integrity of the skin
barrier. Reduced lipid production levels diminish the ca-
pacity of lipid envelopes to function as a barrier, potentially
leading to decreased defense against external irritants and
increased transepidermal water loss. Tis heightened sen-
sitivity may disrupt the integrity of the skin’s natural bar-
riers, increasing susceptibility to skin damage [31].

4. Strategies

Te strategy of formulating topical retinoid technology to
minimize skin irritation can be achieved through encap-
sulation or complex formation techniques in the drug de-
livery process [32, 33]. Tere are several methods (Table 1)
for encapsulating nanoparticles. One popular strategy in-
volves encapsulating nanoparticles with a protective layer or
shell, which can be formed from polymer materials, lipid
layers, or inorganic substances [52–54]. Several studies have
shown that colloidal carriers such as solid lipid nanoparticles
(SLN), nanostructured lipid carriers (NLC), polymer par-
ticles, liposomes, niosomes, cyclodextrins, and micro-
emulsions can reduce retinoid irritation. Additionally,
alternative methods to reduce irritation efects include the
inclusion of anti-irritation substances. In this paper, we
provide a comprehensive review of several studies focusing
on technological advancements in topical retinoid formu-
lations aimed at mitigating skin irritant efects.

4.1. Liposome. Te frst generation of new drug delivery
vehicles, liposomes, has undergone substantial research [55].
Liposomes, consisting of bilayers referred to as unilamellar
or multilamellar liposomes, are employed as carriers in
various applications. Tese bilayers consist of concentric
layers separated by aqueous compartments, created by
amphipathic molecules such as phospholipids that enclose
the core aqueous compartments [56]. Liposomes have the
capacity to encapsulate various types of medication, allowing
modifcations of their appearance through lipid modifca-
tion [57]. Recognized as highly efcient vehicles for drug
delivery, liposomes ofer exceptional biocompatibility and
safety attributes. Tey prolong the half-life of drugs, regulate
the release of drug molecules, and safeguard the encapsu-
lated material against physiological degradation [58].
Moreover, liposomes can selectively target aficted areas
through passive and/or active delivery mechanisms, re-
ducing the occurrence of systemic side efects, enhancing the
maximum tolerated dose, and ultimately improving thera-
peutic outcomes [59]. Te ability of liposomes to reduce the
irritation caused by retinol usage stems from their capacity
to protect encapsulated molecules from degradation. Ad-
ditionally, the formation of liposomes enables controlled
and localized release, providing sustained and targeted ef-
fects [60]. Encapsulating drugs into liposomes for topical
administration leads to increased drug concentration at the
targeted site of action, enhancing localized benefts and
minimizing undesirable systemic side efects [61].

A study conducted by Rahman et al. [44]investigated the
process of encapsulating tretinoin into liposomes generated
using a modifed ether injection approach. In this study,
tretinoin (TRT) at a concentration of 0.025% was in-
corporated into a gel formulation containing 1% carbopol to
evaluate its potential for causing skin irritation. Volunteers
received a single application of the product (0.3 g dose) and
were monitored for observable changes, namely, erythema
(redness), after a 6-hour period. Outcomes were assessed
using a scoring framework ranging from 4 to 0: 4 indicates
severe erythema, 3 indicates moderate-to-severe erythema, 2
indicates moderate erythema, 1 indicates mild erythema,
and 0 indicates the absence of erythema. Te results in-
dicated that the liposome formulation exhibited decreased
erythema scores (mean score of 0.2± standard deviation of
0.37) compared to both the TRT 0.025% gel formulation
(mean score of 1.70± standard deviation of 0.751) and the
commercially available product (mean score of
1.40± standard deviation of 0.534) [41].

In another study conducted by Raza et al., the thin-flm
hydration process was employed to manufacture tretinoin-
loaded liposomes. Te liposome dispersion consisted of
tretinoin, phospholipids, butylated hydroxytoluene, and
cholesterol dissolved in a chloroform-methanol (2 :1 v/v)
mixture. An in vivo investigation was conducted on female
Lacamice, with each group being topically treated with TRE-
liposomal gel, TRE-ethosomal gel, TRE-SLN gel, and
TRE-NLC gel, while a ffth group was treated with saline as
a control. After 2 weeks of daily treatment (approximately
0.2 g of the formulation), any residual formulation on the
skin was rinsed of. Te evaluated skin area was
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photographed using a digital camera one hour later, and the
outcomes were observed. Skin samples were taken, fxed in
10% formalin solution, stained with hematoxylin and eosin,
and examined under a microscope. Images from skin irri-
tancy tests onmice demonstrated that the developedmethod
was well accepted on rat skin compared to other treatments
on the market, as there was no visually or microscopically
apparent irritation.Tis can be attributed to the small vesicle
size and the function of liposomes in protecting the skin
from direct contact with the drug trapped within the vesicles.
Tretinoin (TRT) can be supplied to the epidermis gradually,
reducing erythematous occurrences by being absorbed into
vesicles, which also reduces the contact of the TRT car-
boxylic acid (−COOH) groups with the stratum corneum
[38]. Te small vesicle size and high TRT incorporation
efciency of this proposed mixture could help reduce skin
irritation.

However, liposomes have several drawbacks, including
high production costs, drug/molecule leakage, and fusion. If
the temperature during manufacturing and storage is not
tightly regulated, drug encapsulation may leak. Phospho-
lipids occasionally undergo reactions resembling oxidation
and hydrolysis. Lysophospholipids and peroxides are created
when liposomal phospholipids are hydrolyzed and oxidized,
increasing the permeability of the bilayer. Additionally, in
aqueous suspensions of liposomes, aggregation, particle size
increase, and drug leakage may occur at considerable rates.
Liposomes are also poorly soluble and have a limited half-
life. Some frst-generation liposome products might not be
long-term stable at room temperature [62, 63].

4.2. Niosome. Niosomes are nonionic surfactant-based
colloidal vesicular carriers composed primarily of two
types of components: nonionic surfactants and additives.
Te vesicular layer’s development is facilitated by the
nonionic surfactant, while cholesterol and charged mole-
cules serve as additives in niosome formation [64]. Cho-
lesterol plays multiple roles in stabilizing vesicular
structures, including reducing the transition temperature
from the gel phase to the liquid crystal phase and decreasing
the overall hydrophilic-lipophilic balance (HLB) value of the
surfactant mixture used in niosome preparation [65, 66].

In recent years, extensive research has explored the
application of niosomes as drug delivery systems. Niosomes
ofer controlled and/or sustained release of pharmaceutical
substances to targeted areas while demonstrating an ex-
tended period of stability [67]. Tey can encapsulate large
amounts of materials in a small volume, are more efective
than conventional oily formulations, and can entrap a di-
verse range of chemicals due to their unique structure
[67–69]. Properties such as shape, fuidity, and size can be
easily adjusted by modifying their structural composition
and synthesis technique [70]. Previous studies have shown
that incorporating niosomes into gel matrices can improve
drug absorption and reduce skin irritation due to their
particle size, surface composition, and characteristics [71].
Niosomes, as second-generation vesicular carriers, have
gained attention as suitable replacements for liposomes due

to their enhanced chemical stability, superior drug encap-
sulation capabilities, inherent ability to enhance skin pen-
etration, and cost-efectiveness [72, 73].

Rahman et al. investigated the in vivo irritant efects of
topical proniosomal formulations containing tretinoin. Pro-
niosomes can be hydrated immediately before use to produce
niosomes. Te proposed formula, N8G, consisted of proto-
nosomes synthesized with 0.025% TRTand a 3 :1molar ratio
of cholesterol to Span 60. Skin irritation tests were performed
by comparing it to a commercial product, revealing minor
erythema skin irritation test results for the proniosomal TRT
gel compared to other treatments [44].

Kim et al. conducted an investigation using the lipid
hydration method to generate niosomes. A cohort of 23
healthy individuals received daily administration of a 0.05%
RA-N nanoemulsion blend for 4weeks. Te Visioscan®method was employed to compute the average desquama-
tion index, which showed a signifcant reduction in des-
quamation, indicating the potential for skin tolerance
without causing irritation [43].

Despite the mentioned advantages, aqueous solutions of
niosomes have a short shelf life due to fusion, aggregation,
drug leakage, and hydrolysis [74]. Stability is afected by
factors, such as surfactant type, storage temperature, in-
terfacial polymerization of surfactant monomers, detergents,
membrane-spanning lipids, nature of encapsulated drug,
and inclusion of charged molecules [3, 4].

Niosomes and liposomes have similar applications in
drug delivery but difer chemically in their structure units.
Niosomes are made of nonionic surfactants, whereas lipo-
somes are made of phospholipids [75]. Tey function as
amphiphilic vesicles, carrying out similar tasks and sharing
morphological traits. Both can be used for targeted and
sustained drug delivery systems [76]. Studies have shown
that niosomes and liposomes both have comparable func-
tions in vivo [77]. While having similar characteristics to
liposomes, niosomes ofer several advantages, including
intrinsic skin penetration-enhancing qualities, increased
chemical stability, and lower costs [67].

4.3. Solid LipidNanoparticle (SLN). Solid lipid nanoparticles
(SLNs) are lipid-based nanoparticles characterized by a solid
core, capable of encapsulating both hydrophilic and hy-
drophobic pharmaceutical compounds [78]. Tey ofer
advantages such as enhanced physical stability, controlled
release properties, and ease of preparation, making them
safer and more cost-efective than polymer nanoparticles
[35, 79, 80]. SLNs have shown potential as a drug delivery
system for topical applications due to their ability to enhance
drug permeation into the skin and reduce potential toxicity
and irritation upon dermal application [81, 82].

Several studies have demonstrated that SLNs can reduce
or even eliminate skin irritation caused by retinoids.
Rodrigues et al. used an ion-pairing approach to create SLNs
for encapsulating adapalene. In vivo irritation tests on fe-
male rats over a 7-day period showed signifcantly lower
erythema scores for SLN-SA-AD gel compared to com-
mercially available AD gel (p< 0.05) [34].
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Shields et al. employed high-pressure homogenization to
generate dispersions of SLNs, which were incorporated into
polymer gels. Skin irritation tests on albino rabbits showed
no erythema or edema, indicating that the formulated
substances did not induce skin irritation [35].

Ahmad Nasrollahi et al. examined the creation of SLNs
using a hot-melt homogenization approach combined with
ultrasound emulsifcation. Female rats treated with SLNs
containing RA-STE showed signifcantly reduced irritation
indices compared to those treated with a commercially
available RA cream (p< 0.05) [42].

Despite the advantages of SLNs, such as protection from
adverse environmental conditions, ease of large-scale syn-
thesis, biocompatibility, and biodegradability, they also have
limitations. Tese include low drug loading efciency, po-
tential drug expulsion due to crystallization during storage,
and initial burst release. Te propensity for drugs to expel
from SLNs during storage due to crystallization restricts
drug loading. To overcome these limitations, nanostructured
lipid carriers (NLCs) can be employed to prevent crystal-
lization [83–85].

4.4. Nanostructured Lipid Carriers (NLCs).
Nanostructured lipid carriers (NLCs) are lipid-based
nanoparticles composed of a mixture of solid and liquid
lipids, resulting in an imperfect crystal structure [86]. NLCs
ofer advantages over SLNs, including higher drug loading
capacity, minimized drug expulsion due to lipid crystalli-
zation, increased drug solubility in lipid matrix, and more
controllable release profles [87, 88]. Te addition of oil in
NLCs prevents lipid recrystallization, resulting in a more
thermodynamically stable system with improved release
properties [89–91].

NLCs are considered an enhanced version of SLNs,
featuring optimized core composition, increased drug
loading capacity, enhanced stability, and the ability to
function at reduced temperatures [87, 91–93]. Despite being
solid at physiological body temperature, NLCs have a lower
melting point than SLNs, providing more space for drug
dissolution and higher loading capacity [87, 88]. NLCs are
less susceptible to gelation during preparation and storage,
facilitating nanoparticle separation from the medium and
dosage form preparation for parenteral administration
[87, 88].

Autoclaving can be employed to sterilize NLC solutions,
but this method requires strong dilution of the particle
dispersion and elimination of organic solvent residues,
posing challenges for industrial application [94]. Te use of
retinoid active components in NLCs has shown enhanced
skin penetration due to the lipid composition of the
nanocarrier, reducing the likelihood of skin irritation and
photosensitization. Clinical studies have demonstrated the
nonirritating nature of NLC formulations containing retinyl
palmitate and tretinoin [37–40].

Castro et al. reported that NLCs prepared using ultra-
sonic homogenization and high-pressure techniques dem-
onstrated skin tolerance in clinical studies [40]. Rahman
et al. found that NLCs loaded with retinyl palmitate mini-
mized irritant efects, with in vitro tests showing cell survival

above 90% for all NLC formulations [39]. Pople and Singh
observed no irritation with NLC-based tretinoin gel com-
pared to a commercially available gel, which induced sig-
nifcant irritation within three days [37]. Raza et al. also
demonstrated superior skin tolerance of NLCs compared to
a commercially available product in animal studies [38].

4.5. Polymer. Polymer drug delivery systems are defned as
formulations or devices that facilitate the entry of thera-
peutic substances into the body [95]. Drug carriers utilizing
polymers are available in various forms, including nano-
particles, micelles, dendrimers, and hydrogels.Tese carriers
consist of either natural or synthetic polymers, such as poly-
D, L-lactide coglycolide (PLGA) or polylactide (PLA)
[96, 97]. Loading drugs into these carriers can be achieved
through covalent bonding, surface adsorption, or trapping
within the polymer matrix [98]. Tese systems can enhance
the safety and efectiveness of drugs by controlling the rate,
timing, and location of drug release within the body. Ad-
ditionally, they can protect and facilitate the release of en-
capsulated drugs by preventing physical and chemical
degradation [95]. Drug delivery carriers ofer signifcant
capabilities, and the use of smart polymers can improve drug
transport and reduce the adverse efects associated with
these therapeutic agents, thereby enhancing therapeutic
efectiveness [99].

Te solubility of poorly water-soluble medicines can be
improved by polymers, increasing their bioavailability and
therapeutic impacts. Polymers have signifcantly contributed
to the advancement of drug delivery technology by enabling
cyclic dosage, adjustable release of both hydrophilic and
hydrophobic medicines, and regulated release of therapeutic
agents in steady doses over extended durations [100, 101].
Using a polymer as an inert carrier ofers many benefts. For
example, polymers can improve the pharmacodynamic and
pharmacokinetic properties of biopharmaceuticals by
lengthening their plasma half-lives, lowering their immu-
nogenicity, boosting their stability, increasing the solubility
of low-molecular-weight drugs, and potentially enabling
targeted drug delivery [102]. Polymeric nanoparticles are
excellent options for drug delivery. However, toxicity and
a higher likelihood of particle aggregation are drawbacks of
polymeric nanoparticles (NPs). Although polymeric nano-
carriers are being tested in several clinical trials, only a small
number of polymeric nanomedicines have received FDA
approval and are being utilized in clinical settings [103]. Te
efectiveness of these nanopharmaceuticals is limited by
safety issues, toxicity risks, insufcient biocompatibility, and
physiological limitations [104]. Drawbacks of these nano-
particles include harmful monomer aggregation, residual
material attached to them, and toxic disintegration [105].

4.5.1. Polyolprepolymer-2. Polyolprepolymer-2 (PP-2) is
a composite material consisting of hydroxyl-terminated
polyurethane polyol with a high molecular weight and
propylene glycol. Incorporating polyolprepolymer-2 into
topical formulations alters the transdermal delivery of tre-
tinoin, thereby reducing tretinoin-induced irritation [106].
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Niemiec et al. [107] suggested that adding
polyolprepolymer-2 to the formulation can hinder the mi-
gration of tretinoin into the deeper layers of the epidermis,
consequently decreasing irritation. Quigley and Bucks [47]
conducted a study where they formulated tretinoin into
cream and gel forms using polyolprepolymer-2. Te study
demonstrated the efectiveness of polyolprepolymer-2 in
minimizing the adverse efects of tretinoin-induced irrita-
tion. Tree diferent test substances were used in patch tests
on the shaved dorsal skin of guinea pigs: a 0.025% tretinoin
gel containing polyolprepolymer-2, a commercially available
0.025% tretinoin gel, and a 0.025% tretinoin gel without
polyolprepolymer-2. Preliminary fndings indicated that the
formulation with polyolprepolymer-2 resulted in signif-
cantly less pain compared to the other formulations. While
the irritation scores for the 0.025% tretinoin cream with
polyolprepolymer-2 suggested reduced irritation risk, no
signifcant diference was observed compared to the 0.025%
cream [47].

Luckya et al. also investigated the formulation of tre-
tinoin with polyolprepolymer-2. Patch tests were conducted
on human skin to evaluate irritation levels. A comparative
analysis was performed between a tretinoin gel containing
polyolprepolymer-2 at a concentration of 0.025% and an
over-the-counter tretinoin gel. Te results showed that
tretinoin combined with polyolprepolymer-2 led to a sta-
tistically signifcant reduction in facial peeling compared to
using the commercially available tretinoin gel [48].

4.5.2. Conjugated Polymer. Comparing this drug-polymer
conjugate to standard small-molecule therapy reveals several
signifcant advantages. First, conjugating a drug with a wa-
ter-soluble polymer can greatly enhance its solubility in
aqueous solutions [108]. Te drug-polymer conjugate ofers
potential for controlled drug delivery, releasing the drug in
a controlled manner over a specifc period. Tis allows for
precise control of the rate and duration of drug adminis-
tration to achieve the desired therapeutic concentration
efectively [109]. Drug-polymer conjugates, composed of
polymers, generally exhibit extended half-lives, improved
stability, enhanced water solubility, reduced immunoge-
nicity and antigenicity, and increased tissue or cell specifcity
[110]. Both polymeric and molecular prodrugs use polymers
as carriers for proteins, targeting moieties, and imaging
agents. Drug-polymer conjugates can be viewed as drug
delivery systems that achieve their therapeutic efcacy by
gradually releasing small drug molecules from the polymer
chain [111].

Research by Castleberry et al. demonstrated that the
synthesis of polymer conjugates involves covalently binding
the drug to a hydrophilic polymer, polyvinyl alcohol (PVA),
through ester bonds. Tis process produces an amphiphilic
nanomaterial soluble in water, which can be hydrolytically
degraded. Te PVA-bound all-trans-retinoic acid acts as
a prodrug, facilitating its accumulation in the skin and
enabling controlled and sustained release of active all-trans-
retinoic acid. In vivo irritation experiments were conducted
on laboratory animals, specifcally rats. Rats were

administered two distinct treatments: PATRA, ATRA, PVA,
and PBS, applied to a 1 cm2 area on their dorsal surface.
Irritation assessment involved digital imaging to examine
the application areas of ATRA, PATRA, or the control
solution for up to fve days postadministration. In-
fammation was further examined using histological anal-
ysis. Each rat received one of the four test chemicals applied
at two separate locations. Evaluation of infammation and
skin changes following all-trans-retinoic acid (ATRA) ap-
plication was conducted using digital imaging and hema-
toxylin and eosin (H&E) histology.Te in vivo assessment of
irritation caused by the PVA-ATRA polymer-drug combi-
nation, PATRA, demonstrated a signifcant reduction in
infammation and irritation [46].

4.6. Cyclodextrins. Cyclodextrins (CDs) are cyclic oligo-
saccharides composed of at least six, seven, or eight glucose
units connected by α-1,4 glycosidic linkages. Cyclodextrin
glycosyltransferase (CGT) is an enzyme commonly found in
Bacillus macerans, Klebsiella pneumoniae, and Alkalophilic
bacteria strain number 38. Tis enzyme primarily facilitates
starch hydrolysis, leading to the production of cyclodextrins
[49]. Complexation of a substance with cyclodextrin can
improve its delivery characteristics without afecting its
activity, as complexation is a rapid, reversible, and dynamic
process [112]. Te formation of inclusion complexes be-
tween drugs and cyclodextrin enhances the physicochemical
and biological properties of poorly soluble drugs and en-
capsulates lipophilic drugs within the cyclodextrin cavity
[113]. CDs can modulate the rheological properties of
creams and gels and reduce skin irritation caused by active
ingredients [114]. CDs and their derivatives ofer signifcant
advantages in transdermal drug delivery, including en-
hanced drug solubility and stability, improved transdermal
absorption, sustained drug release, reduced side efects, and
facilitation of both local and systemic administration
[115, 116].

CDs have been shown to improve the stability, tolerance,
apparent solubility, and organoleptic properties of active
substances, as well as their controlled release in the skin
[114]. While CDs are too large to permeate the stratum
corneum (SC), they can act as skin permeation enhancers by
increasing the perceived solubility of active substances and
providing an in situ reservoir efect [117]. Using CDs as skin
carriers can increase the stability of active ingredients in the
formulation and at the target site, reduce irritation caused by
active ingredients, and allow for controlled release [118].
CDs can enhance the bioavailability of complex compounds
by improving their solubility, stability, penetration, and
retention, and they exhibit superior biocompatibility, which
limits toxicity associated with active ingredients [119].

A study by Anadolu et al. found that beta-cyclodextrin
(−CD) complexes reduced itching caused by retinoids. Tis
study compared the efects of various topical applications on
acne vulgaris patients, including a cyclodextrin complex
hydrogel formulation (0.025%), cyclodextrin complex in
amoisturizer base (0.025%), hydrogel base, moisturizer base,
and a commercial retinoic acid gel (0.05%), through in vivo
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irritation testing. Only one patient discontinued treatment
due to signifcant irritation, and none of the patients treated
with the cyclodextrin complex experienced substantial local
irritation compared to currently available retinoic acid
formulations [49].

Another study by Kaur et al. focused on evaluating the
irritating efects of isotretinoin solid inclusion complexes
produced through freeze-drying. Rabbits were used as ex-
perimental subjects, and their dorsal fur was removed
24 hours prior to the experiment.Te results showed that the
isotretinoin elastic liposomal formulation exhibited signif-
icantly reduced skin irritation potency compared to the
unencapsulated medication [50].

Despite the advantages of topical formulations, there are
also limitations [120]. Cyclodextrins can only improve the
topical delivery of drugs in the presence of water. In aqueous
vehicle systems, cyclodextrins solubilize lipophilic, water-
insoluble drugs and deliver them to the barrier surface. Drug
molecules then partition from the cyclodextrin cavity into
the lipophilic barrier at the surface. As a result, drug ad-
ministration from aqueous cyclodextrin solutions is both
difusion and membrane-regulated. Only trace amounts of
hydrated cyclodextrin molecules and drug/cyclodextrin
complexes can pass through intact skin [121]. In some cases,
the complexation efciency is low, requiring relatively large
volumes of cyclodextrin to complex modest amounts of
a particular medication.

Te availability of products containing CDs is also
limited by high implementation costs for practically all CD
formulations and issues with the quality and legal status of
derivatives. CDs cannot permeate biological membranes
during topical administration under normal conditions, but
they can signifcantly alter drug bioavailability. Un-
fortunately, CDs can interact with formulation components
and produce physicochemical stability issues; selecting the
correct carrier appears to be a challenge. Tus, it is easier to
create solutions or suspensions than to formulate complex
semisolid carriers, and this tendency is refected in the
number of products available. Despite these challenges, a few
complex formulations with properties modifed by CD
addition exist, such as liposomes, fabrics, hydrogels, mi-
crospheres, and emulsions. While these are promising
forms, their practical application will likely be limited to
a select few items in the future [122].

4.7. Nanoemulsion. Nanoemulsions are transparent systems
typically composed of particles ranging from 20 to 500 nm in
diameter [123]. Te Brownian motion of nanoemulsion
droplets provides sufcient force to counteract physical
destabilization processes, such as gravitational separation,
focculation, and coalescence due to their small droplet size
[124]. Nanoemulsions are multiphase colloidal dispersions
that do not form spontaneously [125]. According to Kale
et al., a nanoemulsion is a dispersion of water, oil, and
surfactant that generates nanoscale particles through me-
chanical forces, forming a stable isotropic and thermody-
namic system with a distributed droplet diameter [126]. Te
small droplet size of nanoemulsions allows for uniform

deposition and penetration of active compounds across the
skin’s surface [127]. Te increased efectiveness of nano-
emulsions in facilitating material penetration can be at-
tributed to their large surface area and lower interfacial
tension within the emulsion system, requiring a surfactant
concentration of approximately 3–10% during production
[128]. Nanoemulsions are recognized as superior nano-
carriers compared to other emulsion systems due to their
stability against temperature fuctuations and dilution [129].
Teir long-term stability and ability to prevent drug deg-
radation make them an optimal drug delivery system [130].
Nanoemulsions are efcient carriers with a higher surface
area and free energy, are nontoxic and nonirritating, and can
be easily applied to mucous membranes and skin in various
formulations, such as creams, liquids, foams, and sprays
[131]. Tey have been shown to be excellent carriers for the
optimal dispersion of active substances in specifc skin layers
or cells [132]. Using high-energy machinery to produce
nanoemulsions can help avoid the incorporation of po-
tentially irritating surfactants or active substances [133].

A study by Prasad et al. demonstrated that a nano-
emulsion formulation containing 0.1% w/w adapalene and
1% w/w clindamycin phosphate exhibited reduced irritant
properties. A comparative analysis evaluated the efcacy of
a gel formulation containing a combination of 0.1% ada-
palene and 1% clindamycin versus a standard gel formu-
lation in individuals with facial acne vulgaris. Te results
indicated a signifcant decrease in the occurrence and se-
verity of adverse efects, such as local irritation (4.2% vs.
19.8%; P< 0.05) and erythema (0.8% vs. 9.9%; P< 0.05),
when comparing the nanoemulsion-containing formulation
to the one without [45].

Despite their benefts, nanoemulsions have drawbacks.
High concentrations of surfactant and cosurfactant are re-
quired to stabilize the nanodroplets during emulsion for-
mation, as well as high concentrations of emulsifers. Tey
typically have limited ability to solubilize highly melting
compounds, and their stability is afected by temperature
and pH, making them less stable under certain conditions
[134].

4.8. Glucosamine, Trehalose, Ectoine, Sucralfate, Omega-9,
and 4-t-Butyl Cyclohexanol Addition. To reduce the risk of
irritation, it is essential to take preventative measures. Kang
et al. conducted a study to examine the efcacy of a product
called AF (anti-irritant formula) in reducing retinol-induced
irritation. Te formulation consists of sucralose, trehalose,
ectoine, glucosamine, omega-9, and 4-t-butyl cyclohexanol
combined with retinol. After a genetic analysis aimed at
identifying factors linked to retinol-induced irritation, ret-
inol synthesis was performed using chemical compounds
capable of regulating the molecular mechanisms behind
retinol-induced pathogenesis in vitro [4].

Previous studies have shown that retinoids can alter both
the structure and function of the skin barrier. Applying
retinoic acid to skin tissue, in both ex vivo and in vivo
settings, led to an apparent increase in transepidermal water
loss (TEWL), a known manifestation of compromised skin
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barrier function. Te efcacy of sucralfate, glucosamine, and
trehalose in mitigating retinol-induced disruptions to the
epidermal barrier was demonstrated by their modulation of
COL6A2, AQP3, and FLG gene expression. Additionally,
glucosamine and ectoine administration resulted in a de-
crease in IL-4R overexpression generated by mast cell ac-
tivation. Te exact impact of ectoine, a compound found in
certain halophilic bacteria, on IL-4R upregulation remains
unclear. However, previous studies have shown its ability to
modulate several cytokines and chemokines during in-
fammatory conditions. TRPV1 activation has been asso-
ciated with retinol-induced irritation in an in vitro model.
Inhibiting TRPV1 with 4-t-butyl cyclohexanol and omega-9
oleic acid reduced neurogenic infammation. Te research
demonstrated that retinoic acid and retinol facilitate the
activation of the EGFR pathway, a crucial component in the
functioning of the epidermal barrier. Additionally, excessive
AQP3 production induced by retinol can be reduced with
trehalose [4, 135, 136]. Te use of trehalose in topical for-
mulations can reduce side efects, such as skin irritation
[137].

Further investigations have substantiated the efcacy of
AF components in reducing skin irritation. As reported by
Bissett et al., glucosamine enhances hyaluronic acid pro-
duction, accelerates wound healing, improves skin hydra-
tion, and reduces the appearance of creases. Ectoine, a cyclic
amino acid produced by extremophilic bacteria, improves
cell membrane hydration by retaining water on the surface,
thereby reducing TEWL. Omega-9 also aids in reducing
TEWL, rebuilding the damaged epidermal lipid barrier, and
stabilizing skin metabolism [138–144].

Kang et al. conducted an in vivo irritation test on seven
participants (three men and four women), comparing
a control cream (retinol 5000 IU) with an AF-based cream
with retinol 5000 IU. After three days of treatment, par-
ticipants discontinued product use for four days before
measuring TEWL and skin redness. Te combination of
ingredients signifcantly reduced retinol-induced irritation
in the human trials. Te study successfully demonstrated
AF’s efcacy in reducing retinol-induced irritation, specif-
ically reducing desquamation by 66.67%, burning sensation
by 68.42%, and stinging sensation by 68.97%, compared to
the control retinol cream [4].

4.9. Plant Extract Addition. Te increasing popularity of
plant-derived natural medicines can be attributed to their
reduced incidence of adverse efects, improved patient tol-
erance, and cost-efectiveness. Additionally, herbal medicines
ofer viable solutions for various disorders that often lack
efective conventional treatments and long-term solutions
[145]. Several studies have investigated the impact of botanical
extracts on skin health, including improving hydration,
strengthening the skin barrier, and reducing irritation.

A study by Lee et al. explored the potential of the ethanol
extract of Alstonia scholaris R. Br. bark in treating cutaneous
irritation induced by retinoids [51]. Te study demonstrated
the inhibitory efects of the ethanol extract on infammation
induced by all-trans-retinoic acid in human keratinocyte cells

(HaCat). Te extract, known as ASE, contains a diverse range
of alkaloids, favonoids, and terpenoids, including alstonidine,
alstonine, chlorogenic acid, ditain, echitamine, and echitenin
[146, 147]. Two signifcant ASE compounds known for their
anti-infammatory properties are echitamine and loganin
[148]. Te study aimed to evaluate the efcacy of Alstonia
scholaris extract in alleviating cutaneous irritation through
cumulative irritation experiments on human participants.Te
results showed that the emulsion containingAlstonia scholaris
extract had a lower irritation score (1.95) compared to the
emulsion without the extract (5.33) [9]. Tis suggests that the
extract, particularly echitamine and loganin, has potential as
a counterirritant agent in reducing negative skin reactions
caused by retinoid therapy.

Skin hydration is crucial for maintaining skin homeo-
stasis. Alterations in hydration levels can signifcantly im-
pact the skin’s features and functions [149]. Dry skin is
associated with increased irritation, fakiness, mechanical
failure, and other issues. Maintaining adequate moisture
levels is challenging, especially in individuals with sensitive
skin [150]. Compromised barrier function leads to increased
transepidermal water loss (TEWL), which can result in
various dermatological conditions, including dry skin
(xerosis), acne vulgaris, atopic dermatitis, retinoid-induced
dermatitis, rosacea, and psoriasis [151].

A study by Ratz-Lyko et al. demonstrated the signifcant
impact of a Centella asiatica extract-based emulsion on skin
hydration and epidermal barrier function, particularly in
terms of tightness [152]. Te presence of carbohydrates and
naturally occurring antioxidants, such as saponins, favo-
noids, and phenolic compounds, is believed to contribute to
these efects [153]. Te emulsion containing a 5% concen-
tration of Centella asiatica extract showed signifcant im-
provements in skin hydration and epidermal barrier
function in in vivo experiments [154]. Based on these
fndings, Centella asiatica may warrant further research for
its role in reducing retinoid-induced skin irritation.

4.10. Others

4.10.1. Encapsulation and Controlled Release Silicone
Particle. Te study conducted by Shields et al. focused on
the development of silicone particles designed to encapsu-
late, protect, and control the release of retinol and other
hydrophobic chemicals. Te particles were synthesized
through the sol-gel polymerization process using silane
monomers capable of efciently encapsulating retinol
(>85%), providing protection against degradation. Tis
encapsulation led to a signifcantly prolonged half-life of
retinol, approximately nine times longer than that of
nonencapsulated retinol. Additionally, the encapsulated
retinol was released gradually over several hours. To assess
the efcacy of the developed system in reducing retinoid-
induced irritation, an in vivo experiment was conducted.
Tis experiment involved applying 0.2mL of the test for-
mulation to an occlusive hypoallergenic patch, which was
then placed on the infrascapular region of the test subject’s
back. Te patch was removed within a 24-hour period,
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followed by a comprehensive assessment of the skin’s re-
sponse. Te results from the irritation test indicated that the
formulation using silicone particles exhibited lower irrita-
tion levels than the formulation incorporating microsponge
particles, despite both formulations having an equivalent
concentration of retinol. Specifcally, the formulation with
0.2% loaded retinol using silicone particles had a cumulative
irritation score of 296.0± 37.6, while the microsponge
particles with 2% retinol generated a cumulative score of
383.0± 29.55. Tese fndings suggest that a reduced rate of
retinol release is associated with decreased skin irritation in
human subjects [35].

4.10.2. Encapsulated Nanoparticle. Te study conducted by
Bai et al. focused on formulating Gravi-A nanoparticles
through the encapsulation of retinyl propionate (RP) and
hydroxypinacolone retinoate (HPR) using the high-pressure
homogenization technique. Te efcacy of these nano-
particles in treating wrinkles was observed to demonstrate
notable stability and minimal discomfort. To evaluate the
reduction in irritation caused by retinol, an in vivo irritation
test was conducted on rabbits. Te test substance, approx-
imately 0.5 g, was applied to the skin once daily for a du-
ration of fourteen days. Te mean daily irritation score per
animal was determined to be 0.68, indicating a grade of mild
irritation based on the skin irritation intensity categoriza-
tion. Te composite of HPR and RP nanoparticles, referred
to as Gravi-A, demonstrated favorable stability and a notable
capability for drug loading. Compared to free Gravi-A, the
encapsulated form of Gravi-A exhibited a reduced IC50
value in the fbroblast model, along with enhanced skin
retention and deeper penetration. Tese fndings suggest
that encapsulation of Gravi-A leads to improved safety [8].

4.10.3. Invasome. Invasomes are a novel class of vesicular
drug delivery systems that have gained prominence in the
feld of cutaneous drug administration across various
therapeutic applications. Considered the next generation of
liposomes, invasomes are more elastic, fexible, and per-
meable through the skin than liposomes and ethosomes
[155]. Te structures of these vesicles comprise phospho-
lipids, ethanol, and terpenes [156]. Phospholipid vesicles
enable targeted skin delivery of lipophilic drugs, increased
penetration of hydrophilic medications, and reduced drug
irritation [157]. A study by Jain et al. utilized carbomer to
successfully create a berberine-loaded invasome gel. Skin
irritation tests revealed that the manufactured invasomal gel
is nonirritating and stable at freezing temperatures. En-
trapment of berberine in an invasomal gel formulation
enhances its biological activity, likely due to improved skin
penetration. Additionally, the berberine-loaded invasomal
gel releases the medication gradually over time, resulting in
a sustained analgesic efect [158].

4.10.4. Film-Forming Sprays. Film-forming spray (FFS) is
a drug delivery system that, when sprayed, forms a flm upon
reaching the target therapeutic site, using polymers as

a matrix for flm formation [159–161]. FFS ofers signifcant
advantages over traditional topical preparations. It provides
consistent medication distribution and dosage, enhanced
bioavailability, reduced incidence of irritation, sustained
drug release, and accelerated wound healing through
moisture control [162]. After application to the skin, the
composition of the flm-producing system undergoes sig-
nifcant changes due to the evaporation of volatile com-
ponents, resulting in a residual flm on the skin surface. Tis
process increases the drug concentration, potentially leading
to supersaturation levels on the skin’s surface. Supersatu-
ration enhances drug fux through the skin by increasing the
formulation’s thermodynamic activity without altering the
skin barrier, thereby minimizing side efects or irritation
[163, 164].

Lu et al. investigated a metered dosage transdermal spray
(MDTS) formulation for dexketoprofen (DE) transdermal
administration using rats as an animal model to study skin
irritability. Te fndings suggest that MDTS could be
a promising and innovative therapeutic technology for
transdermal drug administration, reducing skin irritation.
Based on the current research with this animal model, it
appears that the application does not irritate the skin. Initial
skin irritation tests with the optimized formulations on rat
skin did not show any redness or swelling. Furthermore,
primary skin irritation studies of the improved formulations
on rats revealed no evident erythema or edema [165].

4.10.5. Ionto-Sonophoresis. Iontophoresis is a physical
technique that uses a low-intensity electrical current to
transport molecules through the skin [166]. Tis technique
has various biomedical applications, particularly in facili-
tating the delivery of drugs, including hydrophilic and/or
large-sized molecules, to targeted areas [167]. While ion-
tophoresis ofers several advantages, its use can be limited by
the potential for skin irritation. However, employing various
enhancement strategies may reduce the need for high-
intensity currents to achieve therapeutically efective de-
livery volumes, thereby mitigating skin irritation concerns
[166].

Several studies have indicated that the combination of
sonophoresis and iontophoresis does not induce skin irri-
tation [168–170]. Using a Franz difusion cell, the synergistic
efect of these techniques in the transdermal delivery of
various cosmeceutical drugs has been demonstrated. Tis
combined approach is benefcial as it reduces energy density
and, consequently, skin irritation [168]. Long Le et al.
demonstrated how sonophoresis and iontophoresis could
enhance heparin’s transdermal penetration. When these two
techniques are combined, a lower voltage or current sufces
to achieve the desired transdermal enhancement, thereby
reducing skin irritation [171]. One proposed hypothesis
suggests that the enhanced efect is primarily due to in-
creased molecule difusivity from sonophoresis in the
stratum corneum, coupled with the electro-osmotic fow of
water induced by iontophoresis [172]. Tis highlights the
potential of iontophoresis and sonophoresis in minimizing
skin irritation associated with retinoid administration.
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4.10.6. Hydrophase Base. Sawleshwarkar et al. investigated
the efcacy and tolerability of 4% benzoyl peroxide cream
formulated in a hydrophase base (Brevoxyl) for treating acne
vulgaris. Te study assessed the efectiveness and accept-
ability of Brevoxyl®, a 4% BP (benzoyl peroxide) cream in
a hydrophase base previously available exclusively by pre-
scription, over a six-week clinical trial. Te results indicated
that the 4% BP cream was efective and well-tolerated. Only
11.6% of participants reported moderate-to-severe dis-
comfort, and clinicians identifed side efects in 53.8% of all
patients. Specifcally, 53.8% of patients reported no irrita-
tion, 41.4% reported some irritation, and only 4.8% expe-
rienced bothersome irritation. Most patients showed a very
satisfactory response after six weeks and expressed eagerness
to continue the treatment. A satisfactory response was
observed as early as two weeks, supporting the hypothesis
that the hydrophase formulation of Brevoxyl helps improve
efcacy and reduce irritation associated with benzoyl per-
oxide use [173].

In another study, Weinberg et al. indicated that benzoyl
peroxide formulated in hydrophase bases (Brevoxyl Creamy
Washes and Gels) exhibits signifcant efcacy in acne
treatment with less irritancy compared to other benzoyl
peroxide preparations. It is believed that this product’s re-
duced irritancy stems from its unique delivery vehicle, which
includes dimethyl isosorbide that dissolves benzoyl peroxide
crystals upon application to the skin [173].

5. Future Perspective

Based on the gathered literature, various strategies have been
identifed to efectively reduce the adverse efects associated
with retinol application. Tese strategies ofer alternative
drug release mechanisms, including controlled and sus-
tained release, enabling gradual and regulated drug molecule
release over an extended period. Tis controlled release
mechanism helps minimize the likelihood of irritation from
active substances with known irritant properties, such as
retinoids. Additionally, these approaches can enhance the
stability of retinoids within formulations and promote
improved skin penetration, thereby reducing irritating
efects.

Given the benefcial outcomes of advanced retinoid
formulations in mitigating retinoid-induced irritation, in-
corporating these approaches into formulation design ap-
pears promising, considering their proven advantages in
both in vivo and in vitro settings. Further research is needed
to develop novel interventions aimed at reducing skin ir-
ritation caused by retinoids, thus expanding the range of
available application methods. In this context, we present
several methodologies designed to mitigate retinoid-induced
irritation, which warrant further investigation and explo-
ration. Numerous studies have demonstrated the efcacy of
these interventions in reducing skin irritation resulting from
topical and transdermal application of active compounds.

Further investigation is necessary to advance novel in-
terventions aimed at reducing the adverse efects of retinoid-
induced skin irritation, thereby expanding the available
range of application methods. Based on the preceding

discussion, it can be inferred that multiple drug delivery
strategies have the potential to mitigate the adverse efects
associated with retinoid use. Currently, the predominant
technology focus is on transdermal administration rather
than topical application. Tis observation may warrant
consideration in future investigations related to the irritative
consequences associated with retinol use.

6. Conclusion

Various techniques have been employed in formulation to
enhance drug delivery systems, including encapsulation of
retinoids, conversion of retinoids into nanoparticles, for-
mation of complexes with cyclodextrin, and binding of
retinoids with carriers, such as polymers, NLC, and SLN.
Ongoing research is exploring the incorporation of elements
that provide anti-irritation properties, strengthen the skin
barrier, and enhance skin hydration into retinoid formu-
lations. Tese components include glucosamine, trehalose,
ectoine, sucralfate, omega-9, and 4-t-butylcyclohexanol.
Additionally, an ethanolic bark extract derived from
Alstonia scholarisR. Br. is also included.Te aforementioned
methodologies highlight that nonlamellar liquid crystalline
(NLC) and solid lipid nanoparticle (SLN) drug delivery
technologies are widely employed to mitigate the irritative
efects associated with retinoid administration. One could
argue that the use of nanoparticle lipid carriers (NLC) ofers
more advantages compared to solid lipid nanoparticles
(SLN) because NLC represents an enhanced version of SLN.
Te development of NLC was prompted by the need to
address signifcant defciencies identifed within SLN
formulations.
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