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Abstract
Nonalcoholic fatty liver disease (NAFLD) become a main public health concern, and is characterized by lipid accumulation
in the hepatocytes. We found that overexpression of lncRNA MEG3 significantly reduced the expression of FOXO1, ACC1,
and FAS, and subsequently decreased the lipid accumulation in HepG2 cells. Moreover, inhibition of lncRNA MEG3 could
increase the lipid accumulation and the mRNA and protein levels of FOXO1, ACC1, and FAS. Further study showed that
lncRNA MEG3 regulates the lipogenesis process by inhibiting the entry of FOXO1 into the nucleus translocation. Our study
demonstrated that lncRNA MEG3 regulates de novo lipogenesis by decreasing the expression and nucleus translocation of
FOXO1 in HepG2 cells, suggesting that lncRNA MEG3 could be a promising therapeutic target in lipid metabolic disorders.
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Introduction

Nonalcoholic fatty liver disease (NAFLD), a critical public
health concern in the 21st century, afflicts nearly 20% of
individuals in developed nations. As a metabolic syndrome,
NAFLD is characterized by the accumulation of lipids in
hepatocytes, particularly triglycerides (TG) [1]. It has been
proposed that various factors, including insulin resistance,
hyperlipidemia, hypertriglyceridemia, and oxidative stress,
contribute to chronic inflammation in hepatocytes. This
inflammation, in turn, triggers the activation of lipid

metabolism signaling pathways, leading to increased lipid
synthesis and subsequent hepatic steatosis and NAFLD [2, 3].
However, the specific mechanism underlying the genesis and
development of NAFLD remains elusive.

FOXO1 belongs to the forkhead family of transcription
factors which is the main target of insulin signaling and
regulates metabolic homeostasis. The phosphatidylinositol
3 kinase (PI3K)/Akt pathway phosphorylates FOXO1 and
mobilizes it from the nuclei to the cytoplasm, leading to
inactivation of FOXO1 [4, 5]. In liver, FOXO1 regulation
of Chrebp O-glycosylation, leads to the hepatic glucose
utilization with lipid synthesis [6]. However, FOXO1
nuclear retention enhances lipid uptake and lipolysis, and
potentiates UCP1 expression [7].

Chronic inflammation plays a pivotal role in lipid meta-
bolism pathogenesis, and tumor necrosis factor (TNF)-α,
promoting de novo lipogenesis both in vitro and in vivo.
Studies showed that TNF-α mediates lipogenic signaling and
the biosynthesis of non-esterified fatty acids and triglycerides
through several signal transduction pathways [8, 9]. TNF-α
could increase serum triglycerides by inducing stimulation of
hepatic lipid synthesis in an insulin independent manner and
enhancing lipid droplets formation via promoting phosphor-
ylation of c-Jun N-terminal kinase (JNK), thus activating fatty
acid synthase (FAS) and SREBP-1 [10, 11], resulting in an
increase in de novo synthesis of fatty acids.

The lncRNA MEG3, initially discovered in glioma, is
known to inhibit cell proliferation by recruiting and activating
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p53 through specific secondary structures [12, 13]. Recent
research has also reported its involvement in lipid metabolism.
Through promoting the ubiquitination and degradation of the
enhancer of Zeste homolog 2 (EZH2), overexpression of
lncRNAMEG3 suppresses lipid accumulation induced by free
fatty acids (FFA), ultimately upregulating the expression of
Sirtuin 6 (SIRT6) in hepatocytes [14].

In this study, we attempt to clarify the expression and
regulation of lncRNA MEG3, TNF-α, and lipogenesis
genes in HepG2 cells and explore possible intervention
mechanism, providing new evidence for the prevention and
treatment of NAFLD.

Materials and Methods

Cell Culture and Nuclear Protein Extraction

HepG2 cells were grown in minimum Eagle’s medium
(MEM, Gibco) supplemented with 10% fetal bovine serum
(FBS, Gibco), 100 U/mL penicillin G sodium and 100mg/mL
streptomycin sulfate in a humidified atmosphere with 5% CO2

at 37 °C. For TNF-α treatment, HepG2 cells were exposed to
10 ng/ml TNF-α for 24 h as described previously [15]. The
nuclear protein was obtaied using the nuclear cytoplasmic
extraction kit (Thermo, NE-PER) according to the manu-
facturer’s protocol.

Adenovirus Vector Construction

The adenovirus vector expressing lncRNA MEG3 (Ad-
MEG3) and the corresponding control adenovirus vector
(Ad-Con) were purchased from GeneChem (Shanghai).
HepG2 cells were infected with adenovirus at multiplicity
of infection (MOI) 100.

siRNA Infection

Transfection Synthetic specific siRNA of lncRNA MEG3
(siMEG3) and FOXO1 (siFOXO1) were obtained from
GenePharma (Shanghai). Cells were transfected at 100 nM
with specific siRNA targeting FOXO1 or lncRNA MEG3
using Lipofectamine® 2000 Transfection Reagent (Life
Technologies, NY, USA), according to the manufacturer’s
instructions. Non-targeting siRNA oligomers were used as
negative control (NC).

RNA Isolation and Real-time PCR

Total RNA was extracted from cells using TRIzol reagent
(Invitrogen, Carlsbad, California, USA), according to the
manufacturer’s instructions. SYBR Green I (TaKaRa) was
used for real-time PCR according to the manufacturer’s

instructions with the ABI 7500 qPCR System (Life Tech-
nologies, CA). The relative expression level of mRNA was
normalized to β-actin. Each reaction was performed in tri-
plicate, and analysis was conducted using the 2-ΔΔCT

method. The primer sequences were listed in Table 1.

Western Blot Analysis

Nuclear and cytoplasmic protein fractions were isolated using
Nuclear Extraction kit (Abcam, Cambridge, MA, USA),
according to manufacturer’s protocols. Cell lysates (10–30 μg
protein) were separated using 10% SDS‑PAGE and transferred
to polyvinylidene fluoride membranes (Millipore Corporation,
Billerica, MA, USA), blocked by 5% non‑fat dry milk for 1 h
and incubated with primary antibodies at 4 °C overnight. Fol-
lowed by probing with horseradish peroxidase‑conjugated
anti‑immunoglobuin G (ZSGB-Bio, Beijing, China). GelDoc
XR system (Bio-Rad, Hercules, CA) was adopted in the
detection and data collection. Rabbit monoclonal anti‑FOXO1,
Anti-FAS, and anti‑β-actin antibodies were purchased from
Abcam (Abcam, Cambridge, MA, USA). Antibody against
ACC1 was obtained from Cell Signaling Technology, Inc.
(Beverly, MA, USA).

Immunofluorescence Analysis

HepG2 cells seeded in 6-wells plates were fixed with 4%
formaldehyde for 10min and permeabilized with 0.5% Triton
X-100 for 15min, then incubated with goat serum for 30min.
Followed by incubation with anti-FOXO1 antibody (1:200 in
PBS) overnight at 4 °C. Then, cells were washed 3 times and
incubated with TRITC conjugated goat anti-rabbit (594 nm,
1:200) antibody for 1 h. Nuclei were stained using DAPI

Table 1 Primers and protocols for qRT-PCR

Genes Primer sequence

Human lncRNA
MEG3

Fwd: 5′-TGCTGCCCATCTACACCT-3′

Rev: 5′-CTTCATCCTTTGCCATCC-3′

Human FOXO1 Fwd: 5′-TCGTCATAATCTGTCCCTACACA-3′

Rev: 5′-CGGCTTCGGCTCTTAGCAAA-3′

Human ACC1 Fwd: 5′-GCACATAAGGTCCAGCAT-3′

Rev: 5′-CCCAAAGCGAGTAACAAA-3′

Human FAS Fwd: 5′-GCCCGCTCTGGTTCATCT-3′

Rev: 5′-CGGTTCACAGCCTCATCG-3′

Human
SREBP1c

Fwd: 5′-TTGCCGACCCTGGTGAGT-3′

Rev: 5′-AATGGCGTTGTGGGCTGT-3′

Human β-actin Fwd: 5′-CATGTACGTTGCTATCCAGGC-3′

Rev: 5′-CTCCTTAATGTCACGCACGAT-3′

FOXO1 Forkhead Box O 1, ACC1 Acetyl-CoA carboxylase 1, FAS
Fatty acid synthase, SREBP1c Sterol regulatory element binding
protein-1c.
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(1:1000 diluted in PBS) for 5min and examined with a
fluorescence microscope (Olympus, Tokyo, Japan).

Oil Red O Staining

HepG2 cells were fixed with 4% formaldehyde for 10 min,
then incubated with prewarmed Oil Red O (Solarbio,
Beijing, China) for 30 min and washed with 60% propa-
nediol for about 10 s. The lipid droplets were observed
under a microscope (Olympus, Tokyo, Japan).

Intracellular TG Measurement

The intracellular triglyceride was measured as described pre-
viously [16]. Cells were washed three times with cold PBS
and extracted with CHCl3/MeOH (2:1), and then added 0.05%
H2SO4 and centrifuged. The precipitation was transferred to
1% Triton X‑100 (1:1, v/v), dried, and dissolved in deionized
water, and the content of intracellular triglycerides was mea-
sured using a triglyceride enzymatic assay kit (SSYF Medical
Diagnostic Products Co., Ltd., Shanghai, China).

Statistics

All data are presented as the means ± SD of the indicated
number of measurements. Differences were analyzed using
the Student’s t‑test. P < 0.05 was considered a statistically
significant difference.

Results

LncRNA, MEG3, and Lipogenesis Genes were
Upregulated in TNF-α Treated HepG2 Cells

In the previous study, we confirmed TNF-α could induce
hepatic insulin resistance both in vitro and in vivo [15]. To
further research on metabolic diseases, we still use HepG2
cells and treat them with TNF-α (10 ng/ml) for 24 h, and
intracellular lipid accumulation increased significantly

treated with TNF-α (Fig. 1A, B), Meanwhile, the expression
of lipogenesis genes such as Acetyl-CoA carboxylase 1
(ACC1), FAS, Forkhead box protein 1 (FOXO1), as well as
lncRNA MEG3 significantly increased (Fig. 1C).

Overexpression of lncRNA MEG3 Restrained
Lipogenesis Gene

To determine whether lncRNA MEG3 is promoted in
lipogenesis, we upregulated the intracellular lncRNA
MEG3 by delivering a specific adenovirus vector (Ad-
MEG3) (Fig. 2A). The overexpression of lncRNA MEG3
repressed the mRNA expression and the protein level of
FOXO1, along with the de novo lipogenesis markers ACC1
and FAS. It also gives rise to upregulated phosphorylation
of ACC1 (Fig. 2B, C). These results indicated that the
overexpression of lncRNA MEG3 leads to inhibition of the
de novo lipogenesis signaling pathway.

Inhibited lncRNA MEG3 Enhanced the Lipogenesis in
HepG2 Cells Treated with TNF-α

Next, by silencing specific siRNA, we knocked down the
expression of lncRNA MEG3 in HepG2 cells treated with
TNF-α (Fig. 3A). The results showed that intracellular TG
increased after the knockdown of lncRNA MEG3 (Fig.
3B, C). Furthermore, the mRNA and protein levels were
upregulated by FOXO1, ACC1, FAS. As well as the sup-
pression of the phosphorylation of ACC1. (Fig. 3A, D).
These results suggested that inhibiting the lncRNA MEG3
could further promote the de novo lipogenesis in HepG2
cells under the stimulation of TNF-α.

LncRNA MEG3 Regulated the Expression of
Lipogenesis Via FOXO1 Signaling Pathway in
HepG2 Cells

In addition, to further explore whether lncRNA MEG3
regulates lipogenesis via FOXO1 signaling pathway, we
deployed siRNA targeted FOXO1 and Ad-MEG3 in the

Fig. 1 TNF-α induced the
expression of lncRNAMEG3 and
lipogenesis genes in HepG2 cells.
A Oil Red O staining of HepG2
cells treated with 10 ng/ml TNF-α
for 24 h (Scale bar= 50 μm).
B The RNA expression of
lncRNA MEG3 and the mRNA
level of lipogenesis genes.
*P < 0.05, **P < 0.01 vs blank.
Data are mean ± SD, N= 3
independent experiments
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following section of this study. Results displayed that
overexpression of lncRNA MEG3 could reverse the cel-
lular TG accumulation induced by TNF-α (Fig. 4A, D).
Combining with inhibition of FOXO1 could not further
reduce the intracellular TG content. In addition, the
protein upregulation of ACC1, FAS, phosphorylated
AMPK and FOXO1 by TNF-α could be reversed by the
overexpression of lncRNA MEG3. There is no significant
difference when combine with the inhibition of FOXO1 is
compared to overexpression of lncRNA MEG3 alone
(Fig. 4B). We also found that TNF-α could significantly
increase the nuclear fluorescence staining of FOXO1, and
increased lncRNA MEG3 or inhibition of FOXO1 could
significantly reduce the nuclear FOXO1 fluorescence
(Fig. 4C). Moreover, the increased intracellular lipid
accumulation treated with TNF-α could be reversed by

lncRNA MEG3 and lncRNA MEG3 combined with
siFOXO1, respectively (Fig. 4D). The increase of
lncRNA MEG3 also could reverse the nuclear FOXO1
induced by TNF-α (Fig. 4E). These results suggested that
lncRNA MEG3 restrained de novo lipogenesis by inhi-
biting the expression and nucleus translocation of
FOXO1.

Discussion

LncRNA is a kind of non-coding RNA with transcripts
more than 200 bp in length, most of which are unclear in
function. It has been indicated that lncRNA becomes
involved in chromosome recombination, gene modification,
epigenetic processes, as well as synthesis and regulation of

Fig. 2 LncRNA MEG3 inhibited the expression of lipogenesis genes.
A qPCR assay for intracellular expression of lncRNA MEG3 after
adenovirus vector (Ad-MEG3) transfected 48 h. **P < 0.01 vs Ad-
Con. Data are mean ± SD. N= 6 independent experiments. B qPCR
assay for FOXO1 and lipogenesis genes. *P < 0.05 vs Ad-Con,

**P < 0.01 vs Ad-Con ***P < 0.001 vs Ad-Con. Data are mean ± SD.
N= 6 independent experiments. C Western blot assay for the
expression of FOXO1, ACC1, and FAS in HepG2 cells. *P < 0.05 vs
Ad-Con, **P < 0.01 vs Ad-Con, ***P < 0.001 vs Ad-Con. Data are
mean ± SD, N= 3 independent experiments

Fig. 3 inhibition of lncRNA MEG3 could induce the expression of
FOXO1 and lipogenesis genes in HepG2 cells. A qPCR assay for
expression of lncRNA MEG3, FOXO1, SREBP1c, ACC1, and FAS in
HepG2 cells. *P < 0.05 vs NC, ***P < 0.001 vs NC. Data are
mean ± SD, N= 3 independent experiments. B Oil Red O staining of
HepG2 cells transfected with siRNA targeted lncRNA MEG3 for 48 h

(Scale bar= 50 μm). C Intracellular TG content assay. Data are
mean ± SD, N= 3 independent experiments. **P < 0.01 vs NC.
D Western blot assay for the expression of FOXO1, ACC1, and FAS
in HepG2 cells treated with TNF-α. *P < 0.05 vs NC, **P < 0.01 vs
NC, ***P < 0.001 vs NC. Data are mean ± SD, N= 3 independent
experiments
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protein [17–21]. However, there are few studies reporting
the role of lncRNA in triglyceride accumulation in hepa-
tocytes. Therefore, the study of the function and mechanism
of lncRNA in lipid metabolism could not only provide
insights into the regulation of the human genome, but also
facilitate the elucidation of the pathogenesis of NAFLD.
Studies showed CRE-binding protein (CREB) binds
directly to cAMP response element (CRE) site and stimu-
lates the promoter activity of lncRNA MEG3 [22]. Hence,
lncRNA MEG3, as the downstream target gene of cAMP,
could be intimately associated with cellular energy meta-
bolism. Our study suggested that an elevated level of
lncRNA MEG3 could be observed under the stimulation of
inflammation and fatty acids in HepG2, while suppression
of lncRNA MEG3 could inhibit the expression of genes
associated with lipid synthesis, and overexpression of
lncRNA MEG3 could increase the levels of synthesis fac-
tors of fatty acids accordingly, such as ACC1 and FAS,
which revealed that lncRNA MEG3 might play a role in the
lipid metabolism pathways.

TNF-α is an important lipid metabolism regulator and
plays avital role in lipogenesis. Many signaling pathways
might be involved in TNFα-mediated lipid metabolism.
Early studies have demonstrated that TNF-α could induce the
rapid stimulation of hepatic FFA de novo synthesis in normal
rats. In 3T3-L1 adipocytes, TNF-α promotes NF-κB pathway

resulting in IR and increase of plasma FFA in rat liver [23,
24]. In addition, TNF-α could also regulate a wide range of
lipogenesis enzyme activities and pathways such as ERK/
JNK to cAMP, which led to the de novo lipogenesis and the
accumulation of lipids [8]. Marathon running exercise
induced an increase in plasma FFA, IL-6, and TNF-α, which
afterwards induced plasma ANGPTL4 release, FFA-induced
lipotoxicity and oxidative stress [25]. Our results showed that
under the stimulation of 10 ng/ml of TNF-α, the intracellular
TG content of HepG2 cells significantly increased, accom-
panied by upregulation of lncRNA MEG3 expression and
increased mRNA and protein expression of lipid metabolism
genes such as FAS, FOXO1, and ACC1. To clarify whether
the increase in lncRNA MEG3 is due to the inhibitory factor
of TNF-α which caused abnormal lipid metabolism or pro-
moted changes in lipid metabolism pathways, we inhibited
the expression of lncRNA MEG3 on the basis of TNF-α
stimulation. The results showed that after inhibiting lncRNA
MEG3, the TG content of HepG2 cells further increased, and
the mRNA and protein expression of ACC1, FAS,
FOXO1 significantly increased. It indicated that lncRNA
MEG3 can be considered as an inhibitory factor of lipid
metabolism.

FOXO1 is widely distributed in adult tissues and organs and
becomes involved in energy metabolism and oxidative stress.
An elevated expression of lncRNAMEG3 could be detected in

Fig. 4 LncRNA MEG3 regulated the expression of lipogenesis via
FOXO1 signaling pathway in HepG2 cells. A Oil Red O staining of
HepG2 cells transfected with adenovirus vector and/or siRNA targeted
lncRNA MEG3 for 48 h (Scale bar=50 μm). B Western blot assay for
FOXO1, ACC1, and FAS transfected lncRNA MEG3 adenovirus
vector and/or siRNA targeted FOXO1 for 48 h in HepG2 cells.
**P < 0.01 vs Ad-NC, **P < 0.01 vs Ad-NC, &P < 0.05 vs Ad-MEG3,
&&P < 0.01 vs TNF-α, &&&P < 0.001 vs TNF-α. Data are mean ± SD,
N= 3 independent experiments. C Representative

immunofluorescence staining with antibodies for FOXO1 in HepG2
cells transfected with adenovirus vector and/or siRNA targeted
lncRNA MEG3 for 48 h (Scale bar= 25 μm). D Intracellular TG
content assay. Data are mean ± SD, N= 3 independent experiments.
***P < 0.001 vs NC, ##P < 0.01 vs TNF-α. E Western blot assay for
the expression of FOXO1 in the nucleus of HepG2 cells transfected
with lncRNA MEG3 adenovirus vector and/or siRNA targeted
FOXO1 for 48 h. *P < 0.05 vs Ad-NC, &&P < 0.01 vs Ad-MEG3. Data
are mean ± SD, N= 3 independent experiments
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the livers of ob/ob mice and diet-induced obese mice [26].
Overexpression of lncRNA MEG3 in primary liver cells could
increase the mRNA levels of FOXO1, phosphoenolpyruvate
carboxykinase (PEPCK) and G6Pase, enhance gluconeogen-
esis, and suppress the glycogen synthesis induced by insulin,
whereas the suppression of lncRNA MEG3 could reverse this
process. It has been suggested that FOXO1 can induce the
expression of microsomal triglyceride transfer protein (MTP)
by binding to the promoter of MTP. MTP assembles very low
density lipoprotein (VLDL) together with apoB to become
involved in the secretion of TG in hepatocytes. Suppression of
FOXO1 could down-regulate the expression MTP and VLDL
[27]. Local high levels of TNF-α could activate FOXO1 in the
process of endochondral ossification in patients with fractures
associated with diabetes, leading to an increased mRNA
expression level of apoptosis gene and chondrocyte apoptosis
[28]. It implied that FOXO1 could become involved in hepatic
glycolipid metabolism by affecting inflammatory reaction in
many ways. Mammalian ACC1 catalyzes the carboxylation of
acetyl-CoA to form malonyl-CoA, an intermediate in the de
novo synthesis of fatty acids [16]. Our study also suggested
that TNF-α could result in an enhanced expression of lncRNA
MEG3, an increase of FOXO1 translocation to the nucleus, an
elevated level of ACC1, and increased lipid deposition in
HepG2, while the overexpression of lncRNA MEG3 could
reverse this process in part. It could be hypothesized that TNF-
α can induce FOXO1 translocation into the nucleus to serve as
a transcription factor, and then upregulate the expression of
lipid synthesis factor ACC1 to stimulate intracellular lipid
synthesis. LncRNA MEG3 is a factor that can inhibit lipid
synthesis, but its elevation under the stimulation of TNF-α is
not sufficient to inhibit the lipid synthesis process. Only addi-
tionally increase lncRNAMEG3 can reverse the lipid synthesis
process caused by TNF-α.

There are several limitations in this study, we did not
investigate the molecular mechanisms of lncRNA MEG3
and FOXO1. The intracellular glycometabolism was not
explored either. The present study demonstrated that
lncRNA MEG3 could become involved in lipid synthesis
by regulating the expression and translocation to the
nucleus of FOXO1, providing new insights into the mole-
cular mechanism and control of NAFLD.
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