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AlphaFold predictions of fold-switched
conformations are driven by structure
memorization

Devlina Chakravarty1, Joseph W. Schafer1, Ethan A. Chen1, Joseph F. Thole 1,2,
Leslie A. Ronish1,2, Myeongsang Lee1 & Lauren L. Porter 1,2

Recent work suggests that AlphaFold (AF)–a deep learning-based model that
can accurately infer protein structure from sequence–may discern important
features of folded protein energy landscapes, defined by the diversity and
frequency of different conformations in the folded state. Here, we test the
limits of its predictive power on fold-switching proteins, which assume two
structures with regions of distinct secondary and/or tertiary structure.We find
that (1) AF is a weak predictor of fold switching and (2) some of its successes
result from memorization of training-set structures rather than learned pro-
tein energetics. Combining >280,000 models from several implementations
of AF2 andAF3, a 35% success rate was achieved for fold switchers likely in AF’s
training sets. AF2’s confidencemetrics selected againstmodels consistentwith
experimentally determined fold-switching structures and failed to dis-
criminate between low and high energy conformations. Further, AF captured
only one out of seven experimentally confirmed fold switchers outside of its
training sets despite extensive sampling of an additional ~280,000 models.
Several observations indicate that AF2 has memorized structural information
during training, and AF3 misassigns coevolutionary restraints. These limita-
tions constrain the scope of successful predictions, highlighting the need for
physically basedmethods that readily predictmultiple protein conformations.

Deep learning-based algorithms have made it possible to predict
protein structure from amino acid sequence, sometimes with
impressively high accuracy. The most successful of these algorithms,
AlphaFold2 (AF2)1, has inspired numerous approaches to predict and
design other important structural features of proteins. These features
includeprotein-protein interaction sites2, conditionally folding regions
of intrinsically disordered proteins3, and structures of previously
uncharacterized protein folds from metagenomic sequences4. Fur-
thermore, AF2’s successor, AlphaFold3 (AF3)5, enables modeling of
interactions between proteins and other biomolecules with impressive
success.

The many successes of AF (AF2 and AF3) suggest that it may also
predict subtle-yet-important protein properties previously revealed
only through sophisticated techniques. These properties include
conformational ensembles and functionally important alternative
conformations6. Consistent and accurate predictions of these prop-
erties would suggest that AF may do more than simply associate pro-
tein sequence with structure through sophisticated pattern
recognition7. Rather, it may leverage learned folding physics to accu-
rately approximate folded protein energy landscapes8. These land-
scapes are defined by the diversity and frequency of protein
conformations in the folded state. Supporting this possibility,
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AlphaFold2 has successfully predicted alternatively folded states in
over a dozen protein families6,9,10.

Yet despite AF’s impressive accuracy and broad success, several
uncertainties remain about how much it has learned about protein
energy landscapes. These uncertainties relate to the two major tasks
on which protein structure prediction relies: adequate sampling and
accurate scoring. First, sampling refers to AF’s ability to generate dis-
tinct experimentally consistent conformations of the same protein. As
adeep learning algorithm,AF relies ona large training set of solved and
predicted structures, their amino acid sequences, and multiple
sequence alignments (MSAs) containing evolutionary information
used to infer structure1. Though AF2’s training set is not publicly
available, the training set of OpenFold11, which uses the same software
architecture and predicts protein structure with similar accuracy,
contains >130,000 unique protein chains12. Based on its published
methods, AF3’s training set likely contained a similarly large number of
experimentally determined structures5. Compared to these large
training sets, the number of proteins with multiple distinct experi-
mentally determined conformations is small13. Furthermore, AF’s
ability to sample multiple experimentally determined conformations
has been tested on only a handful of examples6,9,10. Thus, it is unknown
how well AF would sample multiple protein conformations more
broadly13,14. Second, scoring refers to AF’s ability to distinguish
between good and poor predictions. Currently, AF2 assigns good and
poor scores to its predictions of single protein conformations very
reliably8; the overall quality of AF3’s scoring has not yet been assessed.
To our knowledge, however, no studies have systematically assessed
howaccurately AF2 scores alternative protein conformations, though a
recent study reports that its confidence metrics are not reliable for a
handful of multi-conformational proteins15.

In previous work, we hypothesized that AF2 may be using
sophisticated pattern recognition to search for the most probable
conformer rather than learned energetics to model a protein’s struc-
tural ensemble16. This work was a straightforward implementation of
an older version of AF2 (2.0) with no enhanced sampling techniques.
Since then, several recently developed enhanced sampling techniques
have challenged our hypothesis, proposing instead that AF2 couples
coevolution with a learned energy function to predict alternative
conformations10,15,17. These methods were tested on a handful of tar-
gets (6-16/study), however, leaving open the questions of (1) how well
they generalize across a class of proteins and (2) what systematic
benchmarking results may reveal about AF2’s overall ability to predict
alternative protein conformations. Furthermore, AF3has also just been
released as a webserver5 and has not yet been tested on fold-switching
proteins.

In this work, we investigate whether AF-based predictions are
driven by pattern recognition or a learned energy function by sys-
tematically assessing AF’s ability to sample and score both experi-
mentally determined conformations of 92 fold-switching proteins18.
This emerging class of proteins has been evolutionarily selected to
assume two distinctly folded states19, presumably for functionally
important reasons20. Though the energy landscapes of these fold-
switching proteins are populated by many more conformations than
their two distinct experimentally determined conformations21–23, we
use these two fold-switching conformations as a minimalist approx-
imation of a folded protein energy landscape. After all, the energetic
metric of choice for protein structure is Gibbs free energy, which
directly relates stability to observational frequency. Importantly, the
structures in our dataset were carefully curated to include functional
explanations and trigger for both conformations, eliminating false
positives resulting from crystal packing artifacts18. This curation has
stood the test of time: recent work indicates that evolution has
selected for both conformations of many proteins in this dataset19.
Thus, we hypothesize that these experimentally observed conforma-
tions of fold switchers are likely major constituents of their energy

landscapes.This hypothesis is supportedbymultiple experimental and
computational observations21,22,24. Thus, we posit that if AF has truly
learned protein energetics, it should consistently and accurately pre-
dict both experimentally observed conformations of fold-switching
proteins. If not, thenpattern recognition is the likely driver of someAF-
based predictions.

Here, we present an up-to-date assessment of AF’s ability to pre-
dict fold-switching proteins. Previously, we showed that AF2.2.0 is
systematically biased to predict one conformation of fold switchers
while missing the other16. Since then, AF2.3.1 has been released: this
version nowmakes accurate predictions of oligomeric assemblies and
protein-protein interactions25. Because at least one conformation of
most fold switchers forms an oligomer or interacts with another
protein18, we aimed to assess AF2.3.1’s ability to predict fold switching
when information about oligomeric state and/or binding partner is
provided. Both conformations of all 92 fold switchers were deposited
in the Protein Data Bank26 (PDB) before AF2.3.1 was trained, and all
pairs of conformations were in the OpenFold training set12, suggesting
that they are likely in AF2’s training set aswell. Based onAF3’s reported
methods, 78/92 (85%) of these fold switchers are likely in its training
set aswell (all pairs without anNMR structure). Thus, we tested AF3 on
all fold-switching pairs and included as many relevant interacting
biomolecules in our modeling as possible. Finally, two methods for
predicting alternative protein conformations or protein ensembles
with AF2 have recently been proposed15,17. Thus, we tested the per-
formance of these methods on the same set of 92 fold switchers,
generating >280,000 predictions in all. Upon assessing these predic-
tions, we found that all AF2-based methods and AF3 predict fold-
switching proteins likely in its training setwithmodest success (32/92).
Further, AF2’s confidence metrics select against alternatively folded
protein conformations and cannot discriminate between low and high
energy conformations of fold-switching proteins. Because AF’s pre-
dictions are most useful for proteins without experimentally deter-
mined structures, we also tested AF2 and AF3 on a set of seven fold-
switching proteins whose structures were deposited in the PDB or
confirmed by other experimental methods after they were trained,
generating ~280,000 additional predictions. They failed to predict the
alternative folds of 6/7 fold switchers.

Since these results demonstrate that AF has not fully learned
protein folding energetics, we sought explanations for why. We found
that AF2’s predictive success for some fold-switching proteins results
from “memorization” of structures in its training set. This memoriza-
tion can be so strong that AF2 uses it to inform predictions instead of
coevolutionary information detected by its Evoformer. Furthermore,
AF3 generated an incorrect prediction of human lymphotactin by
misassigning the evolutionary restraints it detected. These limitations
explain AF’s frequent failure to predict fold switchers outside of its
training set and constrain AF’s ability to predict alternative con-
formations yet to be discovered.

Results
AF samples both conformations of 35% of fold switchers likely in
its training set
AF’s ability to sample two folds assumed by single sequences was
tested on 92 pairs of experimentally determined fold switchers. To our
knowledge, these 92 pairs (Supplementary Data 1) include fold
switchers from from many diverse fold families and source
organisms16. These structural pairs are likely in AF2.3.1’s training set
because they were all deposited in the PDB before 2022, and all of
them were in the training set of OpenFold12,27, an AI-based model with
the samearchitecture andperformance asAF2.Most of them (85%) are
also likely in AF3’s training set, based on the published methods5. All
protein pairs have identical or nearly identical sequences and regions
of distinct secondary and tertiary structure. AF predictions are defined
as successful when they accurately capture both experimentally
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determined conformations, called Fold1 and Fold2. Prediction accu-
racy is assessed by calculating the TM-score28 between each AF pre-
diction and both experimentally determined conformations. TM-
scores quantify the similarity of topology and connections between
secondary structure elements29, a reliable metric since fold-switching
proteins are identified by secondary structure differences18. Because
whole-protein TM-scores often overestimate the prediction accuracies
of fold-switching regions, we assessed predictions using TM-scores of
fold-switching regions only (Supplementary Fig. 1). Higher TM-scores
indicate predictions closer to experimentally determined conforma-
tions.Weordered eachpair of fold switchers so that Fold1 corresponds
to the target conformation most frequently predicted by AF2, and
Fold2 corresponds to the less frequently predicted target conforma-
tion (Methods: Defining Fold1 and Fold2). To augment this TM-score-
based assessment, we also performed root-mean-square-deviation
(RMSD) calculations of fold-switching regions and found similar
results (Supplementary Fig. 2).

First, four different AF2.3.1 modes and AF3 were tested on each
fold-switching sequence: with templates, without templates, multimer
model on single chains, and multimer model on protein complexes
(Supplementary Data 2). AF2.3.1’s performance increased slightly
above AF2.0’s (Fig. 1a), capturing 11/92 fold switchers (combining
results both with and without templates) rather than 8/9216. Further-
more, AF2_multimer successfully predicted both conformations of 12/
92 fold switchers. Surprisingly, AF3 underperformed relative to AF2,
capturing both conformations of 7/92 fold switchers in total. SinceAF3
was updated to model interactions between proteins and other bio-
molecules, we included as many binding partners as possible in the
modeling: DNA, RNA, ions, and other ligands (Supplementary Data 3).
Although the AF3 webserver is currently limited to a subset of bio-
molecules, 70% of the interactions in our dataset could be fully mod-
eled with the ligands available (115/165).

Although fold switching is often triggered by interactions with
other proteins or biological molecules18, supplying this information to
the Multimer model and AF3 yielded only nine unique fold-switch
predictions, seven of which were predicted using single chains by
other AF2.3.1methods (SupplementaryData 2). Both the TM-score and
RMSD-based assessments demonstrated that running AF2.3.1 with
default inputs and parameters and default AF3 with appropriate
interacting biomolecules infrequently produce successful fold switch
predictions: 21% combined.

We then tested whether AF2-based enhanced sampling approa-
ches can predict more fold switchers than AF runs with standard
inputs. Recently, two such approaches have been proposed to predict
alternative conformations of proteins including fold switchers. The
first, SPEACH_AF17, masks coevolutionary information in AF2’s input
MSA by mutating selected columns to alanine in silico. Masking this
information is expected to allowAF2 to identify coevolutionary signals
in the MSA corresponding to alternative protein conformations,
allowing it to sample a more diverse conformational ensemble.
SPEACH_AF was tested on 16 different proteins and generated alter-
native conformations for almost all of them. Though none of these
proteins were fold switchers, SPEACH_AF’s potential to predict fold
switching was proposed17. The second approach, AF-cluster15, clusters
sequences from a deep MSA by similarity and runs AF2 on individual
clusters. This approach is based on the hypothesis that different MSA
subsets may contain coevolutionary information distinct from deep
MSAs, allowing AF2 to predict alternative protein conformations,
though recent work suggests that AF-cluster may infer alternative
conformations from its PDB training rather than coevolutionary
inference30, limiting its robustness. Regardless, AF-cluster was tested
on six families of fold-switching proteins and successfully predicted
both conformations in three families15.

To gauge how frequently SPEACH_AF and AF-cluster predict fold
switching, we tested both approaches extensively on the set of 92 fold

switchers tested previously, generating >77,000 structures with
SPEACH_AF and >200,000 structures with AF-cluster (Supplementary
Data 2). Both methods missed fold switching in most cases (Fig. 1a):
92% for SPEACH_AF (7/92 successes) and 80% for AF-cluster (18/
92 successes).

As mentioned previously, both SPEACH_AF and AF-cluster pos-
tulate that AF2 can predict alternative protein conformations when
sufficient coevolutionary information is provided. A recent computa-
tional approach called Alternative Contact Enhancement (ACE) iden-
tified coevolutionary information unique to both folds of 56 fold-
switching proteins, confirming that MSAs often contain structural
information unique to both conformations19. Nevertheless, after
combining all correctly predicted fold switch pairs from 282,000
predicted structures (Fig. 1b), AlphaFold2 misses this information in
35/56 cases. Thus, current enhanced sampling approaches typically do
not enable AF2 to consistently detect the dual-fold coevolutionary
information present in many MSAs of fold-switching proteins.
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Fig. 1 | AF predicts fold switching withmodest success. aNumbers of successful
fold-switch predictions for each AF2 method and AF3 compared with coevolu-
tionary information found for both folds (ACE) and the total number of possible
successes (dotted red line). All_AF2 combines all unique successful predictions
from all AF2-based methods: >282,000 predictions. Predictions successfully made
by more than one AF method are black; predictions unique to each method are
gray. b Fraction of predicted structures that match experimentally determined
conformations for all methods. Fold1 is the conformationmost frequently sampled
by AF2.3.1, Fold2 is the less frequently sampled (or unsampled) conformation.
Conformations designated as Other are inconsistent with both experimentally
determined structures. Source data are provided as a Source Data file.
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AF2 confidencemetrics select against alternative conformations
of fold switchers
Though AF2 often produces structural models with remarkably high
accuracy1, its accuracy is reduced for fold-switching proteins when
shallow MSA subsampling is used. We quantified the frequency of
inaccurate predictions relative to correct predictions of Fold1 and
Fold2 generated by all methods (Fig. 1b). In all cases, 30–49% of pre-
dictions did not correspond well to either experimentally determined
structure.

To see if AF2 could distinguish between good and inaccurate
predictions, the relationship between prediction quality and AF2’s
confidencemetricswas assessed. AF2 estimates predictionqualitywith
two confidence metrics: the per residue predicted Local Difference
Distance Test (plDDT) and predicted templatemodeling (pTM) scores.
We sought to determine whether either or both metrics discriminate
between the good and poor fold-switch predictions generated by
AlphaFold2 and AF-cluster. AF-cluster was selected because it pre-
dicted substantially more fold switchers than SPEACH_AF (18 rather
than 7), generated fewer inaccurate predictions overall (~30% rather
than 43%), and enabled a larger set of diverse predictions to be made.

Neither of AF2’s confidence metrics successfully discriminated
between good and inaccurate fold-switch predictions (Fig. 2a, Sup-
plementary Figs. 3–5). Rather, both plDDT and pTM scores assigned
lower confidences to diverse correctly predicted conformers and
higher confidences to predictions that have not been observed
experimentally. Thirty percent of all AF-cluster structures did not
match experimentally determined structures of Fold1 or Fold2,making
it the most accurate of all AF-based methods (Fig. 1b). However, of its
highest ranked structures, the proportion of predictions inconsistent
with experiment increased to nearly 70% (Fig. 2a, Supplementary
Data 4, 5). A similar trend was observed for AF2.3.1 runs with standard
settings (Supplementary Figs. 4–5). Interestingly, upon dividing tar-
gets into “Easy” and “Complex” based on the type and amount of
conformational change, “Complex” targets were better represented in
the “Top10” and “All” categories than “Easy” at all quality levels (Sup-
plementary Data 6).

These results strongly indicate that AF2’s confidence metrics
select against experimentally consistent predictions of fold switchers,
especially Fold2, in favor of experimentally inconsistent predictions.
For instance, while AF-cluster correctly predicted 18/92 Fold2 con-
formations overall, only 7/92 were identified amongst high quality
predictions (p < 8.1 × 10−4, one-sided binomial test). Further, sig-
nificantly fewer correctly predicted conformations (either Fold1 or
Fold2) were identified amongst high-qualitymodels (37) than amongst
all (53, p < 6.6 × 10−4, one-sided binomial test).

Some of the experimentally unobserved conformations predicted
by AF2 have been proposed to correspond to folding intermediates6.
To the best of our knowledge, there is no experimental evidence
supporting this claim for fold-switching proteins. In fact, a recently
characterized folding intermediate of the transcriptional regulator
RfaH suggests the opposite22. AF2-multimer predicted a hybrid α-
helical/β-sheet fold with high confidence for its fold-switching
C-terminal domain (Supplementary Fig. 6). This prediction is not
consistent with experiment: most notably, the N-terminal portion of
the AF2 prediction folds into a β-hairpin, while the experimentally
observed intermediate has helical propensities in that region22. Thus,
high confidence AF2 predictions that differ from experimentally
determined structures do not necessarily correspond to folding
intermediates, consistent with previous observations31.

To further address if AF2-based enhanced sampling methods can
predict folding intermediates, we compared models of essential
mannosyltransferase PimA from M. tuberculosis with structures from
accelerated molecular dynamics (MD) simulations consistent with 19F
NMR experiments. These experiments revealed four functionally
relevant states of PimA that coexist in dynamic equilibria21: two stable
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Fig. 2 | AF2 confidencemetrics select against alternative conformations and do
not predict the most energetically favorable fold-switch conformations. a Bar-
plot representation of prediction success in Top1, Top10 and All fold-switch pre-
dictions indicate thatmore experimentally unobserved conformations are selected
as prediction confidence increases. These trends are apparent in trendline plots
showing the change in fraction of predictions as a function of prediction con-
fidence. The leftmost 3 trendlines are from All predictions, the middle/rightmost
are fromTop10/Top1most confident for eachof 92 fold switchers. For each column
of trendlines, the leftmost dot represents all conformations (not weighted by
confidence), the next is predictions with medium confidence, then good con-
fidence, and finally high confidence. Confidences are determined by ≥70% (med-
ium), 80% (good), 90% (high) of residues with Cα plDDT scores ≥70. b AF2’s
structure module predicts the lower energy conformations of fold switchers with
better accuracy and higher confidence than higher energy conformations 50% of
the time, equal to random chance. Blue dots represent correctly predicted ground
state conformers with higher confidence; red dots represent correctly predicted
excited state conformers with higher confidence than low energy, and gray dots
have been observed to sample both folds at roughly equal proportions at equili-
brium. Axes represent TM-scores of both conformations relative to experiment.
Source data are provided as a Source Data file.
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fold-switched states and two intermediates. Since only AF-cluster
successfully predicted the both stable fold-switched states of PimA, we
searched among its ~1400 models for structures resembling the two
intermediates (Methods: PimA Intermediates). None were found.
Among the models, 47% resembled Fold1 (active-compact state of
PimA), 0.2% resembled Fold2 (inactive-compact or apo state), and the
remaining ~53% of predictions did not resemble any of the four states,
though many of these predictions (50%/53%) had low confidence
(average plDDT <70).

AF2’s inability to discriminate between good andpoor predictions
of fold switchers suggests that its confidence metrics may have
broader limitations. To further assess this possibility, we used AF2’s
structure module to energetically rank fold-switching protein pairs
(Methods: AF2Rank). This approach correctly selected experimentally
consistent structures among diverse models of 283 proteins8. Here, it
correctly selected the ground state conformations of fold-switching
proteins 50% of the time (Fig. 2b). In other words, the selective power
of AF2’s structure module amounted to random guessing for fold-
switching proteins. It may seem reasonable to hypothesize that this
selective failure arises in cases where the ground states of fold
switchers are oligomeric and the excited states are monomeric. This
may not be the case, however, because AF2 predicts the folds of
ground state oligomeric structures, such as KaiB, with the monomer
model15. Furthermore, including oligomeric states and binding part-
ners in the multimer model did not produce any unique fold-switch
predictions (Supplementary Data 2); instead, all alternative con-
formations were predicted from monomeric sequences without the
need for additional information about oligomeric state or binding
partner. Thus, AF2 does not seem to require additional information
about oligomeric state or protein binding partner to predict con-
formations of proteins in oligomeric assemblies or complexes. Pro-
viding additional biomolecular information to AF3 did not appreciably
increase its predictive success either: out of its 7 successes, only 2were
not predicted by AF2.

AF rarely predicts fold switchers outside of its training set
AF’s modest success in sampling the conformations of fold switchers
likely within its training set raises the question of how well it can pre-
dict fold switching of sequences without. After all, AF is most valuable
when used to infer structural properties of uncharacterized proteins,
such as conditionally folding regions of IDPs3 and yet-to-be-discovered
folds4. Thus, we identified seven fold switchers with sequences outside
of AF’s training sets and divided them into two categories: distant
homologs of a known fold switcher and recently discovered fold
switchers. The alternative conformations of all seven fold switchers
were either (1) determined after AF2.3.1’s andAF3.0’s last training or (2)
inferred by other experimental methods without depositing the
alternative structure in the PDB.

First, we assessed AF’s ability to predict fold switching of five
distant homologs of the known fold-switching protein Escherichia coli
RfaH32, a bacterial transcription factor whose C-terminal domain
reversibly switches from an all α-helical ground state to an all β-sheet
excited state upon binding RNA polymerase and a specific DNA
sequence called ops33. Both conformations of E. coli RfaH have
been determined experimentally34,35. Previous work provided circular
dichroism (CD) and nuclear magnetic resonance (NMR) evidence for
switching in all five of these sequence-diverse RfaH homologs32, all
with sequences <35% identical to one another’s and to E. coli RfaH’s. As
a control, AF’s ability to predict single folding was assessed in five
additional experimentally characterized single-folding RfaHhomologs
whose CTDs were found to assume the β-sheet fold only (Supple-
mentary Table 1).

Although AF2, AF3, and AF-cluster correctly predict that E. coli
RfaH–likely in their training sets–switches folds, none of them reliably
predicted fold switching in the experimentally confirmed variants not

deposited in the PDB. Specifically, AF2.3.1 andAF3.0predicted a helical
CTD in 1/5 cases with moderate confidence (Supplementary Fig. 7). In
the other four cases, they predicted the β-sheet conformation only, as
they did correctly for all single-folding controls. To extensively
search for fold switching with AF-cluster, we generated 50models per
input MSA with 10 seeds for a total of 140,050 predictions of 10 pro-
teins (Supplementary Data 7) both with and without dropout
(>280,000 structures total), plus 5 models per input MSA with 2 seeds
using both ColabFold1.3 and 1.5. Combining all predictions, AF-cluster
predicted both folds for 4/5 conformations and only well-folded β-
sheet conformers in the remaining case (Supplementary Fig. 8).
However, all helical conformations were predicted with low con-
fidence (average plDDT ≤50), indicating that AF2.3.1 can generate
more confident helical CTD predictions than AF-cluster. This finding is
consistent with the original AF2 paper’s observation that MSAs with
≥32 sequences are needed for reliable predictions1; AF-cluster-
generated MSAs often have ≤10 sequences. Importantly, AF-cluster
predicted low-confidence helical conformations in two single-folding
RfaH homologs with CTDs experimentally confirmed to assume β-
sheet folds rather than α-helices (Supplementary Fig. 8). NMR evi-
dence from a previous study strongly suggests that the Candidatus
Kryptonium thompsoni variant assumes the β-sheet conformation
only32. Furthermore, the CD spectrum of the T. diversioriginum variant
also suggests that it assumes a ground state β-sheet structure con-
sistent with previously characterized RfaH variants whoseCTDs do not
assume helical conformations (Supplementary Fig. 9). Together, these
results demonstrate that neither AF2, nor AF3, nor AF-cluster reliably
predict fold switching of distant RfaH homologs, and AF-cluster pre-
dictions do not reliably distinguish between fold-switching and single-
folding RfaH variants.

Structures of the two remaining prediction targets were
deposited into the PDB in 2023, after AF2.3.1 and AF3 were
trained. Fold switching of Sa1–a 95 amino acid protein that
reversibly interconverts between a 3-α-helix bundle and an α/β
plait fold in response to temperature–was demonstrated by NMR
spectroscopy36. We also included the structure of BCCIPα, a human
protein whose sequence is 80% identical to its homolog BCCIPβ.
Although BCCIPα has not been shown to switch folds, it assumes a
structure completely different from BCCIPβ and has a different
binding partner than its homolog37. Previous work has shown that
when run with default parameters, AlphaFold2 fails to predict the
unique structure of BCCIPα, whose most similar PDB analog differs
by 9.9Å37. Thus, we included BCCIPα because (1) we wanted to see if
AF-cluster or AF3 could produce its unique structure and (2)
although BCCIPα might not switch folds, it tests AF2’s limits in
predicting protein folds outside of its training set.

AF2.3.1, AF3, and AF-cluster missed fold switching completely
for both Sa1 and BCCIPα (Fig. 3). Specifically, 98.8% (2525/2555) of
the Sa1 predictions assumed the α/β plait fold, and 54% (2022/3755)
of the BCCIPα predictions assumed the structure of its PDB homo-
log, BCCIPβ. By contrast, AF2.3.1, AF3, and AF-cluster failed to
predict both the 3-α-helix bundle conformation of Sa1 and the
experimentally determined conformation of BCCIPα. BCCIPα’s
structure was solved in complex with another protein37. Never-
theless, running AF2.3.1’s Multimer model and AF3 with BCCIPα’s
binding partner still yielded the BCCIPβ structure (Supplementary
Fig. 10). Because its apo structure has not yet been determined, it is
possible that apo BCCIPα assumes the same structure as BCCIPβ, in
which case AF2.3.1, AF3, and AF-cluster fail to predict its alternative
conformation. It is also possible that apo BCCIPα assumes the same
structure in its apo and bound forms, in which case AF2.3.1, AF3, and
AF-cluster fail to predict its structure altogether38. These results
cast doubt on the AF’s reliability and consistency in predicting
the alternative conformations of fold switchers outside of its
training set.
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Fig. 3 | AF2 fails to predict fold switching of two protein structures outside of
its training set. a Sa1 is a designed protein that switches reversibly between α/β-
plait (PDBID:8e6y, Fold1) and 3α helix (PDBID: 2fs1, Fold2) folds triggered by
temperature changes. Cartoon representations of Fold1 are colored blue for
N-terminal residues (1 to 10), orange for the fold-switching residues (11 to 66
aligning with the amino acid sequence in Fold2, also in orange) and C-terminal
residues (67 to 95) are red. Heatmaps of 50 predictions (M0 to M49) for each of
51 sequence clusters showing the similarity (TM-scores) to Fold1(left panel) and
Fold2 (right) are presentedbelow the cartoon representations of the two states. AF-
cluster consistently predicts Fold1 but misses Fold2. b BCCIPβ and BCCIPα are

human protein isoforms with 80% sequence identity that adopt distinct folds. (13 Å
RMSD). AF-cluster was run on BCCIPα’s sequence. In the right panel, a cartoon
representation of BCCIPα (colored blue to red from N-terminus to C-terminus) is
shown with the heatmap of TM-scores of 50 predictions (model numbers M0 to
M49) for each of 75 sequence clusters compared to the fold adopted by the α

isoform (PDBID:8exf, chain B). In the left panel, the BCCIPβ experimental structure
(PDBID:7kys) is shown with the heatmap of TM-scores compared to the fold
adopted by the β isoform. AF-cluster frequently predicts the structure of the β-
isoform but misses the experimentally consistent α-isoform structure.
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AF2 predictions are not always consistent with coevolutionary
restraints and are better explained bymemorization of training
set structures
Why does AF2 fail to predict alternative conformations outside of its
training set? Two dominant explanations have been proposed. The
first is insufficient information. AF2 has been proposed to use MSA-
derived restraints as a starting point to minimize the energies of
structures, much like NMR structure determination8. If AF2 works this
way, its failure to predict a given conformation would result from
improper restraints, i.e. the input MSA did not supply the information
needed to specify the fold of interest. The second is structure “mem-
orization”. In this case, AF2 does not always rely on coevolutionary
restraints because it has “seen” certain folds during training and stored
relevant structural information in its weights13, allowing it to associate
learned structures with related sequences. The distinction between
these two explanations is important. If AF2 predicts structures by
energyminimizing structural restraints fromMSAs, it can, in principle,
predict any yet-to-be-discovered fold from its sequence given proper
MSA input. By contrast, if AF2 relies on its training set to predict certain
structures, it may be unable to correctly associate some sequences
with their corresponding structures. This may explain its failure to
predict the correct structure of BCCIPα and most RfaH variants, for
instance. It also suggests that both structures of Sa1may be predicted
if AF2 can be steered to associate its sequencewith the homologous 3-
α-helical bundle conformation in its training set.

We applied our knowledge of AF2’s architecture to assess how it
predicts alternative conformations (Supplementary Fig. 11). AF2
combines two modules to predict protein structure. The first is the
Evoformer, which extracts evolutionary couplings from input MSAs

and stores them as a pair representation, a tensor of real numbers
used to predict distances between each amino acid pair in a protein
chain. The pair representation and the target sequence are then
passed to the Structure module, which maps these inputs to a three-
dimensional structure. This predicted structure, along with the pair
representation can be passed back into the AF2 network for further
rounds of refinement, a process called recycling. Thus, before recy-
cling, the pair representation is informed by the input MSA only.
After recycling, the pair representation is updated with information
both from the MSA and the protein model generated by the Struc-
ture module (Supplementary Fig. 11). Consequently, coevolutionary
information that AF2 derives from an input MSA can be assessed
most reliably at 0 recycles, since theMSAdoes not exclusively supply
the information used to inform the pairwise representation after
recycling.

Leveraging this knowledge, we observed that ColabFold39 (CF)–an
efficient-yet-accurate implementation of AF2–predicts structures of E.
coli RfaH inconsistent with the restraints it infers from MSAs at each
recycling step (Fig. 4). Specifically, by leveraging coevolutionary
information from its input MSA at 0 recycles, CF predicts the active
conformation of RfaH with a fully β-sheet C-terminal domain (CTD).
Interestingly, at subsequent recycling steps, its CTD becomes
increasingly helical, resembling the autoinhibited state. Since CF
updates the input MSA at the beginning of each recycling step, this
structural change could arise fromupdatedMSA-based coevolutionary
information updating the pair representation. This was not the case,
however,whenwe inputted each updatedMSA into CFwith 0 recycles.
Instead, CF predicted structures with fully β-sheet CTDs from all MSAs
(Fig. 4). Thus, AF2’s MSA-derived pairwise restraints are inconsistent

Fig. 4 | AF2 structure predictions can be inconsistent with structural restraints
from Evoformer. Although the full AF2 model predicts the autoinhibited form of
RfaH (green helical structure, left panel) after 2 recycles (R2), the evolutionary
restraints from Evoformer correspond to its active β-sheet form (blue β-sheet
structures, right panel and Fig. S12) fromeachMSA inputted into the full AF2model
(left panel). The initial input MSA is depicted in the top lefthand corner with target
sequence bold and colored black, blue, and yellow. Randomly subsampled MSAs
inputted at each recycle are depicted in both panels, with identical MSAs being
inputted at R0,1,2 and MSA_R0.0, MSA_R1.0, MSA_R2.0, respectively. The right and
left panels differ by how AF2 makes predictions. In the right panel, restraints from

inputMSAs should informthepredictions because the inputMSA ispassed through
AF2 (Evoformer and Structure Module) only once (0 recycles); this also applies to
the R0 (0 recycles) step in the left panel. All structures based on these MSA
restraints output structures with β-sheet CTDs (blue). The recycling steps in the left
panel (R1 and R2) differ because they update the prediction with both pre-
vious MSA restraints and the previously predicted structures from the Structure
Module. In these cases, the CTD becomes increasingly helical (green regions),
indicating that the prediction changes during the recycling process.. Right and left
panels are shaded to represent what information drives predictions: beige (recy-
cling process, left) and light blue (Evoformer, right).
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with those from its recycled structure predictions (Supplementary
Fig. 12), indicating that the autoinhibited prediction of RfaH
likely arises from something other than evolutionary restraints infer-
red from its input MSA.

Since the coevolutionary patterns that CF recognizes are incon-
sistent with its recycled prediction of autoinhibited RfaH, we sought to
identify what drives this prediction. Previous work has suggested that
predictions may sometimes be informed by structures “memorized”
during training13. This seemed like a reasonable explanation for the
inconsistencies we observed between evolutionary couplings and
predicted structures (Supplementary Fig. 12).

To test the possibility that the autoinhibited form of RfaH’s CTD
may have been memorized during training, we inputted the single
sequence of RfaH’s CTD into CF and examined its predictions after 0
recycles. This assessment focuses on what may have been “memor-
ized” during PDB training since (1) the Evoformer cannot determine
amino acid covariances from a single sequence and (2) 0 recycles
affords an initial structural guess only from the target sequence,
whereas recycling would allow deeper exploration of the AF2 network
and may not suggest memorization. Out of the 25 RfaH CTD models
generated, CF predicted that it forms a helical bundle 100% of the time
(Supplementary Fig. 13a). These predictions contradict experimental
observation: expressed in isolation, the RfaH CTD folds into a β-sheet
structure, not a helical bundle40. This result again demonstrates AF2’s
limited learning of protein energy landscapes. It also indicates that AF2
has likely memorized RfaH’s helical bundle conformation during
training since predictions consistently resemble the helical structure
likely in AF2’s training set. To probe for other cases of putative struc-
tural memorization, we performed single-sequence predictions on
other fold-switching sequences and identified resulting models con-
sistently resembling their corresponding PDB structures. These
include the monomeric conformation of an archaeal Selecase and the
β-sheet fold of NusG, a single-folding RfaH homolog (Supplementary
Fig. 13b). Further, all AF-cluster KaiB predictions could be reproduced
successfully using this approach (Supplementary Fig. 13c).

AF3 misassigns evolutionary restraints of dimeric XCL1 while
AF2 predicts it correctly by structure memorization
Up to now, the AF2-based methods developed to predict alternative
protein conformations claim that their predictions are informed by

coevolutionary information. By our benchmarking and a previous
report15, none of them successfully predict the dimeric conformation
of human XCL1, an immune system protein. Neither does AF3, which
predicts an experimentally unobserved domain-swapped structure
>16 Å from its experimentally observed counterpart (Fig. 5a) with
average plDDTs of the ordered regions of the two top-scoring models
>70. Interestingly, the coevolutionary patterns of the predicted dimer
were nearly identical to those of XCL1’s monomeric conformation
(Fig. 5b), which all tested implementations of AF2 and AF3 capture
successfully. Although the predicted dimer structures and the
experimentally determined monomeric conformation differ by
>14.9 Å, this result suggests that AF3 predicted the experimentally
unobserved dimer by mapping some of the evolutionary couplings
corresponding to intrachain (monomer) interactions to interchain
(dimer) interactions instead. Unfortunately, the evolutionary cou-
plings corresponding to monomeric lymphotactin cannot inform the
prediction of dimeric lymphotactin, whose intra- and interchain
interactions differ (Supplementary Fig. 14).

Though none of the AF-based methods successfully inferred
dimeric XCL1’s structure from evolutionary couplings, both AF2 and
AF2-multimer successfully predict its structure from sequence alone
(Fig. 5c). As before, both predictions were runwith 0 recycles to assess
whether the models associate the sequence with a structure “mem-
orized” during training; both results suggest that AF2 predicts the
dimeric form of XCL1 by sequence association rather than energy
minimizing coevolutionary restraints. These results again suggest that
some successful AF2 predictions are informed by structures learned
during training–such as autoinhibited RfaH and the dimeric form of
XCL1. Thus, we suspect that if these structures had not been in the
training set, AF2 would not predict them.

Discussion
Although AF has revolutionized protein structure prediction and
protein design, its current ability to predict alternative protein con-
formations is limited. We tested multiple versions of AF2, the
AF3 server, and two published enhanced sampling methods on 92
fold-switching proteins, which assume two distinct biologically
important conformations18,20. The majority of both conformations of
these 92 fold switchers were likely in both AF3’s training set and the
latest version of AF2’s since they were used to train OpenFold to

Fig. 5 | AF predicts the dimeric form of XCL1 through structure memorization
rather than coevolutionary inference. a Though AF3 was given appropriate
stoichiometry and environmental conditions to predict the lymphotactin dimer, its
prediction did not match experiment. b The coevolutionary patterns of AF3’s
predicted XCL1 dimer match those of its monomeric conformation almost exactly.
Contact maps generated from the AF3 prediction and experimentally determined
monomeric conformation (2hdm). Upper diagonal corresponds to contacts unique

to the AF3 prediction (light gray smaller dots correspond to intermolecular con-
tacts; larger to intramolecular), lower diagonal corresponds to contacts unique to
the experimentally determined monomeric conformation (black); common con-
tacts medium gray; coevolutionary information inferred from MSA using ACE,
(teal). c Both AF2 multimer and AF2 predict the correct XCL1 dimer structure from
single sequences and 0 recycles, suggesting that they memorized its structure
during training.
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match AF2’s predictive performance27. Furthermore, our previous
work shows that, when supplied with the appropriate alternatively
folding template, AF2 continues to predict the dominant conforma-
tion only16. Here, when we combine all models from all methods and
sampling techniques– >280,000 predictions in all–AF captured fold
switching with amodest success rate of 35% (32/92). Furthermore, AF
showed less success predicting fold switchers outside of its training
set: 14% (1/7). This one success was the homolog whose fold-
switching C-terminal domain had closest sequence identity to E. coli
RfaH, a fold switcher with both conformations likely in AF’s training
set. Notably, AF failed to predict correct conformations of both tar-
gets outside of its training set. It missed the 3-α-helical bundle con-
formation of an engineered protein that switches folds in response to
temperature36. It also predicted a conformation of the humanprotein
isoform BCCIPα that differed completely from its experimentally
determined structure37. Since this structure is in complex with
another protein, it is possible that BCCIPα may assume the AF-
predicted conformation in its uncharacterized apo state or in com-
plex with a different binding partner. Nevertheless, AF did not pre-
dict its experimentally characterized structure. These results suggest
that current implementations of AF are unlikely to foster broad dis-
covery of yet-to-be-discovered fold switchers.

This study involved extensive samplingof fold-switchingproteins,
generating >500,000 structures for 99 fold switchers. Nevertheless,
more sampling with more sophisticated techniques may enable AF to
predict more alternative conformations not identified here. Indeed, a
recent preprint indicates that another method, AFSample241, success-
fully predicts the 3-helix-bundle fold of the engineered protein Sa1.
This finding is consistent with our results since a homologous
sequence that assumes the helical bundle structure is in the PDB and
was likely in AF’s training set. Though there is value in exploring and
developing these advanced sampling techniques, our results indicate
that AF is currently not sensitive enough to predict many unchar-
acterized fold switchers fromgenomes using a systematic and scalable
computational approach, the particular interest of our lab that
inspired this study.

With the sampling and methods performed, AF has a false nega-
tive failure rate for 65%of fold switchers within its training set and 86%
for fold switchers without. We estimated false positive rates by finding
how many times confident predictions (with average plDDT scores
≥70) shared little structural similarity to either of the two folds. On
average, the false positive rate is 43%. The variance of this rage is high:
41% of fold switchers had false-positive rates >50%, while 30% had false
positive rates <3%. False positives are more problematic than false
negatives because experimentally testing positive predictions is
expensive and time-consuming. Therefore, these positive predictions
should be interpreted with caution and cross-validated using ortho-
gonal methods30.

AF’s inability to accurately predict and score the multiple
experimentally determined conformations of fold switchers suggests
that the model has more to learn about protein energy landscapes31.
Complete understanding would enable AF to accurately predict both
conformations of fold-switching proteins and their relative fre-
quencies. AF2’s lack of energetic understanding is evidenced by (1) its
inability to predict ~65% of fold switchers likely in its training set, (2) its
inability to predict >85% of fold switchers outside of its training set, (3)
its failure to accurately scoremodels of alternative conformations, and
(4) the inability of its structuremodule to distinguish between low and
high energy conformations. These findings are consistent with three
recent reports: (1) incorrect AF2 and AF3 structure predictions of
human pro-interleukin-1842, (2) unphysical and imbalanced AF2 pre-
dictionsof experimentally determinedprotein kinase conformations43,
and (3) incorrect AF3 predictions of the oligomeric assembly of the
human lens fibermembrane intrinsic proteinMP2044. These predictive
failures lead us to conclude that AF2 and AF3 harbor little–if

any–knowledge of protein thermodynamics. This conclusion is further
supported by AF2’s inability to predict sparsely populated states of
PimA and RfaH. These findings may also apply to dynamic single-fold
proteins: a study of 91 such proteins showed that AF2 was system-
atically unable to reproduce experimentally observed conformational
diversity45, preferentially predicting one conformation while missing
the other as observed here.

This study provides evidence that AF2 has memorized certain
protein conformations during training. Our results show that AF2
predicts the helical autoinhibited conformation of RfaH despite the
strong coevolutionary signal that the Evoformer detects for its active
β-sheet conformation. This result suggests that AF2 sometimes favors
structural information learned during training over coevolutionary
information detected fromMSAs. Accurate predictions of several fold
switchers from single sequences further supports the possibility of
memorization. The Evoformer stack was not designed to predict a
robust pair representation from single sequences; nevertheless, AF2
predicts protein structures within 3.0Å of their experimentally
determined structures with 0 recycles, suggesting that it has memor-
ized their conformations. Structure memorization may sometimes
drive AF3 predictions as well since it failed to predict the experimen-
tally determined structures of BCCIPα and human pro-interleukin-18,
favoring instead structures in its training set42, though more extensive
sampling with different MSA inputs would be required to test this
possibility.

Some of AF’s predictive unreliability appears to arise from faulty
associations between sequence and structure. For instance, AF2.3.1,
AF3, and AF-cluster completely miss the experimentally determined
conformation of BCCIPα, instead associating its sequence with the
structure of BCCIPβ, a close homolog likely in AF2’s training set37.
Further, AF2.3.1 and AF3 incorrectly predict only β-roll folds for CTDs
of 4/5 fold-switching RfaH proteins with ground state α-helical con-
formations. AF-cluster incorrectly predicts that the β-roll CTDs of two
single-folding RfaH homologs can assume α-helical conformations
indicative of fold switching. Thus, unlike its recently reported perfor-
mance on some KaiB proteins15, all of which were ≥47% identical to
sequences of their PDB homologs, AF-cluster does not reliably
associate sequence-diverse RfaH homologs with their experimentally
observed conformations.

Our results suggest a way to potentially improve AF-based pre-
dictions of fold-switching proteins. Previous work from our lab shows
that coevolutionary signals for both folds of fold-switching proteins
are sometimes present in MSAs19. Deep MSAs show strong signal for a
dominant conformation, while shallower subfamily-specific MSAs
show increased signal for the alternative. AF2 appears to miss this
subfamily-specific information in most cases. Better results may be
obtained by fine-tuning AF2 to associateMSAs of different depths with
different folds, potentially strengthening the sequence-structure
associations needed to predict alternative conformations of fold-
switching proteins.

Deep learning models are limited by both their underlying
assumptions and their training datasets. With very limitedmechanistic
understanding31 and relatively few atomic resolution examples of fold
switchers18, it may not yet be possible to leverage deep learning to
consistently predict this emerging phenomenon. There may be much
about the protein universe–and particularly fold switching–that has
not yet been observed. This dark matter is a new frontier of protein
science.

Methods
The dataset
The dataset of fold-switching proteins having identical to high
sequence similarity but assuming two distinct secondary/tertiary
structures (folds) with experimentally determined structures16 was
used for the analysis (Supplementary Data 1). To determine flexibility,

Article https://doi.org/10.1038/s41467-024-51801-z

Nature Communications |         (2024) 15:7296 9

www.nature.com/naturecommunications


we compared B-factors of fold-switching with single-folding protein
regions and found no substantial difference between the two (Sup-
plementary Fig. 15). We also analyzed normalized B-factors as follows:

BFnorm =
BF � μBF

σBF
, ð1Þ

whereμBF is the averageB-factor over a givenprotein structure and σBF

is its standard deviation. As in ref. 46, residues with normalized
B-factors ≥ 2.0 were considered flexible; 98% of fold-switching regions
had normalized B-factors <2.0, indicating that they are not particularly
flexible. This analysis indicates that the experimentally determined
structure of fold-switching proteins that we used accurately represent
their structures rather than forcing flexible protein regions into a rigid
conformation. Sequences of experimentally characterized RfaH/NusG
variants32 and two examples of folds-switching proteins identified in
202336,37 were also analyzed.

Searching for fold switchers likely in AF2’s training set
Wewanted to determine if both pairs of PDB structures corresponding
distinct conformations of the fold switchers in our dataset were likely
present in AlphaFold2’s training set. However, the code for AF2’s
complex training procedure with data (structures, sequences, and
MSAs) required for the training were not made available with the
official AF2 resource. The training data for OpenFold, a robust, open-
source, and trainable implementation of AF2 with equivalent
performance27, have beenmade available, however. The set of PDB IDs
and their chain information (132,000 unique chains) used to train
OpenFold12 are in a text file (duplicate_pdb_chains.txt), hosted on the
Registry of Open Data on AWS (RODA) at https://registry.opendata.
aws/openfold/.Wematched the PDB IDs and chains in our dataset with
their training set and found all.

Defining Fold1 and Fold2
Fold-switching proteins have two distinct conformations, A and B.
Proteins with higher TM-scores in the fold-switching region for at least
3 out of 5 of their AlphaFold2.3.1 predictions were designated “Fold1”
and the other conformation in the protein pair was denoted as
“Fold2”16.

AlphaFold2 (AF2) predictions
AF2.3.1 and AlphaFold-Multimer. The open-source version of
AlphaFold2.2.0 and 2.3.1 maintained on the NIH HPS Biowulf cluster
(https://hpc.nih.gov/apps/alphafold2.html) was used to generate pre-
dictions. The template database contained PDB structures and
sequences released till 2022-12-31. The pipeline was run both with and
without templates, the predictions from the AlphaFold2-Multimer
/AF2_multimer (7) pipeline were generated using both “monomer” and
“multimer”option. SupplementaryData 1b shows change inoligomeric
state between the two folds/conformations.

AlphaFold2 with single sequences. Additional runs were performed
using AF2.3.1 and AF2.2.0, with and without templates, simply putting
in the target sequence in the prediction pipelinewithout generating an
MSA, to exclude any coevolutionary information that may be present
in the MSA.

AF3 predictions
All AF3 predictions were run on the available webserver (https://golgi.
sandbox.google.com). A list of copy numbers and biologicalmolecules
for each run can be found in Supplementary Data 3. Average plDDT of
the XCL1 dimer was calculated using alpha carbons of residues 25–76,
the folded region of the protein. Residues outside of this region had
low plDDTs because they were disordered and were therefore not
counted.

Sampling prediction ensembles with AF2
Modified implementation of SPEACH_AF. Alanine-masked multiple
sequence alignments (MSAs) were generated by identifying all amino
acids in contact with a region of interest and mutating all contacting
amino acids to alanine those within 4 residues of primary sequence to
the region of interest17. The region of interest was defined as a sliding
window of 11 residues that moved by increments of 1 from the begin-
ning to the end of the fold-switching region of each of 92 proteins.
Positions in the MSA corresponding to residues within 4 Å of any
amino acid within a given region of interest–except those within 4
residues of primary sequenceof that region–were converted to alanine
except for the target sequence. Runs using the modified MSAs were
carried out with AF2.2.0, with three random seeds for each MSA for a
total of 15 models for each 11-residue window. In some cases, nearby
windows yielded exactly the same alanine mutations to the MSA; in
these cases, only one uniquely mutated MSA was preserved. A total of
77,160 predictions were generated using this method.

AF_Cluster. To perform more extensive sampling of conformations,
AF-cluster was run with ColabFold39 maintained on the NIH HPS Bio-
wulf cluster (https://hpc.nih.gov/apps/colabfold.html). This module
was used to generate multiple sequence alignments (MMseqs2-based
routine47) for the proteins in our dataset using the UniProt database48.
The AF_Cluster pipeline (https://github.com/HWaymentSteele/AF_
Cluster)15 was then implemented to cluster the MSAs and these shal-
lower MSAs were then used to generate predictions using Colab-
Fold1.5.2 (which uses AF2.3.1) and ColabFold1.3 (utilizes AF2.2.0, to
match the results presented in Wayment-Steele et al. 15). The Colab-
Fold1.3 run reproduced Wayment-Steele et al.’s predictions of both
conformations of KaiB, RfaH, and Mad2. Both versions of ColabFold
were run on all fold switchers, each generating 5 relaxed structures
from two random seeds, 10 structures/shallow MSA, 3 recycles. Addi-
tionally, we ran ColabFold1.5.2 generating 50 relaxed models from 10
random seeds and 3 recycles on all RfaH variants not in the PDB along
with Sa1 and BCCIPα. Results for these variants outside of the PDB
comprise all runs. Further, we repeated the 50-structure Colab-
Fold1.5.2 runs with dropout and found no increase in alternative con-
formation sampling.

A table of total numberofpredictions generated for eachprotocol
is presented in Supplementary Data 2. All predictions following the
AF_Cluster pipeline, were generated without templates, as in the ori-
ginal manuscript15.

Assessment of prediction quality
The per-residue Local Distance Difference Test (plDDT) scores (a per-
residue estimate of the prediction confidence on a scale from0 – 100),
quantified by determining the fraction of predicted Cα distances that
lie within their expected intervals were used to determine confident
predictions49. The values correspond to the model’s predicted scores
basedon the lDDT-Cαmetric, a local superposition-free score to assess
the atomic displacements of the residues in the model. Values ≥ 90
were denoted as high confidence, and values between 70 to 90 are
deemed confident.

Predictions were compared to the original experimentally deter-
mined structures using TM-align28, (an algorithm for sequence-
independent protein structure comparisons) and root mean square
deviations (RMSDs) involving backbone atoms (C, Cα, N and O) cal-
culated using biopython’s PDB.Superimposer module50. TM-align first
generates an optimized residue-to-residue alignment based on con-
nections among secondary structural elements using dynamic pro-
gramming iterations and then builds an optimal superposition of the
two structures. TM-score (ranging from 0 to 1) is reported as the
measure of overall accuracy of prediction for the models after the
alignment, 0.6 signifying roughly similar folds for protein regions of
interest. RMSD values ≤ 5 Å were used to infer similar structures.
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Reranking predictions based on plDDT scores for AF_Cluster
predictions
For an agnostic view of the pool of predictions generated for each
protein, we reranked the predictions according to the percentage of
confident residues (residues having plDDT scores ≥70) and then
compared them to the experimental structures. The predictions were
designated as Medium (≥70% residues with plDDT scores ≥ 70), Good
(≥80% residues with plDDT scores ≥70) and High (≥90% residues with
plDDT scores ≥70) confidence models. The predictions were rescored
according to the percentage of confident residues in each pool of
Medium, Good, High and All (includes all predictions for the protein)
confidence models.

To determine which conformations were present among models
within each of the four categories (All, Medium, Good, and High), the
total number,Nij, ofmodels corresponding to each conformation (i) of
each fold-switching protein (j) were tabulated. A given conformation
(ij) was considered to be predicted if Nij ≥ 1.

Defining “Complex” and “Easy” fold-switchers
Since, the 92 fold-switching protein pairs are highly heterogeneous
with respect to the structural differences between conformers, a fair
comparisonof the predictions producedbyAF2 samplingswould need
a separation of the targets based on their difficulty or complexity. To
that end, we labelled as the fold-switching pairs as “Easy” (48) or
“Complex” (45) based on RMSD between whole structures (wRMSD)
and TM-scores of the fold-switching region (fsTM-score). Hence, tak-
ing both overall conformational changes and local secondary struc-
tural changes specific to the fold-switching region into account when
labelling the pair. Supplementary Data 6 has all the information on the
protein pair (structural changes in terms of RMSDs and TM-scores,
sequence identities) including the label “Easy” or “Complex” depend-
ing on the wRMSD (>10Å) and fsTM-score <0.5). Amyloids and fold-
switchers having swapped domains (3low_A / 3mlb_F) are labelled as
“Complex” too.

Prediction success
Success rate or prediction success is defined as the fraction of proteins
for which at least one prediction corresponds well (TM-score of fold-
switching region>0.651) to Fold1 or Fold2 (Defining Fold1 and Fold2). If
the TM-scores for both Fold1 and Fold2 (TM-score1 and TM-score2,
respectively) are greater than 0.6 the conformation is assigned to the
conformation that produces the larger TM-score. The third label (other
than Fold1 and Fold2) is “Other”, a.k.a. experimentally unobserved
predictions, are designated to those predictions with TM-scores (TM-
score1 and TM-score2) less than 0.6. After reranking, we checked for
prediction success in Top1 (most confident prediction overall), Top10
(10 most confident predictions overall) and All (all predictions
regardless of confidence) in the pool of predictions.

PimA intermediates
In addition to comparing the TM-scores and RMSDs between predic-
tions and PDB structures (PDB entry 4NC9, apo state of PimA and PDB
entry 2GEJ, PimA bound to GDP-Man), the intermediate states (inac-
tive- and active-extended) were assessed by measuring the distance
between the residue Arg144 that is reshuffled from an α-helix to a ß-
sheet environment and Glu157 located in the α-helix on the N-terminal
domain, to replicate the domain closure associated with the con-
formation change on going from the inactive-compact to inactive-
extended, then from active-extended to active-extended states (Fig. 4.
in ref. 21 explains the different conformations clearly).

AF2Rank
We ranked high and low energy conformations as follows. Only seven
fold switchers have either been found to populate two folds in solution
or populate two distinct crystal forms under the same conditions16.

These are referred to as “experimentally isoenergetic conformations”
in Fig. 2b. In the remaining cases, fold-switching proteins assume a
more stable “ground” state and a less stable “excited” state. Thus, we
classified the remaining 86 protein pairs into “ground” and “excited-
state” conformations, as previously16: “We define ground state in two
ways: first as isolated protein when the other conformation binds a
ligand, second as a preferred conformation suggested by the litera-
ture, and third as one of two bound conformers. This third definition
gives AlphaFold the benefit of the doubt when both structures are
ligand-bound.”

Starting from this dataset16, any proteins where one structure
included only a short fragment or that had long gaps in the fold-
switching region were excluded from the AF2Rank protocol. The final
dataset consisted of 76 proteins (PDB IDs highlighted in supporting
data, Supplementary Data 1a).

Structures corresponding to each fold-switched conformation
were passed to the AF2Rank protocol8 as templates, and the candi-
date structure’s accuracy is assessed based on confidence scores of
the AF2 output model. Before being passed to AlphaFold2, sidechain
atoms were removed to prevent AF2 from using the underlying
amino acid sequence to influence its prediction confidence. Beta
carbons were added to glycine residues to mask their identity. AF2
was run without a MSA to remove coevolutionary influence from
protein structure prediction. As in the original publication, a com-
posite score of predicted local distance difference test (plDDT),
predicted template modeling score (pTM), and template modeling
(TM) score was considered to be an energy function that evaluates
model quality: the more confident and closer to the experimental
structure, the higher the score8. For each fold-switching protein, we
passed AF2Rank each of the two folds as a template structure, using
its amino acid sequence as the input sequence. plDDT, pTM, and
composite scores were compared between the two runs to deter-
mine which fold AF2 assigns higher confidence scores. TM-scores
were also calculated between the output and template structures to
assess prediction quality.

To ensure that we passed the same sequence to AF2 for fold-
switched conformations, we truncated extraneous N- and C-terminal
residues used for purification but endogenous to their respective
sequences. If one structure included a domain that was not present in
the other structure, that protein was excluded from the dataset. Any
short gaps in the structures were modeled with RosettaCM52, and the
top scoring Rosettamodel (minimum 1000models generated) with a
TM-score ≥0.9 compared to the native structure were then selected
for use. Hetero-atoms from non-standard residues such as the sele-
nium in seleno-methionine and seleno-cysteine were replaced with
their standard analogs (e.g. methionine and cysteine) using
RosettaCM.

Single sequence predictions
Single sequence predictionswere performedwithColabFold1.5.5 using
monomer model weights with 0 recycles, all 5 models.

Scripts and figures
The scripts used for all analyses were written in Python3(https://www.
python.org/); modules and packages used – Biopython (https://
biopython.org/), pandas (https://pandas.pydata.org/), NumPy (https://
numpy.org/), tmtools (https://pypi.org/project/tmtools/). PyMOL53

(The PyMOLMolecular Graphics System, Version 2.0 Schrödinger, LLC)
(https://pymol.org/2/)was used to visualize proteins, plotswere created
using Matplotlib54 (https://matplotlib.org/stable/ index.html) and
seaborn55(https://seaborn.pydata.org/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Data generated for the analysis, including the multiple sequence
alignments, log files, example data to run scripts and to generate fig-
ures were deposted in the Zenodo database under accession code
https://doi.org/10.5281/zenodo.13221957 and are also available on
GitHub: https://github.com/ncbi/AF2_benchmark. The supporting
data generated in this study are provided in the Supplementary
Information and the Source Data file. The structural data used in this
study were taken from the Protein Data Bank, details in supporting
data (Supplementary Data 1) and the ones mentioned in the manu-
script are listed below with their accession codes –

NMR structure of Sa1_V90T 8e6y, chain A, solution structure of
PSD-1, 2fs1, chain A, Solution structure of V21C/V59C Lymphotactin/
XCL1 2hdm, chain A, Crystal structure of human BCCIP beta (Native2)
7kys chain A, Crystal structure of human FAM46A-BCCIPa complex
8exf chain B, Crystal structure of the RfaH transcription factor 2oug,
chain C, Crystal structure of E.coli RNA polymerase elongation com-
plex boundwith RfaH6c6s, chainD,Wild TypeCrystal Structure of Full
Length Circadian Clock Protein KaiB from Thermosynechococcus
elongatus BP 2qke, chain E, NMR structure of fold switch-stabilized
KaiB from Thermosynechococcus elongatus, 5jyt chain A, Crystal
Structure of the Mad2 Dimer 3gmh_L, chain L and 2vfx chain L. Source
data are provided with this paper.

Code availability
Code used to generate the results, analyze data and create figures for
this manuscript can be found at https://github.com/ncbi/AF2_
benchmark and as a Zenodo database: https://doi.org/10.5281/
zenodo.13221957.
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