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Congenital longQT syndrome (LQTS) diagnosis is complicated by limited genetic testing at scale, low
prevalence, and normal QT corrected interval in patients with high-risk genotypes. We developed a
deep learning approach combining electrocardiogram (ECG) waveform and electronic health record
data to assess whether patients had pathogenic variants causing LQTS. We defined patients with
high-risk genotypes as having ≥1 pathogenic variant in one of the LQTS-susceptibility genes. We
trained the model using data from United Kingdom Biobank (UKBB) and then fine-tuned in a racially/
ethnically diverse cohort usingMount Sinai BioMeBiobank. Following group-stratified 5-fold splitting,
the fine-tuned model achieved area under the precision-recall curve of 0.29 (95% confidence interval
[CI] 0.28–0.29) and area under the receiver operating curve of 0.83 (0.82–0.83) on independent testing
data from BioMe. Multimodal fusion learning has promise to identify individuals with pathogenic
genetic mutations to enable patient prioritization for further work up.

Congenital longQT syndrome (LQTS) is a genetic condition that impacts 1
out of 2000 lives. It leads to dysfunctional cardiac repolarization and
manifests as sudden cardiac arrest in 13%of patients1,2. LQTS is definedby a
prolongation of the cardiac action potential, reflected as a corrected QT
(QTc) interval >440ms among males or >460ms among females3. This
pattern can lead to irregular heartbeat pattern, torsades de pointes, and
potentially life-threatening ventricular arrhythmias, sometimes as the first
symptom of the disease.

Congenital LQTS has several genetic variants implicated. Spe-
cifically, mutations in three major genes have been causally linked:
KCNQ1 in subtype 1, KCNH2 in subtype 2, and SCN5A in subtype 32.
However, widespread genetic testing of the general population is
currently limited. Routine clinical genomic testing, while desirable, is
complicated by cost, logistics and need for expert interpretation at a
large scale, especially when individual experiences and perceptions of
arrhythmias vary widely4.

According to the Schwartz score, diagnosis and risk stratification
depend on clinical and family history and electrocardiogram (ECG)
features1,5. There are a few challenges with the utility of this criteria. One
major issue in the diagnosis of LQTS is symptom variability, which can
sometimes result in asymptomatic presentation6. The arrhythmias asso-
ciatedwith LQTSmay be triggered by various factors such as stress, physical
activity, or pharmacotherapy, adding complexity to the diagnosis as
symptoms may not be consistently present and perceived6.

In addition, cases of LQTS may lack observable ECG characteristics.
QT interval andTwavemorphology constitute key criteria for the Schwartz
score, yet normal QTc in up to 40% of patients with genetic risk can
complicate detectionof thedisease3.While these patients have a lower riskof
life-threatening events compared to those with evident symptoms, their risk
is still higher than unaffected genotype-negative family members1,7. These
patients also remain predisposed to developing life-threatening torsades de
pointes if exposed to pharmacological substances that inhibit potassium
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channels andmay pass on phenotypic disease to future generations8. Above
all, even if patients demonstrate long QTc, this presentation often fails to
trigger work up because of the multiple etiologies of QTc prolongation. To
better improve the use of information from waveform data, artificial intel-
ligence could be leveraged on ECGs for genomic inference.

Finally, LQTShasbeen largelyunderstudied inminoritypopulations as
most publications have been conducted in White populations. Black indi-
viduals have more severe disease with longer QTc intervals and more fre-
quent cardiac events than White patients9. There also exist significant
differences in the prevalenceof channel variants in potassiumchannel genes
across Asian, Black, Hispanic, and White ethnic groups10. Various genetic
forms of LQTS have been linked to unique ECG characteristics that cor-
respond to type and extent of ion channel abnormalities11. Thus, there is a
critical need for scalable approaches to identify patients with pathogenic
variants using easily available clinical data modalities such as the electro-
cardiogram (ECG).

Previously, models have used derived ECG features such as RR-
interval, QTc-intervals, and T-wave ECG intervals to identify genotype-
positive individuals12,13. Models have additionally been developed using
deep learning (DL) approaches to leverage ECG morphology to infer gen-
otype status for LQTS14–16. However, among studies with published infor-
mation on patient background, models were only developed on patients of
European ancestry. Moreover, none have a combination of ECGwaveform
and corresponding electronic health record (EHR) data.

To facilitate LQTS diagnosis, we use multimodal fusion modeling
usingECGandEHRphenotypes to indicate genotypepositivity for subtypes
1 and 2 in a DL model. This algorithm fuses waveform and clinical data to
detect genotype-positive patients for pathogenic variants causing LQTS.

Results
We pre-trained the fusion model using the United Kingdom Biobank
(UKBB)17 (Table 1). The median age was 54 years, 49% were female, and
96% wereWhite. LQTS subtypes 1 and 2 were represented: 45 patients had
variants associated with subtype 1, and 7 patients had variants associated
with subtype 2. We included 59 ECGs from genotype-positive patients and
1181 ECGs fromgenotype-negative patients.We then fine-tuned themodel
on the Mount Sinai BioMe Biobank. Median age was 64 years, 12 were

female, and 1wasAmerican Indian, 4 Black, 4Hispanic.Nopatientswere of
European ancestry. LQTS subtypes 1 and 2were represented: 4 patients had
variants associated with subtype 1, 11 patients had variants associated with
subtype 2, and 2 patients had variants associated with both.We included 49
ECGs from genotype-positive patients and 730 ECGs from genotype-
negative matched controls.

Themodel pretrained onUKBB data had an area under the precision-
recall curve (AUPRC) of 0.23 (95% confidence interval [CI] 0.22–0.24,
improvement in the baseline prevalence of 0.05) and an area under the
receiver operating curve (AUROC) of 0.76 (0.75–0.77) on hold-out UKBB
data (Fig. 1a). After further fine-tuning onBioMe, the fine-tunedmodel had
AUPRC of 0.29 (0.28–0.29) and AUROC of 0.83 (0.82–0.83) on hold-out
data (Fig. 1b).

We performed chart review among genotype-positive patients in
BioMe to ascertain the utility of this approach in identifying patients with
pathogenic variants (Table 2).We foundnopatient had received subsequent
clinical evaluation or workup. Four of 16 genotype-positive patients were
concurrently prescribed a QT prolonging medication at time of ECG
acquisition, with two of these patients demonstrating a prolongedQTc. Ten
of 16 genotype-positive patients had a normal QTc on ECG, indicating the
difficulty of diagnosing this disease based on ECG alone. Of the genotype-
positive patients, 2/16 (~13%) had an emergency presentation for syncope,
presyncope, or ventricular arrhythmia.

We then used thismodel to identify patients in the greaterMount Sinai
Health System who did not have diagnoses for LQTS but could potentially
be genotype-positive (Fig. 2). We randomly selected 11,446 patients who
were not included in previous model development and testing and did not
possess prior genetic testing. We investigated the probabilities returned by
the model. The mean probability is 0.060, with standard deviation of 0.10,
and the median probability is 0.016. The range is 0 to 0.706, and the 25th,
50th, and 75th percentiles were 0.0035, 0.016, 0.062, respectively. We
examined clinical history and ECG waveform of the patients with the
highest probabilities of LQTS. Their probabilities ranged from 0.642
to 0.706.

Among the ten patients with the highest probabilities of LQTS iden-
tified by the model, six had prolonged QTc. Two of these six patients had
history and ECG presentations that were suggestive of congenital LQTS, as
identified by a board-certified cardiac electrophysiologist (Table 3). A
representative ECG is included (Fig. 3). We further examined the ECGs of
the next ten patientswith the highest probability of LQTSor those in the top
11–20, as well as those with the lowest probability of LQTS as identified by
the model. We found no evidence of LQTS according to clinical or ECG
presentation, suggesting that the sensitivity of ourmodel is limited to the top
ten patients by probability ranking.

Finally, we implemented Captum, a Python library for machine
learning model explainability, to determine contributions of features to
model predictions. Output decisions were attributed 69.44% to clinical
variables and 30.56% to ECG. Among clinical variables, age contributed
11.49%, gender 7.47%, ventricular rate 9.20%, atrial rate 1.27%, PR interval
1.25%, and QTc interval 69.33% to model predictions (Fig. 4).

Discussion
The fusionmodel demonstratedmodest performancewhenusingdata from
UKBB. However, when fine-tuned to include diverse data, the DL model
achieved better performance in predicting pathogenic LQTS variants. As
genetic testing is infrequently performed on a population level, especially in
minority populations, leveraging fusionmodelsmay identify at-risk patients
whomaybenefit from furtherworkup18–20. By incorporating a broader range
of patientdata, themodelmaybetter capture variations that exist indifferent
populations and provide more accurate predictions for a broader range of
individuals.

Moreover, when the model was assessed on patients in the greater
Mount Sinai Health System, two patients among the top 10 highest prob-
abilities were found to possibly have high risk genotypes for congenital
LQTS, as suggested by their clinical history or ECG presentation. Given the

Table 1 | Demographic characteristics of genotype-positive
patients from UKBB and Mount Sinai BioMe Biobank

UKBB BioMe

Patients 55 16

ECG 55 30

Median age (IQR) 54 (49–62) 64 (57–70)

Female, n (%) 29 (53%) 12 (75%)

Self-reported race/ethnicity, n (%)

American Indian 0 1 (6%)

Asian 1 (2%) 0

Black 1 (2%) 4 (24%)

Hispanic 0 4 (24%)

White 53 (96%) 0

Other 0 5 (30%)

Unknown 0 2 (12%)

Ventricular rate in beats per
minute

59 (55–64) 63 (57–81)

Atrial rate in beats per minute 59 (55–64) 63 (57–81)

PR in milliseconds 170 (157–186) 160 (153–175)

QTc in milliseconds 457 (436–476) 446 (432–463)

Median with interquartile range in parentheses for continuous variables; count with percentage in
parentheses for categorical variables.
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prevalence of LQTS at an estimated 1:2000, the identification of patients
possibly at high risk for LQTS for furtherwork up could be facilitated by this
algorithm. This risk stratification would be cost efficient and scalable in
comparison to universal genetic testing.

We note that some patients who were genotype positive and included
inmodel training and those identified as having high risk by themodelwere
concurrently prescribed or self-reported using QT prolongingmedications.
While these pharmacological agents are known to impactQT prolongation,
themagnitudeofQTprolonging effectmay reflect superimposeddrug effect
on underlying channelopathy and modify arrhythmia risk. Thus, these
medicationsmay cause amore profound impact in patients with congenital
LQTS that could be dismissed as acquired LQTS. We believe that once
identified by this model, these patients could still benefit from further work
up to ascertain pathogenic genotype and better characterize arrhythmo-
genic risk whether in the presence of LQTS alone or confounded bymedical
therapy.

In the past, models for classifying individuals with LQTS utilized fea-
tures extracted from ECG. Some models also employed DL approaches to
utilize ECG morphology for predicting genotype status12,13. However,
among studies with published patient demographics, these models were
predominantly developed using data from patients of European ancestry,
with a lack of integration between waveform data and clinical data in these
studies14–16. Multimodal fusion learning allows the incorporation of addi-
tional information from EHRwith ECG data. By jointly learning from both
ECGwaveforms andEHRdata, themodelwas able to consider relationships
betweenmodalities that are not possible when analyzing each source of data

Fig. 1 | Model performance using 500× bootstrapped data. aModel performance of the baseline model using data from the UKBB. bModel performance of the fine-tuned
model using data from Mount Sinai BioMe Biobank. Light blue shading around the plotted lines indicates confidence interval.

Table 2 | Characteristics and outcomes of Mount Sinai BioMe
Biobank genotype-positive patients included in model
development

ID Age Sex Race/
ethnicity

Presence of
prolonged QTc

Emergency
presentation for
syncope,
presyncope,
ventricular
arrhythmia

Concurrent use of
QTc prolonging
medication

1 68 F Hispanic None None Yes

2 64 M Other None None No

3 75 F Black None None No

4 54 M Hispanic Yes None Yes

5 75 F Hispanic Yes None No

6 54 F Black None None No

7 65 M Hispanic Yes None No

8 78 M Asian None None No

9 46 F Other None None No

10 58 F Black None Yes No

11 47 F Other None None No

12 66 M Unknown None None Yes

13 72 F Hispanic Yes None Yes

14 82 F Other Yes Yes No

15 62 F Other None None No

16 70 F Other Yes None No

Presence of prolonged corrected QT (QTc) interval was defined as >440ms among males or
>460ms among females3.
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in isolation. This integrationprovides amore comprehensive viewof patient
information, improving performance of the model.

The purpose of this model is to aid in early and accurate identification
of individuals at risk for LQTS-associated complications. Genotype pre-
diction from commonly used healthcare modalities can inform tailored
treatment strategies and risk management plans. Moreover, addressing
genetic diversity is crucial for ensuring that diagnostic and predictive tools
are effective across different populations, thereby promoting equitable
healthcare practices. By accounting for genetic diversity through the
inclusion of diverse patient populations, the model is more inclusive and
applicable across various ethnic backgrounds.

Our study is limited by small sample sizes and low prevalence of
genotype positivity and control under sampling for model training.
However, congenital LQTS itself is a rare disease. In addition, we are
limited from assigning a definitive, quantitative threshold as this will
be influenced by patient population size. Most patients included for
model training were identified as having European ancestry. None-
theless, this model was fine-tuned on one of the most racially and

ethnically diverse populations according to previously published
work. Moreover, extensive patient and family histories are not con-
sistently available in real world data for the calculation of Schwarz
score. Lastly, since the BioMe and UKBB populations are composed
of people over 18 years of age, the algorithm’s performance in a
younger and potentially higher risk population of patients with LQTS
is unknown but will be the subject of future work.

In summary, multimodal AI applied to the ECG and EHR holds
potential to identify patients that have known pathogenic mutations
implicated in LQTS fromdiverse racial/ethnic backgrounds. This algorithm
can help to prioritize patients for expert referral and guide confirmatory
genetic testing pending external validation.

Methods
Genotype identification
The UKBB is a comprehensive biomedical database of participants 40–69
years of age from the United Kingdom, including demographic, ECG, and
genotyping data. The Mount Sinai BioMe Biobank comprises over 50,000
participants from diverse racial/ ethnic backgrounds who have sought care
in theMount SinaiHealth System inNewYorkCity.Genotypic, sequencing,

Fig. 3 | Representative ECG of a patient identified
to be at high risk for possessing a pathogenic
variant for congenital long QT syndrome (LQTS).
The morphology of QTc prolongation is consistent
particularly with LQTS2 with broad, notched
T waves.

Fig. 2 | Workflow of clinical validation of model. Patients without diagnosis of
congenital longQT syndrome (LQTS)were randomly selected from theMount Sinai
Healthcare system. A board certified electrophysiologist evaluated patients identi-
fied by the model has having either high or low probability of pathogenic variants
for LQTS.

Table 3 | Characteristics and outcomes of the top 10 patients
determined to be genotype positive for LQTS from the Mount
Sinai Health System using the multimodal approach

ID Age Sex Race/
ethnicity

Presence
of
prolonged
QTc

Emergency
presentation
for syncope,
presyncope,
ventricular
arrhythmia

Concurrent
use of QTc
prolonging
medication

1 50 M Other Yes Yes Yes

2 47 F Other Yes Yes Yes

3 63 M Black Yes No No

4 76 M Black No No Yes

5 85 M Black Yes No No

6 46 F Black Yes No No

7 83 F Other No No No

8 65 F Black No No Yes

9 46 F White Yes No Yes

10 28 F Black No No No

Presence of prolonged corrected QT (QTc) interval was defined as >440ms among males or
>460ms among females.
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and EHR information are available. In UKBB, 55 patients were genotype
positive. For both BioMe andUKBB, all participants were at least 18 years of
age. All participates provided informed consent tomake their data available
for research. This study was approved by the institutional review board at
the Icahn School of Medicine at Mount Sinai, and UKBB data use was
approved under application #16218 in the United Kingdom Bio-
bank (UKBB).

We identified genotype-positive patients as having ≥1 of 3 known
pathogenic variants in a LQTS-susceptibility genes21. In observation of
American College of Medical Genetics and Genomics guidelines, all
included variants were classified as “pathogenic” or “likely pathogenic.”
Variants were confirmed to have minor allele frequency <0.1%. We exclu-
ded mutations that were synonymous, intronic, or appearing in untrans-
lated regions, unless previously reported as pathogenic22. Variants were

Fig. 4 | Examination of contributions to model prediction. Captum was used to quantify influence on model decision-making by (a) modality and (b) clinical variables.
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determined to be pathogenic by the LQTSClinical Domain Channelopathy
WorkingGroup; theywere subsequently curated throughClinVar23. Results
of mutations in individual patients are included in Supplementary
Tables 1 and 2.

Data processing
The data are 2D ECG plots and clinical data that are readily accessible from
electronic health records, specifically age and sex, and automatic output
from ECGs, namely PR interval, QTc interval, atrial rate, and ventricular
rate. ECG information was extracted from XML files, which contained raw
waveforms in integer representation, extracted ECG features, and demo-
graphics.Waveforms were captured at 500Hz, and the first 5 s of recording
was used. Leads I, II, and V1-6 were plotted as 2D image plots. Lead III and
augmented unipolar leads aVL, aVR, and aVLwere excluded as they can be
derived from the limb and precordial leads. A Butterworth Bandpass filter,
with cutoff frequencies of 0.5 and 40Hz, was applied to ECGs to remove
recording artifacts because of electrical activity from other sources24. We
matchedgenotype-positive patientswith genotype-negative patients for age,
sex, and self-reported race/ethnicity in an approximately 1:20 ratio.

Multimodal fusion learning
We fused a convolutional neural network (CNN) for ECGs and a Multi-
Layer Perceptron (MLP) (Fig. 5)25. This architecture was previously devel-
oped for a different task, but model parameters have been completely

reinitialized for this study25. The specific convolutional neural network
architecture used was the Efficientnet-B4, which was chosen because it has
had previous success in image classificationmodels by appropriately scaling
input images and neural network dimensions26. Meanwhile, three fully
connected layers with non-linear Rectified Linear Activation Units con-
stituted the MLP. The fully connected output layer of the CNN was sub-
stituted with another fully connected layer comprising 64 neurons, which
was connected to theMLP.Thefinalmodel hyperparameters included cross
entropy loss, Adam optimizer, and a learning rate of 1e−3. Model perfor-
mance was evaluated based on AUROC and AUPRC.

Transfer learning
Transfer learning can be employed as a technique to leverage knowledge
gained from training a neural network on one task and apply it to a related
task. This involves first pre-training the model on data that resemble the
downstream to adjust weights of the neural network to capture relevant
features. Subsequently, the network is fine-tuned using data specific to the
downstream task. This is useful to mitigate bias from data derived from a
single institution and natural data scarcity in rare diseases, such as in clas-
sifying patients with LQTS.

The UKBB and BioMe datasets were selected for their size and relative
dissimilarity in the racial/ ethnic backgrounds of patients. The UKBB is
composedmostly of patients of Europeanancestry.Meanwhile, themajority
of BioMe are of non-European background, representing patients of greater
racial/ ethnic diversity. The weights of all neural network layers were
adjusted during fine-tuning, and the same learning rate was used between
pre-training and fine-tuning. For both populations, informed consent was
obtained from each patient, and the study protocol conforms to the ethical
guidelines of the 1975 Declaration of Helsinki in a priori approval by the
organization’s human research committee.

Cross-fold group stratified training
We a priori set aside 25% of data from the BioMe and UKBB databases for
testing. Group stratified 5-fold splitting was selected to ensure that all data
points for the same patient are kept together within a fold, maintain com-
parable class representation across folds, and safeguardmodel performance
for resampling in a small, class-imbalanced dataset. Within each cross fold,
data were divided into 80% training and 20% validation data. An early
stopping term was set in which training continued until no further
improvement was demonstrated on validation data for 3 epochs. The best
model was selected based on its performance on testing data following 500
times bootstrapping, or resampling the dataset 500 times with replacement
and assessing model performance.

Chart review
Chart review was conducted by two clinicians among BioMe patients with
pathogenic variants. All documentation was thoroughly analyzed to
determine if patients ever had a previous diagnosis of long QT syndrome.
QT intervals of ECG waveform were manually evaluated, and ST segments
and T wave morphologies were assessed for known patterns associated
particularly with LQTS. Charts were also analyzed for any emergency
presentationswith presyncope, syncope, or ventricular arrhythmias. Finally,
the potential use of QT interval prolonging medications during the time of
ECGs were noted27. These medications include antiarrhythmics (amiodar-
one, dofetilide, flecainide, procainamide, quinidine, sotalol); antibiotics
(fluoroquinolones and macrolides); antidepressants (amitriptyline, citalo-
pram, imipramine), antipsychotics (droperidol, haloperidol, olanzapine,
quetiapine, risperidone, thioridazine, ziprasidone), and other drugs (cisa-
pride,methadone, ondansetron, sumatriptan)27. Drugs that were prescribed
as well as self-reported were included.

Retrospective clinical validation
Files of 11,446 patients who have had ECGs performed, no genotyping, and
no formal diagnosis of LQTS were selected from the Mount Sinai Health
System. ECG and EHR data were processed as aforementioned and served

Fig. 5 | Model architecture from reproduced Vaid et al.15 with performance
metrics for model trained on UKBB and fine-tuned on Mount Sinai BioMe
Biobank. FC Layer stands for fully connected layer. The number of neurons for each
layer of the multi-layer perceptron processing the tabular data are 128, 64, and 32
neurons, respectively. The number of neurons for each layer of the multi-layer
perceptron processing the tabular and waveform data are 64, 32, and 16 neurons,
respectively, with a classification head composed of 2 neurons.
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as input for thefine-tunedmodel. For each patient, the predictedprobability
of LQTS was produced. Twenty patients with the highest probabilities and
the ten patients with the lowest probabilities were selected for further eva-
luation of their ECG waveform, prescription or reported use of QT
prolonging medications during time of ECGs, and clinical history for any
emergency presentations with presyncope, syncope, or ventricular
arrhythmias by a board-certified electrophysiologist.

Software
All codingwasperformed inPython. pandas28, PIL29, Pytorch30,matplotlib31,
numpy32, os33, scikit-learn34, seaborn35, scipy36, torchvision37, and captum38

libraries were used. This study was approved by the Mount Sinai IRB. The
underlying code can be accessed via this link: https://github.com/
jiangj07/lqts.

Data availability
United Kingdom Biobank dataset analyzed during the current study are
publicly available, https://www.ukbiobank.ac.uk/enable-your-research/
about-our-data. The Mount Sinai BioMe Biobank analyzed during the
current study are not publicly available due to restrictions placed by the
Mount Sinai Institutional Review Board, but deidentified data are available
from the corresponding author on reasonable request.

Code availability
Theunderlying code for this study is available inGithub and canbe accessed
via this link: https://github.com/jiangj07/lqts.
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