Abstract
To determine the effects of lipid accumulation on proteoglycan synthesis, we studied proteoglycan biosynthesis in rabbit aortic smooth muscle cells in culture. Cholesterol-enrichment was accomplished by incubating confluent smooth muscle cells with cationized low-density lipoprotein. Control and cholesterol-enriched cells were incubated with [35S]sulphate, [3H]glucosamine, or [3H]serine. Metabolically labelled proteoglycans in the cell layer and medium were quantified. During a 20 h incubation period, proteoglycan synthesis in cholesterol-enriched cells increased by 40-50% above that in control cells. A similar increase in precursor incorporation into proteoglycans was also noted following a short 15 min pulse. The cholesterol-enriched cells also showed a 45-50% increase over control rates in the intralysosomal accumulation of a large chondroitin sulphate proteoglycan and a small dermatan sulphate proteoglycan. The enhanced synthesis of proteoglycans in cholesterol-enriched cultures was inhibited by cycloheximide and actinomycin D, which are inhibitors of protein synthesis and transcription respectively. Proteoglycan turnover was investigated by pulse-chase analysis. Following a 2-h pulse, intracellular proteoglycans in cholesterol-enriched cells disappeared, having a half-life of 26.5 h compared with 2.8 h for those in the control cells. The amount of trypsin-releasable proteoglycan was significantly reduced in cholesterol-enriched cells. In addition, the degradation of proteoglycans was severely retarded in cholesterol-enriched cultures. The activities of three acid hydrolases, N-acetyl-beta-hexosaminidase, beta-glucuronidase and cathepsin C, were significantly reduced in cholesterol-enriched cells compared with activities in control cells. The results indicate that proteoglycan metabolism is altered in cholesterol-enriched smooth muscle cells.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asundi V., Cowan K., Matzura D., Wagner W., Dreher K. L. Characterization of extracellular matrix proteoglycan transcripts expressed by vascular smooth muscle cells. Eur J Cell Biol. 1990 Jun;52(1):98–104. [PubMed] [Google Scholar]
- Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berenson G. S., Radhakrishnamurthy B., Srinivasan S. R., Vijayagopal P., Dalferes E. R., Jr, Sharma C. Recent advances in molecular pathology. Carbohydrate-protein macromolecules and arterial wall integrity--a role in atherogenesis. Exp Mol Pathol. 1984 Oct;41(2):267–287. doi: 10.1016/0014-4800(84)90043-1. [DOI] [PubMed] [Google Scholar]
- Berrou E., Breton M., Deudon E., Picard J. Effect of endothelial-cell-conditioned medium on proteoglycan synthesis in cultured smooth muscle cells from pig aorta. J Cell Physiol. 1988 Dec;137(3):430–438. doi: 10.1002/jcp.1041370306. [DOI] [PubMed] [Google Scholar]
- Camejo G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv Lipid Res. 1982;19:1–53. doi: 10.1016/b978-0-12-024919-0.50007-2. [DOI] [PubMed] [Google Scholar]
- Carlson D. M. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem. 1968 Feb 10;243(3):616–626. [PubMed] [Google Scholar]
- Chen J. K., Hoshi H., McKeehan W. L. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5287–5291. doi: 10.1073/pnas.84.15.5287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi H. U., Johnson T. L., Pal S., Tang L. H., Rosenberg L., Neame P. J. Characterization of the dermatan sulfate proteoglycans, DS-PGI and DS-PGII, from bovine articular cartilage and skin isolated by octyl-sepharose chromatography. J Biol Chem. 1989 Feb 15;264(5):2876–2884. [PubMed] [Google Scholar]
- Ciolino H. P., Vijayagopal P., Berenson G. S. Endothelial cell-conditioned medium modulates the synthesis and structure of proteoglycans in vascular smooth muscle cells. Biochim Biophys Acta. 1992 Jun 10;1135(2):129–140. doi: 10.1016/0167-4889(92)90128-x. [DOI] [PubMed] [Google Scholar]
- Ciolino H. P., Vijayagopal P., Radhakrishnamurthy B., Berenson G. S. Heparin stimulates proteoglycan synthesis by vascular smooth muscle cells while suppressing cellular proliferation. Atherosclerosis. 1992 Jun;94(2-3):135–146. doi: 10.1016/0021-9150(92)90238-c. [DOI] [PubMed] [Google Scholar]
- Edwards I. J., Wagner W. D., Owens R. T. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells. Am J Pathol. 1990 Mar;136(3):609–621. [PMC free article] [PubMed] [Google Scholar]
- Gamble W., Vaughan M., Kruth H. S., Avigan J. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res. 1978 Nov;19(8):1068–1070. [PubMed] [Google Scholar]
- Gieselmann V., Pohlmann R., Hasilik A., Von Figura K. Biosynthesis and transport of cathepsin D in cultured human fibroblasts. J Cell Biol. 1983 Jul;97(1):1–5. doi: 10.1083/jcb.97.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J. L., Anderson R. G., Buja L. M., Basu S. K., Brown M. S. Overloading human aortic smooth muscle cells with low density lipoprotein-cholesteryl esters reproduces features of atherosclerosis in vitro. J Clin Invest. 1977 Jun;59(6):1196–1202. doi: 10.1172/JCI108744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gowda D. C., Bhavanandan V. P., Davidson E. A. Isolation and characterization of proteoglycans secreted by normal and malignant human mammary epithelial cells. J Biol Chem. 1986 Apr 15;261(11):4926–4934. [PubMed] [Google Scholar]
- Haley N. J., Shio H., Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. I. Resolution of aortic cell populations by metrizamide density gradient centrifugation. Lab Invest. 1977 Sep;37(3):287–296. [PubMed] [Google Scholar]
- Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
- Hoppe W., Rauch U., Kresse H. Degradation of endocytosed dermatan sulfate proteoglycan in human fibroblasts. J Biol Chem. 1988 Apr 25;263(12):5926–5932. [PubMed] [Google Scholar]
- Hurt E., Camejo G. Effect of arterial proteoglycans on the interaction of LDL with human monocyte-derived macrophages. Atherosclerosis. 1987 Oct;67(2-3):115–126. doi: 10.1016/0021-9150(87)90272-3. [DOI] [PubMed] [Google Scholar]
- Jougasaki M., Kugiyama K., Saito Y., Nakao K., Imura H., Yasue H. Suppression of endothelin-1 secretion by lysophosphatidylcholine in oxidized low density lipoprotein in cultured vascular endothelial cells. Circ Res. 1992 Sep;71(3):614–619. doi: 10.1161/01.res.71.3.614. [DOI] [PubMed] [Google Scholar]
- Kresse H., Tekolf W., von Figura K., Buddecke E. Metabolism of sulfated glycosaminoglycans in cultivated bovine arterial cells. II. Quantitative studies on the uptake of 35SO4-labeled proteoglycans. Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):943–952. doi: 10.1515/bchm2.1975.356.s1.943. [DOI] [PubMed] [Google Scholar]
- Leake D. S., Peters T. J. Lipid accumulation in arterial smooth muscle cells in culture. Morphological and biochemical changes caused by low density lipoproteins and chloroquine. Atherosclerosis. 1982 Sep;44(3):275–291. doi: 10.1016/0021-9150(82)90003-x. [DOI] [PubMed] [Google Scholar]
- Owens R. T., Wagner W. D. Metabolism and turnover of cell surface-associated heparan sulfate proteoglycan and chondroitin sulfate proteoglycan in normal and cholesterol-enriched macrophages. Arterioscler Thromb. 1991 Nov-Dec;11(6):1752–1758. doi: 10.1161/01.atv.11.6.1752. [DOI] [PubMed] [Google Scholar]
- Peters T. J., Müller M., De Duve C. Lysosomes of the arterial wall. I. Isolation and subcellular fractionation of cells from normal rabbit aorta. J Exp Med. 1972 Nov 1;136(5):1117–1139. doi: 10.1084/jem.136.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pomerantz K. B., Hajjar D. P. Eicosanoid metabolism in cholesterol-enriched arterial smooth muscle cells: reduced arachidonate release with concomitant decrease in cyclooxygenase products. J Lipid Res. 1989 Aug;30(8):1219–1231. [PubMed] [Google Scholar]
- Poole A. R. Proteoglycans in health and disease: structures and functions. Biochem J. 1986 May 15;236(1):1–14. doi: 10.1042/bj2360001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
- Salisbury B. G., Falcone D. J., Minick C. R. Insoluble low-density lipoprotein-proteoglycan complexes enhance cholesteryl ester accumulation in macrophages. Am J Pathol. 1985 Jul;120(1):6–11. [PMC free article] [PubMed] [Google Scholar]
- Schmidt A., Buddecke E. Cell-associated proteoheparan sulfate from bovine arterial smooth muscle cells. Exp Cell Res. 1988 Oct;178(2):242–253. doi: 10.1016/0014-4827(88)90395-3. [DOI] [PubMed] [Google Scholar]
- Schmidt A., von Teutul A., Buddecke E. Characterization of proteoglycans synthesized by cultured arterial smooth muscle cells of the rat. Hoppe Seylers Z Physiol Chem. 1984 Apr;365(4):445–456. doi: 10.1515/bchm2.1984.365.1.445. [DOI] [PubMed] [Google Scholar]
- Schönherr E., Järveläinen H. T., Sandell L. J., Wight T. N. Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem. 1991 Sep 15;266(26):17640–17647. [PubMed] [Google Scholar]
- Seymour C. A., Peters T. J. Enzyme activities in human liver biopsies: assay methods and activities of some lysosomal and membrane-bound enzymes in control tissue and serum. Clin Sci Mol Med. 1977 Mar;52(3):229–239. doi: 10.1042/cs0520229. [DOI] [PubMed] [Google Scholar]
- Srinivasan S. R., Vijayagopal P., Dalferes E. R., Jr, Abbate B., Radhakrishnamurthy B., Berenson G. S. Low density lipoprotein retention by aortic tissue. Contribution of extracellular matrix. Atherosclerosis. 1986 Dec;62(3):201–208. doi: 10.1016/0021-9150(86)90094-8. [DOI] [PubMed] [Google Scholar]
- Srinivasan S. R., Vijayagopal P., Eberle K., Radhakrishnamurthy B., Berenson G. S. Interaction of a high-affinity heparin subfraction with low-density lipoprotein stimulates cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta. 1991 Jan 28;1081(2):188–196. doi: 10.1016/0005-2760(91)90025-d. [DOI] [PubMed] [Google Scholar]
- Vijayagopal P., Srinivasan S. R., Jones K. M., Radhakrishnamurthy B., Berenson G. S. Complexes of low-density lipoproteins and arterial proteoglycan aggregates promote cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta. 1985 Dec 4;837(3):251–261. doi: 10.1016/0005-2760(85)90048-7. [DOI] [PubMed] [Google Scholar]
- Vijayagopal P., Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Lipoprotein-proteoglycan complexes from atherosclerotic lesions promote cholesteryl ester accumulation in human monocytes/macrophages. Arterioscler Thromb. 1992 Feb;12(2):237–249. doi: 10.1161/01.atv.12.2.237. [DOI] [PubMed] [Google Scholar]
- Wight T. N. Cell biology of arterial proteoglycans. Arteriosclerosis. 1989 Jan-Feb;9(1):1–20. doi: 10.1161/01.atv.9.1.1. [DOI] [PubMed] [Google Scholar]
- Wight T. N., Hascall V. C. Proteoglycans in primate arteries. III. Characterization of the proteoglycans synthesized by arterial smooth muscle cells in culture. J Cell Biol. 1983 Jan;96(1):167–176. doi: 10.1083/jcb.96.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wight T. N., Potter-Perigo S., Aulinskas T. Proteoglycans and vascular cell proliferation. Am Rev Respir Dis. 1989 Oct;140(4):1132–1135. doi: 10.1164/ajrccm/140.4.1132. [DOI] [PubMed] [Google Scholar]
- Yanagishita M., Hascall V. C. Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effect of chloroquine. J Biol Chem. 1984 Aug 25;259(16):10270–10283. [PubMed] [Google Scholar]
