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Abstract 

Background  Hypodontia is the most prevalent dental anomaly in humans, and is primarily attributed to genetic 
factors. Although genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNP) 
associated with hypodontia, genetic risk assessment remains challenging due to population-specific SNP variants. 
Therefore, we aimed to conducted a genetic analysis and developed a machine-learning-based predictive model 
to examine the association between previously reported SNPs and hypodontia in the Saudi Arabian population. Our 
case–control study included 106 participants (aged 8–50 years; 64 females and 42 males), comprising 54 hypodontia 
cases and 52 controls. We utilized TaqManTM Real-Time Polymerase Chain Reaction and allelic genotyping to analyze 
three selected SNPs (AXIN2: rs2240308, PAX9: rs61754301, and MSX1: rs12532) in unstimulated whole saliva samples. 
The chi-square test, multinomial logistic regression, and machine-learning techniques were used to assess genetic risk 
by using odds ratios (ORs) for multiple target variables.

Results  Multivariate logistic regression indicated a significant association between homozygous AXIN2 rs2240308 
and the hypodontia phenotype (ORs [95% confidence interval] 2.893 [1.28–6.53]). Machine-learning algorithms 
revealed that the AXIN2 homozygous (A/A) genotype is a genetic risk factor for hypodontia of teeth #12, #22, and #35, 
whereas the AXIN2 homozygous (G/G) genotype increases the risk for hypodontia of teeth #22, #35, and #45. The PAX9 
homozygous (C/C) genotype is associated with an increased risk for hypodontia of teeth #22 and #35.

Conclusions  Our study confirms a link between AXIN2 and hypodontia in Saudi orthodontic patients and suggests 
that combining machine-learning models with SNP analysis of saliva samples can effectively identify individuals 
with non-syndromic hypodontia.
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Background
Non-syndromic hypodontia is the most prevalent 
human dental anomaly [1], across various regions and 
ethnicities [2, 3].The wide variation in prevalence rates 
(3.48% and 9.4% in the Spanish and Japanese popula-
tion, respectively) [2, 3] is attributed to differences in 
the genetic backgrounds, sample sizes, and diagnos-
tic criteria employed in previous studies [4]. In Saudi 
Arabia, where hypodontia is the predominant dental 
anomaly, several studies have examined the prevalence 
of hypodontia in various regions [5]. Regarding congen-
itally missing teeth, one study reported a 25.7% preva-
lence [6], whereas another found a prevalence rate of 
24.7%, in eastern Saudi Arabia [7]. Furthermore, these 
disparities in hypodontia prevalence could be ascribed 
to differences in sample sizes, geographic locations, 
testing methods, participants’ age groups, and ethnic 
backgrounds [8].

Dental development is a complex multigenetic pro-
cess [9]. Hypodontia follows an autosomal dominant 
pattern of inheritance, with incomplete penetrance 
and variable expression [10]. Genes associated with 
non-syndromic hypodontia include MSX1, PAX9, and 
AXIN2 [11]. MSX1, a homeobox gene that modulates 
epithelial–mesenchymal interactions, crucially modu-
lates early tooth development, with MSX1 mutations 
causing failure of tooth development [12]. PAX9, a 
member of the transcription factor family, is associ-
ated with autosomal dominant, non-syndromic, and 
familial hypodontia [13]. AXIN2, a Wnt-signaling regu-
lator, is associated with autosomal dominant hypodon-
tia and incisor agenesis [14, 15]. WNT10 and SMOC2 
mutations cause severe hypodontia [16, 17]. As PAX9, 
MSX1, and AXIN2 are most frequently associated with 
non-syndromic hypodontia [11], we studied these spe-
cific genes.

Machine learning utilizes complex algorithms for 
healthcare data extraction to enhance clinical effective-
ness [18] through models that offer dentists and physi-
cians up-to-date medical knowledge, facilitate optimal 
patient care, reduce diagnostic and therapeutic errors, 
and aid health prediction [19, 20]. The identification of 
genetic predictors of non-syndromic hypodontia for 
early non-radiographic detection could prevent den-
tal complications, reduce treatment costs, and enhance 
quality of life [21]. Recognizing hypodontia of perma-
nent teeth facilitates preventive strategies, including 
primary-teeth preservation and fluoride application 
[22]. Identification of congenitally missing permanent 
teeth enables improved case management, including 
primary-teeth extraction for spontaneous alignment of 
the remaining teeth and prevention of treatment-related 
complications [23].

We aimed to establish a model for assessing the genetic 
risk of non-syndromic hypodontia in the Saudi Arabian 
population.

Methods
This case-control study was approved (NRC22R/020/01) 
by the Institutional Review Board of King Abdullah 
International Medical Research Center (KAIMRC). This 
study was performed according to the strengthening 
the reporting of observational studies in epidemiology 
(STROBE) guidelines [24].

Participants
The present study screened the patients who visited 
the orthodontic clinic of King Abdulaziz Medical City, 
Riyadh (KAMC-RD) and College of Dentistry (COD), 
King Saud Bin Abdulaziz University for Health Sciences 
(KSAU-HS) in Riyadh, Saudi Arabia in December 2021. 
The participants were randomly selected, enrolled, and 
categorized into the study and control groups (at least 
one and no congenitally missing tooth [excluding the 
third molar], respectively) based on the initial clinical 
and radiographic examination. The inclusion criteria 
were: healthy Saudi nationals aged 7–70 years. The exclu-
sion criteria comprised the presence of dental or crani-
ofacial anomalies, craniofacial syndromes, history of jaw 
trauma, and cardiac, autoimmune, endocrine, bleeding, 
neurological, kidney, liver, or mental illnesses. By Octo-
ber 2023, we randomly selected a total of 114 partici-
pants. All participants underwent a standard clinical and 
radiographic examination. However, eight of the 114 par-
ticipants with hypodontia were excluded. Ultimately, we 
established a case-control study with 54 cases of hypo-
dontia and randomly selected 52 healthy controls from 
the same source population. The cases and controls were 
individually matched based on age and sex.

Clinical assessment
The participants underwent a clinical examination and 
history-taking. Panoramic radiographs, previously taken 
for orthodontic treatment, were used to detect and grade 
hypodontia. Written informed consent was obtained 
from all participants or their legal guardians. For the 
scheduled collection of high-quality saliva samples, the 
participants received written instructions, including 
refraining from eating, drinking, brushing teeth, chewing 
gum, or smoking for 1 hour prior to saliva collection.

Saliva collection and analysis
If the participants followed the specified instructions, 
the screening and saliva collection visits were combined. 
Unstimulated whole saliva was collected using the Ora-
gene DNA (OG-500) collection kit (DNA Genotek, 
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Stittsville, Canada) in accordance with the manufactur-
er’s instructions, and samples were coded to ensure con-
fidentiality; the collection time was recorded, all samples 
were collected during the same period of the day, and 
samples were stored at −80°C until analysis.

DNA extraction
The saliva samples were transported to the medical 
genomic department at KAIMRC for DNA isolation. 
DNA was extracted using the prepIT.L2P extraction 
kit (PT-L2P-5, DNA Genotek, Stittsville, Canada). We 
assessed DNA quality and quantity with a NanoDropTM 
spectrophotometer (Thermo Fisher Scientific, Wilm-
ington, DE, USA) and a Qubit® 3.0 fluorimeter (catalog 
number: Q33216, Thermo Fisher Scientific, Wilmington, 
DE, USA), and the examiner (M.A.) who conducted the 
laboratory analysis was blinded to the group allocation.

Genotyping and single nucleotide polymorphisms (SNPs) 
analysis
Genotyping was performed using the TaqManTM geno-
typing master mix (Thermo Fisher Scientific, Wilm-
ington, DE, USA) according to the manufacturer’s 
instructions, with a DNA concentration of 20 ng/µL in 
the final reaction volume of 25 µL. The experiments were 
conducted on the Applied BiosystemsTM QuantStudioTM 
6 Flex Real-Time PCR system (Thermo Fisher Scien-
tific, Wilmington, DE, USA). The thermocycler condi-
tions for stages were as follows: pre-read at 60°C for 30 
seconds, hold at 95°C for 10 minutes, PCR of 40 cycles 
at 95°C for 15 seconds and 60°C for 1 minute, and post-
read at 60°C for 30 seconds. Genotyping for the selected 
three SNPs, AXIN2: rs2240308, PAX9: rs61754301, and 
MSX1: rs12532, was performed using C__26933394_10, 
C__90244317_10, and C___2577354_1_ assay kits, 
respectively (Applied Biosystems, Waltham, MA, USA).

AI‑assisted discovery of SNPs
We employed machine learning to perform genetic risk 
assessment by using odds ratios (OR) for multiple target 
variables from a dataset ad focusing on teeth #12, #22, 
#35, and #45, which are the most frequently missing teeth 
[25–27]. The analysis was implemented and executed 
using Python programming language and the scikit-learn 
library.

The logistic regression algorithm from scikit-learn 
was selected as the machine-learning model because it 
is commonly employed for binary classification prob-
lems and is appropriate for predicting the presence 
or absence of genetic risks associated with the target 
variables: teeth #12, #22, #35, and #45. By training indi-
vidual logistic regression models for each target vari-
able, we sought to delineate the associations between 

genetic markers (features) and the presence or absence 
of genetic risk for each specified target.

Prior to model training, the dataset underwent pre-
processing. Categorical data, including genetic mark-
ers, were transformed into numerical form via one-hot 
encoding, which enabled the algorithms to accurately 
interpret and learn from the data. Each categorical 
marker was converted into several binary columns, 
wherein each column represented a distinct category or 
allele.

A logistic regression model was trained on the pre-
processed dataset for each target variable. Throughout 
the training process, the model discerned the relation-
ships between genetic markers and the presence or 
absence of associated genetic risk for the specific tar-
get variable. ORs were computed using the model’s 
learned coefficients to determine the influence of each 
genetic marker on the genetic risk assessment of each 
target variable. An increased or decreased OR signified 
a more robust or less substantial association, respec-
tively, with the presence of genetic risk. The machine-
learning steps are depicted in Fig.  1. The outline of 
genetic risk assessment of hypodontia is illustrated in 
Fig. 2.

Generation of pseudocode
By utilizing a genetic dataset to evaluate dental risk 
and outputting results for specific teeth, the algorithm 
assessed genetic risk for dental issues. Data were ini-
tially collected from genetic information and the cor-
responding labels for target teeth (#12, #22, #35, and 
#45) from individuals who had undergone genetic test-
ing for dental risk assessment. Data preprocessing was 
undertaken to resolve missing or erroneous values in 
the dataset and to identify features (genetic markers) 
and target variables (presence/absence of genetic risk) 
for each tooth. Logistic regression modeling was con-
ducted for each target tooth by training a model with 
features (x) as the genetic markers and the target vari-
able (y) as the presence/absence of genetic risk. The 
model was fitted using these features and target varia-
ble, and its performance was evaluated on metrics, such 
as accuracy, precision, recall, and F1-score. Techniques, 
such as k-fold cross-validation, were utilized to assess 
the model’s generalizability. ORs were calculated for 
each target tooth to derive coefficients from the logis-
tic regression model. Statistical analysis was conducted 
to determine the significance of associations between 
gene markers and the risk of dental issues, including 
hypothesis testing to calculate P-values. The algorithm 
concluded by outputting the genetic risk assessment 
results for the target teeth.
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Fig. 1  The phases for machine learning model generation. The first phase included data collection and data pre-processing. Phase 2 involved 
training the model to identify genetic markers and logistic regression was used for evaluation. Phase 3 included statistical analysis using odd ratio 
calculation and investigation of the association between genetic markers and congenitally missing teeth. The final phase involved the generation 
of a genetic risk assessment
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Statistical analysis
Based on the Martha et al. study [28], a sample size of 50 
participants per group was determined to obtain a Type 
I error rate of 5% and 90% power from calculations in 
PASS 2023 version 15 (Power Analysis and Sample Size 
Software (2023), NCSS, LLC, Kaysville, Utah, USA, nss.
com/software/pass).

The clinicodemographic variables were summarized 
by frequency and proportion or mean and standard 
deviation (Table  1). Allele frequencies for MSX1 gene 
rs12532 (A allele) and PAX9 gene rs61754301 (C allele) 
were initially calculated, followed by those for AXIN2 
gene rs2240308 (A allele). Logistic regression served as 
the primary statistical method to analyze the intergroup 
differences in the associations between SNPs of MSX1, 
PAX9, and AXIN2 in the hypodontia and control groups. 

A backward stepwise-selection approach was employed 
to construct the final model. The characteristics of the 
MSX1, PAX9, and AXIN2 genes and their alleles are as 
follows: the MSX1 (rs12532) gene’s reference allele was A, 
with G as the alternative allele, resulting in homozygous 
genotypes of A/A or G/G and heterozygous genotypes 
of A/G or G/A; the PAX9 (rs61754301) gene’s reference 
allele was C, with T as the alternative allele, leading to 
homozygous genotypes of C/C or T/T and heterozygous 
genotypes of C/T or T/C; and the AXIN2 (rs2240308) 
gene’s reference allele was A, with G as the alternative 
allele, yielding homozygous genotypes of A/A or G/G 
and heterozygous genotypes of A/G or G/A. P<0.05 were 
considered statistically significant. All data analyses were 
performed using SAS version 9.4 (SAS Institute Inc., 
Cary, NC, USA).

Phenotyping

 Control

Phenotype

Saliva Sample 
Collection Genotyping

MSX1: rs12532

PAX9: rs61754301

AXIN2: rs2240308

Machine
learning

Fig. 2  Schematic diagram illustrating the steps conducted to create a machine learning model for genetic risk assessment for hypodontia. The 
first step in this study was to categorize the participants into control and phenotype groups. Thereafter, unstimulated whole saliva was collected 
following the manufacturer’s instructions. Then, samples were genotyped. Finally, machine learning algorithms were utilized to conduct a genetic 
risk assessment model for hypodontia

Table 1  Characteristics of the studied groups

Groups n
(Percentage)

Female
(Percentage)

Male
(Percentage)

Age (year)
Mean ± 
Standard 
deviation

Control 52.00
(49.06%)

32.00 (61.5%) 20.00 (38.5%) 22.83 ± 6.92

Dental agenesis 54.00
(50.94%)

32.00 (59.3%) 22.00 (40.7%) 18.37 ± 8.54

Total/percentage 106.00
(100%)

64.00 (60.4%) 42.00 (39.6%) 20.56 ± 8.07
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Results
The study cohort of 106 Saudi Arabian participants (64 
females and 42 males, aged: 8–50 years) was divided into 
54 cases with hypodontia and 52 controls. In the study 
group, the congenital absence of one tooth (53.70%) 
showed the highest frequency, followed by the absence 
of two teeth (31.48%). Our findings presented that the 
most common congenitally missing teeth were #35 and 
#45 with a prevalence rate of 16.98% among cases, fol-
lowed by #12 and #22 with a prevalence rate of 14.15%, 
and 13.20%, respectively.

Table  2 summarizes the intergroup differences in the 
genotypic distribution and allele frequencies of the three 
SNPs in the hypodontia and control groups. No statisti-
cally significant intergroup difference was observed in 
the distribution of MSX1 rs12532, PAX9 rs61754301, 
and AXIN2 rs2240308. Table  3 presents the multivari-
ate logistic regression analysis for genetic risk assess-
ment in the hypodontia group. Individuals in the 

hypodontia group were more likely to possess a homozy-
gous AXIN2 rs2240308 (OR [95% confidence interval] 
2.893 [1.28–6.53]).

Our machine-learning model’s genetic risk assess-
ment for teeth #12, #22, #35, and #45 revealed that, 
for tooth #12, the PAX9 homozygous (C/C) genotype 
was associated with a marginally reduced risk of dental 
issues as compared to individuals without this allele (OR 
0.860989). Conversely, the PAX9 heterozygous (C/T) 
genotype conferred a marginally increased risk (OR 
1.161477). The AXIN2 homozygous (A/A) and heterozy-
gous (A/G) genotypes denoted a moderately higher risk 
(OR 1.364085) or a marginally decreased risk, respec-
tively. The AXIN2 homozygous (G/G) allele was associ-
ated with a slightly lower risk (OR 0.887142).

For tooth #22, the PAX9 homozygous (C/C) genotype 
conferred a marginally increased risk of dental issues 
(OR 1.099051). Conversely, the PAX9 heterozygous 
(C/T) genotype exhibited a marginally reduced risk (OR 

Table 2  MSX1, PAX9 and AXIN2 genotype distribution and allele frequencies

Gene Polymorphism Control group
(n= 52 )

Hypodontia group
(n= 54)

Statistical analysis for the genotype Statistical analysis for alleles

MSX1 rs12532 A/G 39.00 (75.00) 34.00 (62.96) A/G + G/G versus A/A
Chi-square=2.09
P value=0.148
Odd ratio=0.5182 (0.2112, 1.2713)

G versus A
Chi-square=0.86
P value=0.353
Odd ratio=1.2966
(0.7477, 2.2484)

G/A 0.00 (0) 0.00 (0)

A/A 10.00 (19.23) 17.00 (31.48)

G/G 3.00 (5.77) 3.00 (5.56)

A 59.00 68.00

G 45.00 40.00

PAX9
rs61754301

C/T 25.00 (48.08) 22.00 (40.74) C/T + T/T versus C/C
Chi-square=0.58
P value=0.446
Odd ratio=0.7425
(0.3443, 1.6012)

T versus C
Chi-square=0.41
P value=0.52197
Odd ratio=0.8084
(0.4223, 1.5474)

T/C 0.00 (0) 0.00 (0)

C/C 27.00 (51.92) 32.00 (59.26)

T/T 0.00 (0) 0.00 (0)

C 79.00 86.00

T 25.00 22.00

AXIN2
rs2240308

A/G 37.00 (71.15) 28.00 (51.85) A/G + GG versus A/A
Fisher Exact test
P value=0.6207
Odd ratio= 1.0417
(0.2465, 4.4028)

G versus A
Chi-square=2.22
P value=0.136233
Odd ratio=0.6556
(0.3755, 1.1445)

G/A 0.00 (0) 0.00 (0)

A/A 4.00 (7.69) 4.00 (7.41)

G/G 11.00 (21.15) 22.00 (40.74)

A 45.00 36.00

G 59.00 72.00

Table 3  Multivariate logistic regression analysis for hypodontia predictions

*  P value < 0.05

Gene Independent variable Odds Ratio 95% confidence interval P value

MSX1
rs12532 (homozygous)

MSX1
rs12532 (control)

2.242 (0.962, 5.228) 0.0616

PAX9 rs61754301 (homozygous) PAX9 rs61754301 (control) 1.467 (0.679, 3.169) 0.3291

AXIN 2 rs2240308 (homozygous) AXIN 2 rs2240308 (control) 2.893 (1.281, 6.530) 0.0106*
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0.909903). The AXIN2 homozygous (A/A) and heterozy-
gous (A/G) genotypes conferred a slightly elevated risk 
(OR 1.040714) and a lower risk (OR 0.7249), respectively. 
The AXIN2 homozygous (G/G) genotype created a mod-
erately increased risk (OR 1.325418).

For tooth #35, the PAX9 homozygous (C/C) genotype 
was associated with a marginally increased risk (OR 
1.034322). Conversely, the PAX9 heterozygous (C/T) 
genotype indicated a marginally decreased risk (OR 
0.966832). The AXIN2 homozygous (A/A) and heterozy-
gous (A/G) genotypes signified a slightly elevated risk 
(OR 1.045664) and a reduced risk (OR 0.817666), respec-
tively. The AXIN2 homozygous (G/G) genotype denoted 
a modestly increased risk (OR 1.169603).

For tooth #45, the PAX9 homozygous (C/C) genotype 
was associated with a decreased risk (OR 0.689289). Con-
versely, the PAX9 heterozygous (C/T) genotype indicated 
an increased risk (OR 1.450768). The AXIN2 homozy-
gous (A/A) and heterozygous (A/G) genotypes conferred 
a decreased risk (OR 0.825193) and a slightly decreased 
risk (OR 0.847812), respectively. The AXIN2 homozygous 
(G/G) genotype was associated with a slightly increased 
risk (OR 1.429367).

The ORs offer a measure of the association between 
gene alleles and the risk of dental issues in individual 
teeth. It is important to note that these associations were 
relatively modest, with ORs close to 1. Nonetheless, even 
minor increases or decreases in risk can carry implica-
tions for dental health.

Discussion
In this study, we investigated the use of machine learning 
to predict hypodontia risk based on selected SNPs in the 
MSX1, PAX9, and AXIN2 genes. To our knowledge, this 
is the first orthodontic study to employ a combination of 
machine learning and hypodontia to thoroughly examine 
the association between genetic factors and hypodontia.

Machine learning, a subfield of artificial intelligence, 
has been widely applied to the diagnosis, prediction, and 
prognosis of various medical conditions and uses statisti-
cal algorithms to make decisions or provide data-driven 
predictions [29]. In this study, we initially examined the 
genotype distribution and allele frequency of SNPs of the 
MSX1, PAX9, and AXIN2 genes that were previously iden-
tified in GWAS as being associated with hypodontia sus-
ceptibility. We conducted multivariate logistic regression 
analysis to assess the genetic risk for the hypodontia group.

In the present study, the mandibular second premo-
lars were the teeth that were most commonly affected 
by hypodontia, followed by the maxillary lateral incisors 
among the patients in the hypodontia group. These find-
ings align with previous research [25–27]; however, our 
results differ from studies that identified the maxillary 

lateral incisors as the most frequently congenitally absent 
teeth [30, 31]. These discrepancies may stem from varied 
genetic and ethnic backgrounds, as well as underreport-
ing of hypodontia cases. Dahlberg et  al. [32] noted that 
within each tooth class, the key tooth is the most mor-
phologically stable, whereas the others are more variable, 
prone to reduction, and more frequently missing.

The genes that are most frequently associated with non-
syndromic hypodontia are MSX1, PAX9, and AXIN2. 
SNPs in MSX1, PAX9, and AXIN2 influence the hypo-
dontia phenotype [33]. In this study, we analyzed SNPs 
previously reported to be associated with non-syndro-
mic hypodontia: MSX1 rs12532, PAX9 rs61754301, and 
AXIN2 rs2240308 [28]. Our results revealed no significant 
differences in allele frequency or genotype distribution 
between the control and hypodontia groups, suggest-
ing that these SNPs may not have influenced hypodontia 
expression in our cohort. Notably, we combined homozy-
gous variant genotypes with heterozygous genotypes for 
comparison against wild-type genotypes (Table 3).

Conversely, multivariate logistic regression analy-
sis offers greater power and control over variables and 
revealed a significant association between AXIN2 gene 
variations and non-syndromic hypodontia, corrobo-
rating the genetic risk assessment for the hypodontia 
group. These findings align with those of previous stud-
ies [33, 34]. However, our analysis did not show a signifi-
cant association between MSX1 and PAX9 variants and 
hypodontia, which contrasts with findings from earlier 
research [28, 33]. This discrepancy may be attributed 
to differences in the studied populations, and the SNPs 
tested could be significant specifically in the Saudi Ara-
bian population.

The scikit-learn library in Python provides a compre-
hensive and efficient set of tools for machine learning 
methods that comprises various algorithms, including 
logistic regression, and utilities for data preprocessing, 
model training, and evaluation. The flexibility and ease of 
use of this library allowed us to implement genetic risk 
assessment analysis seamlessly [35]. The ORs obtained 
from the logistic regression models yielded valuable 
insights into the association between genetic mark-
ers and the presence or absence of genetic risk for each 
tooth. The presence of the AXIN2 homozygous (A/A) 
genotype is a genetic risk factor for hypodontia of teeth 
#12, #22, and #35. Additionally, the presence of AXIN2 
homozygous (G/G) was a genetic risk factor for hypo-
dontia of teeth #22, #35, and #45. The presence of PAX9 
homozygous (C/C) was a genetic risk factor for hypodon-
tia of teeth #22 and #35. These results contribute to the 
understanding of genetic factors influencing the risk for 
specific teeth and can potentially guide personalized den-
tal and healthcare interventions.
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With the trend toward more personalized medicine, a phe-
notype in the oral cavity could serve as a diagnostic marker 
for systemic health diseases [36]. In addition to the asso-
ciation of hypodontia with syndromes, genetic mutations 
in tooth formation genes have been linked to other medical 
conditions, such as cancer [14]. For example, AXIN2 gene 
mutations may be implicated in hypodontia along with early-
onset colon, prostate, and ovarian cancers [14, 37, 38]. Based 
on these associations, an orthodontist might refer a patient 
for clinical and cancer screening. However, it is crucial to 
note that a recent systematic review reported low-quality 
evidence of the link between hypodontia and cancer [39].

Considering the constraints of our study, the relatively 
small sample size may have affected the precision of the 
associations observed. Consequently, a larger sample size 
is required to corroborate our findings. Furthermore, our 
investigation was confined to a limited number of SNPs 
and preselected genes. Furthermore, we restricted our 
research to the Saudi Arabian population, and therefore, 
the results may not be applicable to other populations. 
Nonetheless, despite these limitations, our data offer 
important insights into the application of machine learn-
ing in the evaluation of the genetic risk of hypodontia.

Conclusions
Our study identified an association between AXIN2 and 
hypodontia in the studied population and highlighting the 
importance of utilizing machine learning in hypodontia 
research. Further research with a larger sample size and more 
SNPs is recommended to explore the validity of machine 
learning. Additionally, our study could guide orthodontic 
and dental practices in early genetic diagnosis using nonin-
vasive saliva sampling to facilitate prevention and treatment 
options for orthodontic patients with hypodontia.
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