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Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data,
particularly for underrepresented populations, are limited. We employ an Elastic Net model for
dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic
data from multiple neurodegenerative disease genome-wide association studies. We compare this
model with APOE and polygenic risk score models across genetic ancestry groups (Hispanic Latino
American sample: 610 patients with 126 cases; African American sample: 440 patients with 84 cases;
East Asian American sample: 673 patients with 75 cases), using electronic health records from UCLA
Health for discovery and the All of Us cohort for validation. Our model significantly outperforms other
models across multiple ancestries, improving the area-under-precision-recall curve by 31–84%
(Wilcoxon signed-rank test p-value <0.05) and the area-under-the-receiver-operating characteristic
by 11–17% (DeLong test p-value <0.05) compared to the APOE and the polygenic risk score models.
We identify shared and ancestry-specific risk genes and biological pathways, reinforcing and adding
to existing knowledge. Our study highlights the benefits of integrating functional mapping, multiple
neurodegenerative diseases, andmachine learning for genetic riskmodels in diverse populations. Our
findings hold potential for refining precision medicine strategies in dementia diagnosis.

Dementia is a progressive syndromemarked by cognitive decline beyond
what is expected from normal aging1. Globally, it affects about 36 million
people and incurs costs of approximately $594 billion annually2,3. The
primary etiologies of dementia include Alzheimer’s disease (AD), vas-
cular dementia, Lewy body dementia (LBD), Frontotemporal dementia
(FTD), and Parkinson’s disease dementia (PDD), among others4. Genetic
predisposition plays a significant role in dementia, with numerous sig-
nificant variants identified through Genome-Wide Association Studies
(GWASs). For example, the Apolipoprotein E (APOE) gene, which
encodes a protein responsible for binding and transporting low-density
lipids, significantly influences the risk of late-onset AD, the most pre-
valent form of dementia5,6.

Polygenic risk scores (PRSs) aggregate the effects of multiple genetic
variants to quantify an individual’s genetic predisposition for complex
diseases like dementia7. A growing number of studies have underscored the
robust links between ADPRS and dementia related phenotypes in the non-
Hispanic white populations8–11. However, further research is needed to

refine personal dementia genetic riskmodels and understand their potential
limitations.

PRSperformance is suboptimal innon-Europeanancestries, asweights
for single nucleotide polymorphisms (SNPs) are mostly derived from
European ancestry GWASs, limiting their generalizability12–15. Including
causal variants like APOE in risk models due to their independent risk
contribution is recommended, while non-causal variants can introduce
noise16,17. Moreover, few genetic studies on dementia have been conducted
within the context of Electronic Health Records (EHRs), and have pre-
dominantly focused onAD9,18.While AD accounts for a significant portion,
many dementia cases display mixed pathologies19,20, with mixed dementia
being a common occurrence in real-world scenarios21. Addressing all-cause
dementia could better reflect the clinical landscape and lead to advances in
precision medicine that benefit a larger cohort22.

Dementia remains significantly underdiagnosed in real-world com-
munity settings23–28. Early detection through genetic modeling can help
healthcare providers improve diagnosis, manage symptoms effectively, and
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initiate appropriate treatments. The need formore refinedmethodologies to
develop accurate genetic risk models across diverse populations is
imperative.

In the present study, we hypothesized that the risk SNPs associated
with dementia and their corresponding weights vary across diverse
populations, specifically Amerindian, African, and East Asian genetic
ancestries. We further proposed that the predictive performance for
dementia phenotypes in non-European populations could be enhanced by
identifying biologically meaningful SNPs and applying sparse machine
learning models tailored to each genetic ancestry group. Thus, we present
a novel approach for assessing individual dementia genetic risks across
diverse populations.

To address previous limitations, we implemented several innovative
measures. Firstly, we prioritized SNPs using functional and biological
information based onGWAS results, focusing on causal SNPsmost likely to
contribute to dementia risk. Secondly, we utilized machine learning algo-
rithms to select significant genetic variants, allowing us to fine-tune models
for different ancestry groups. Thismethod provides a notable advantage for
non-European populations, which are often underrepresented in GWAS
studies. Finally, we developed and validated our models within real-world
EHR settings, targeting dementia as a comprehensive condition. This
innovative approach holds promise for improving our understanding of
individual dementia genetic risks for dementia and promoting health equity
in genetic research.

Results
Sample description
The primary dataset for model development was derived from EHR linked
to the biobank of the UCLA Health System29. Fig. 1 illustrates the finalized
UCLA ATLAS samples, stratified by Genetic Inferred Ancestry (GIA)
groups. TheHispanic LatinoAmerican (HLA) sample included610patients
with 126 dementia cases, while theAAsample consisted of 440patientswith
84 dementia cases. The distribution of International Classification of Dis-
eases, 10th Revision (ICD-10) diagnosis codes was relatively consistent
across the twoGIAsamples,withAlzheimer’s disease (G30) andunspecified
dementia (F03) being the most prevalent diagnoses. However, the African
American (AA) group exhibited a higher proportion of vascular dementia
(F01) diagnoses compared to the HLA group. The East Asian American
(EAA) group, with a limited case count (N = 75), was excluded from pri-
mary analyses but included in sensitivity analyses.

Within eachGIAgroup, eligible controls, due to the stringent inclusion
criteria, had longer spans of records and more encounters. There were no
significant differences in other EHR features between dementia cases and
controls (Table 1).

Performance comparison for dementia phenotype
prediction task
Wedeveloped and evaluatedmachine learningmodels to predict the binary
dementia phenotype within the UCLA ATLAS sample, stratified by GIA
groups. After accounting for age, sex, and ancestry-specific genetic varia-
tions (represented by principal components (PCs)), we constructed genetic
risk models for dementia, incorporating offset corrections within a linear-
ized framework. The predictive capabilities of these models were assessed
using four distinct sets of geneticmarkers: (1)APOE-ε4 counts, (2)ADPRS,
(3) a composite ofmultiple PRSs, and (4) select SNPs refined throughElastic
Net regularization30. For SNP selection, we utilized the FunctionalMapping
and Annotation of Genome-Wide Association Studies (FUMA) tool31 to
prioritize independent genome-wide-significant SNPs or independent
gene-annotated SNPs.

Table 2 presents the overall performance of models for predicting
dementia phenotypes. No discernible differences were observed among
APOE-ε4 and all PRS models (AD-PRS and Multi-PRS), regardless of the
SNPset used for PRS construction—whetherderived fromancestry-specific
GWASs, genome-wide-significant SNPs, or gene-annotated SNPs.Notably,
the predictive performance in the AA GIA sample of all PRS models was

inferior to APOE-ε4, particularly evident in the Area Under the Precision-
Recall Curve (AUPRC).

Elastic Net SNP models demonstrated overall improvement in
dementia prediction across both GIA groups. The model incorporating
gene-annotated SNPs fromADand other dementia-related diseaseGWASs
(SNPs fromAD+NeuroGWASs) emergedas themost effective, indicating
a collective contribution from SNPs associated with various dementia-
related diseases. Specifically, the leading Elastic Net SNP model for HLA
GIA sample significantly enhanced the AUPRC by 31% (0.41 [95%CI: 0.27,
0.52] vs. 0.31 [95%CI: 0.21, 0.41], Wilcoxon signed-rank test p-value <
0.001), and the area under the receiver operating characteristic (AUROC)
by 12% (0.73 [95%CI: 0.66, 0.79] vs. 0.65 [95%CI: 0.56, 0.72], DeLong test p-
value = 0.01) compared to the best PRS model. Furthermore, this model
outperformed the APOE-ε4 count model, with an increase of 33% in
AUPRC (0.41 vs. 0.31 [95%CI: 0.21, 0.41], Wilcoxon test p-value < 0.001)
and 12% in AUROC (0.73 vs. 0.65 [95%CI: 0.56, 0.71], DeLong test p-
value = 0.01).

This model’s efficacy was even more pronounced within the AA GIA
sample,withan increase inAUPRCby84%(0.45 [95%CI: 0.31, 0.58] vs. 0.24
[95%CI: 0.11, 0.41],Wilcoxon testp-value < 0.001) and theAUROCby16%
(0.71 [95%CI: 0.63, 0.78] vs. 0.60 [95%CI: 0.46, 0.74], DeLong test
p-value = 0.004) in comparison to the best PRS model. Relative to the
APOE-ε4 count model, the improvements were 65% in AUPRC (0.45 vs.
0.27 [95%CI: 0.16, 0.44], Wilcoxon test p-value < 0.001) and 17% in
AUROC (0.71 vs. 0.61 [95%CI: 0.50, 0.74], DeLong test p-value = 0.01).

We also noted a substantial enhancement in the other performance
metrics (based on the threshold that maximized the Matthews Correlation
Coefficient (MCC)) of the Elastic Net SNPs models compared to other
models across both GIA samples. This was evidenced by marked
improvements in accuracy, precision, and the F1 score. In our sensitivity
analysis, other non-linearmodels using gene-annotated SNPs fromADand
other dementia-related disease GWASs, including Gradient Boosting
Machine (GBM) and XGBoost, did not perform as well as the linear Elastic
Net SNP models. Results from bootstrapping showed similar trends in
model performances, as shown in Supplementary Fig. 1. Applying a more
stringent r2 cut-off (<0.1) for defining independent genome-wide-
significant SNPs yielded results consistent with our initial findings, as
detailed in Supplementary Table 1.

In summary, models leveraging SNPs as features identified through
machine learning methods possess the potential to surpass those relying
solely on summary scores such as PRSs inHLA andAAGIA. Furthermore,
selecting SNPs mapped to genes using functional genomic data holds
promise for further refining predictive performance.

Featured risk variants and mapped genes
In our analysis of the best-performing Elastic Net SNPs models, we exam-
ined the features selected by each model. According to results from

Fig. 1 | Dementia patient characteristics by genetic inferred ancestry groups,
UCLA ATLAS sample. Distribution of diagnosis in ICD-10 codes by genetic
inferred ancestry groups. AA African Americans, HLA Hispanic Latino Americans.
ICD-10 codes descriptions: G30, Alzheimer’s disease; F03, Unspecified dementia;
F02, Dementia in other diseases classified elsewhere; F01, Vascular dementia; G31,
Other degenerative diseases of nervous system, not elsewhere classified.
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bootstrapping (at least 95%of the 1000 iterations), theHLA andAAmodels
identified 28 and 31 risk SNPs, respectively. The top 10 risk SNPs in variable
importance selected by each model were shown in Table 3, with a detailed
list, including related information, provided in Supplementary Table 2.

By assessing the feature importance of the SNPs chosen by themodels,
we found that for the HLA GIA group, the top three important predictors
were rs429358 (chr19:44908684, nearest gene: APOE), rs2075650
(chr19:44892362, nearest gene:TOMM40), and rs483082 (chr19: 44912921,
nearest gene: APOC1), which together accounted for ~25% of the total
predictive importance. For the AA GIA group, the most influential pre-
dictors were rs2627641 (chr19:45205500, nearest gene: BLOC1S3),
rs8073976 (chr17:44955857, nearest gene: C1QL1), and rs77283277 (chr7:
143386852, nearest gene: ZYX).

Eight risk SNPs were identified by both GIA Elastic Net SNPs models,
including two AD-associated SNPs (rs429358 and rs2075650) from the top
10 features in both GIA groups, though their relative importance varied
slightly. Both models also identified several unique risk SNPs associated
with Parkinson’s disease (PD), Progressive Supranuclear Palsy (PSP), and
stroke as significant predictors of dementia. Notably, the AA GIA model
highlighted the significance of a PSP-associated risk SNP, rs8073976,
located on chromosome 17, underscoring the distinct genetic under-
pinnings influencing these different ancestry groups. These findings suggest
that while there are common genetic markers associated with dementia
across different ancestry groups, there are also unique genetic risk factors
that could provide insights into the specific genetic architecture and risk
profiles of dementia in diverse populations.

To better understand the biological functions and pathways associated
with the identified risk variants, we mapped these risk SNPs to genes using
FUMA, which integrates positional, eQTL, and 3D chromatin mapping31.

Notably, 13 genes were identified by both non-European GIA models
(Fig. 2 and Supplementary Table 3). Most shared genes were located near
chr19q13, which includes the well-established AD risk gene cluster, APOE-
TOMM40-APOC132. According to the enrichment analysis, these shared
genes are predominantly involved in biological pathways associated with
lipid metabolism. These pathways encompass processes such as the
assembly and organization of protein-lipid complexes, as indicated by the
Gene Ontology (GO) terms. Additionally, these genes play an essential role
in regulating cholesterol, triglyceride, amyloid proteins, and lipoprotein
particles, highlighting the importance of lipid metabolic processes in
dementia. There are also shared genes located near chr3p22 (SLC25A38 and
RPSA, PSP risk genes), chr11q25 (IGSF9B and JAM3, PD risk genes) and
chr17q21 (CCDC43, PSP risk gene).

In addition,we investigated ancestry-specific genes. For instance, genes
near the chr4p16 (e.g.,PCGF3 andRP11-67M1.1) were uniquely pinpointed
by the HLAGIAmodel, while genes near the chr7q34 region (e.g., ZYX and
ARHGEF5) were uniquely identified by the AA GIA model. This differ-
entiation underscores the unique genetic architecture influencing dementia

risk across different ancestry groups and suggests potential pathways for
tailored interventions.

In the sensitivity analyses, we performeddementia riskmodeling in the
EAA GIA sample (N = 673). Similar to other GIA groups, the model
incorporating gene-annotated SNPs from AD and other dementia-related
disease GWASs performed the best compared to all other models. This
model enhanced theAUPRCby 43%(0.34 [95%CI: 0.24, 0.43] vs. 0.24 [95%
CI: 0.19, 0.29],Wilcoxon testp-value < 0.001) and theAUROCby12%(0.80
[95%CI: 0.73, 0.86] vs. 0.71 [95%CI: 0.68, 0.74], DeLong test p-value =
0.001) compared to the best PRSmodel. It also outperformed theAPOE-ε4
countmodel,with increments of 42% inAUPRC(0.34 vs. 0.24 [95%CI: 0.19,
0.30], Wilcoxon test p-value < 0.001) and 11% in AUROC (0.80 vs. 0.71
[95%CI: 0.68, 0.73], DeLong test p-value = 0.004).

Among the featured 16 risk SNPs, rs429358 (chr19:44908684, nearest
gene: APOE), rs66626994 (chr19:44924977, nearest gene: APOC1P1), and
rs6857 (chr19:44888997, nearest gene:NECTIN2) were themost significant
predictors for the EAA GIA group, collectively accounting for ~45% of the
overall predictive importance. After mapping these SNPs to gene, we
identified the AD-risk gene cluster,APOE-TOMM40-APOC1, as well as the
gene region near chr17q21 (e.g., FMNL1 and SPPL2C) (Supplementary
Table 4A-D).

Validations in the All of Us sample
We conducted a validation study using the All of Us cohort to evaluate the
broad applicability of ourfindings obtained from theUCLAATLAS sample.
A comparable sample was selected from the All of Us Research Hub,
employing the same selection scheme to their correspondingGIA groups in
the UCLA ATLAS sample. However, due to the limited number of eligible
dementia cases (N case = 8) in theAll ofUsEAAGIA sample,we could only
validate our models and findings in the HLA (N_case = 68, N_control =
390) and AA (N_case = 129, N_control = 516) samples. In contrast to the
UCLA ATLAS samples, participants in the All of Us cohort had shorter
durations of EHR documentation and fewer recorded healthcare visits. The
prevalence of dementia was also lower in the All of Us cohort in the HLA
GIA group. Within each GIA sample, we found similar distributions of
demographics and EHR features between dementia cases and eligible
controls (Supplementary Tables 5–6).

We applied themodel weights trained from theUCLAATLAS sample
to the All of Us sample, stratified by GIA groups. In comparing three
representative models – (1) the APOE-ε4 model; (2) the best-performing
PRS model; and (3) the best-performing Elastic Net SNP model – and
accounting for demographic variables (age and sex) and genetic population
structure (ancestry-specificPCs), our resultsmirrored those fromtheUCLA
ATLAS sample. The Elastic Net SNP model, which included gene-
annotated SNPs from GWASs of AD and other dementia-related diseases,
outperformedall othermodels in terms of theAUPRCandAUROC in both
the HLA and AA GIA samples (Table 4).

Table 1 | Descriptive statistics of demographic and electronic health record features by case/control groups, UCLA ATLAS
sample, stratified by genetic inferred ancestry group

Hispanic Latino Americans (N = 610) African Americans (N = 440)

Cases Controls P-value Cases Controls P-value

N 126 484 – 84 356 –

Age 78.4 (71.3, 81.7) 75.3 (72.6, 79.6) 0.2 78.0 (70.1, 82.6) 75.7 (72.7, 79.9) 0.7

Sex (Female) 72 (57%) 300 (62%) 0.30 46 (55%) 218 (61%) 0.30

Span of records (in yrs) 5.9 (2.8, 8.8) 9.6 (7.7, 10.9) <0.001a 6.2 (3.1, 10.1) 9.9 (8.1, 11.4) <0.001a

Encounters per year 16 (7, 25) 14 (8, 20) 0.05 14 (6, 28) 13 (9, 21) 0.60

Number of encounters 73 (26, 156) 124 (73, 205) <0.001a 65 (28, 183) 140 (84, 210) <0.001a

Number of unique diagnosis 68 (36, 113) 71 (47, 108) 0.40 61 (41, 99) 73 (47, 103) 0.20

Notes: Continuous variables were reported as median (IQR), and categorical variables were reported as n (%). P-values were calculated based on two-sided Wilcoxon rank sum test or Pearson’s Chi-
squared test as appropriate.
aStatistically significant at level 0.05.
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Table 2 | Model performance of APOE-ε4 count, polygenic risk score, and SNP models in dementia genetic prediction, UCLA
ATLAS sample, stratified by genetic inferred ancestrya

AUPRC AUROC F1 score Accuracy Precision Recall Specificity

Hispanic Latino Americans (N = 610)

APOE ε4 count 0.308 0.652 0.424 0.707 0.357 0.524 0.754

AD-PRS models

AD EUR PRS P-significant 0.306 0.619 0.335 0.759 0.389 0.294 0.880

Gene-annotated 0.288 0.615 0.387 0.397 0.245 0.921 0.260

AD AFR PRS P-significant 0.312 0.644 0.409 0.692 0.339 0.516 0.738

Gene-annotated 0.305 0.648 0.427 0.666 0.330 0.603 0.682

AD multi-ancestry PRS P-significant 0.298 0.626 0.389 0.444 0.252 0.857 0.337

Gene-annotated 0.298 0.640 0.401 0.448 0.259 0.897 0.331

Multi-PRS models

PRSs using AD
GWASs onlyb

P-significant 0.312 0.643 0.415 0.644 0.314 0.611 0.653

Gene-annotated 0.302 0.646 0.404 0.670 0.322 0.540 0.705

PRSs using AD+Neuro
GWASsc

P-significant 0.283 0.617 0.382 0.661 0.306 0.508 0.700

Gene-annotated 0.309 0.643 0.411 0.662 0.321 0.571 0.686

Elastic Net SNPs models

SNPs from AD
GWASs only

P-significant 0.321 0.662 0.408 0.530 0.276 0.786 0.463

Gene-annotated 0.351 0.679 0.436 0.602 0.308 0.746 0.564

SNPs from
AD+Neuro GWASs

P-significant 0.359 0.715 0.472 0.633 0.336 0.794 0.591

Gene-annotated 0.410 0.728 0.458 0.779 0.463 0.452 0.864

Non-linear SNPs models

SNPs from
AD+Neuro GWASs

GBM 0.304 0.634 0.381 0.707 0.337 0.437 0.777

Gene-annotated SNPs XGBoost 0.298 0.642 0.375 0.710 0.338 0.421 0.785

African Americans (N = 440)

APOE ε4 count 0.271 0.606 0.388 0.570 0.267 0.714 0.537

AD-PRS models

AD EUR PRS P-significant 0.221 0.592 0.369 0.432 0.234 0.869 0.329

Gene-annotated 0.226 0.573 0.348 0.318 0.213 0.952 0.169

AD AFR PRS P-significant 0.242 0.584 0.322 0.732 0.311 0.333 0.826

Gene-annotated 0.241 0.581 0.344 0.584 0.246 0.571 0.587

AD multi-ancestry PRS P-significant 0.234 0.592 0.360 0.386 0.225 0.905 0.264

Gene-annotated 0.230 0.598 0.370 0.443 0.236 0.857 0.346

Multi-PRS models

PRSs using AD
GWASs onlyb

P-significant 0.238 0.589 0.358 0.527 0.242 0.690 0.489

Gene-annotated 0.233 0.590 0.357 0.484 0.234 0.750 0.421

PRSs using AD+Neuro
GWASsc

P-significant 0.187 0.516 0.311 0.195 0.186 0.952 0.017

Gene-annotated 0.217 0.538 0.087 0.809 0.500 0.048 0.989

Elastic Net SNPs models

SNPs from AD
GWASs only

P-significant 0.356 0.669 0.356 0.802 0.471 0.286 0.924

Gene-annotated 0.421 0.678 0.342 0.834 0.704 0.226 0.978

SNPs from
AD+Neuro GWASs

P-significant 0.391 0.704 0.342 0.825 0.606 0.238 0.963

Gene-annotated 0.446 0.710 0.365 0.834 0.677 0.250 0.972

Non-linear SNPs models

SNPs from
AD+Neuro GWASs

GBM 0.225 0.479 0.314 0.186 0.187 0.976 0.000

Gene-annotated SNPs XGBoost 0.220 0.506 0.139 0.802 0.412 0.083 0.972

Abbreviations: AD Alzheimer’s Disease, APOE apolipoprotein E, AUROC Area Under the ROC Curve, AUPRC Area Under the Precision-Recall Curve, EUR European, GBM Gradient Boosting Machine,
GWAS Genome-Wide Association Study, PRS Polygenic Risk Score, SNP Single-Nucleotide Polymorphism.
Notes:
aAll models (if not other specified) have regressed out age, sex, and ancestry-specific principal components. Thresholds were determined by maximizing absolute Matthews correlation coefficient.
bAll AD PRSs built with EUR, AFR, and multi-ancestry GWASs using P-significant/gene-annotated SNPs were included in the model at the same time.
cAll AD PRSs built with EUR, AFR, and multi-ancestry GWASs, and neurodegenerative disease PRS (Parkinson’s disease, progressive supranuclear palsy, Lewy body dementia, and stroke) using
P-significant/gene-annotated SNPs were included in the model at the same time.
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Table 3 | Top 10 featured risk SNPs from the best-performing Elastic Net SNPmodel, UCLAATLAS sample, stratified by genetic
ancestry

rsID CHR POS Variable Importance
(95% CI)

Nearest Gene AD EUR AD AFR AD multi LBD PD PSP Stroke

Hispanic Latino American ancestry (HLA)

rs429358 19 44908684 0.089 (0.02, 0.11) APOE x

rs2075650 19 44892362 0.089 (0.02, 0.11) TOMM40 x x x

rs483082 19 44912921 0.07 (0.017, 0.086) APOC1 x x

rs157581 19 44892457 0.065 (0.014, 0.079) TOMM40 x x

rs412776 19 44876259 0.057 (0.016, 0.066) NECTIN2 x x

rs62120578 19 44713297 0.053 (0.022, 0.061) CTB-171A8.1 x

rs4803765 19 44855191 0.048 (0.015, 0.056) NECTIN2 x

rs80100206 4 705856 0.042 (0.02, 0.046) PCGF3 x

rs6857 19 44888997 0.038 (0.011, 0.042) NECTIN2 x

rs2276412 11 121590137 0.037 (0.018, 0.039) SORL1 x

African American ancestry (AA)

rs2627641 19 45205500 0.096 (0.077, 0.099) BLOC1S3 x

rs8073976 17 44955857 0.079 (0.065, 0.082) C1QL1 x

rs77283277 7 143386852 0.076 (0.063, 0.079) ZYX x

rs429358 19 44908684 0.071 (0.059, 0.074) APOE x

rs2075650 19 44892362 0.068 (0.056, 0.071) TOMM40 x x x

rs73936967 19 44890485 0.064 (0.053, 0.066) TOMM40 x

rs13032148 2 127107524 0.063 (0.053, 0.065) BIN1 x x

rs71352239 19 44926286 0.056 (0.047, 0.057) APOC1P1 x x x

rs435380 19 44903861 0.041 (0.037, 0.042) TOMM40 x x

rs11223641 11 133950127 0.041 (0.037, 0.041) IGSF9B x

ADAlzheimer’sDisease,AFRAfricanAmerican,CI confidence interval,EUREuropean,LBD Lewybodydementia,PDParkinson’s disease,PRSPolygenicRisk Score,PSPprogressive supranuclear palsy,
SNP Single-Nucleotide Polymorphism.
Note: SNPs marked in bold are overlapped SNPs identified by both samples.

Fig. 2 | Shared and ancestry-specific risk genes iden-
tified by the best-performing Elastic Net SNPmodels,
UCLA ATLAS sample.
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In particular, the Elastic Net SNP model demonstrated significant
improvements over the other two models. In the HLA GIA sample, it
outperformed both the APOE-ε4 and the best AD PRS model (AD AFR
PRS.psig) by 17% and 4% in AUPRC (bothWilcoxon test p-value < 0.001),
and by 2.7% and 4% in AUROC (DeLong test p-value = 0.56 and 0.25),
respectively. Similarly, in the AA GIA sample, the Elastic Net SNP model
showed a 35% and 13% enhancement in AUPRC (both Wilcoxon test p-
value < 0.001), and 9% and 22% in AUROC (both DeLong test p-value <
0.001) over the APOE-ε4 and best AD PRS model, respectively.

Discussion
Traditional genetic risk models have faced limitations in effectively cap-
turing causal disease risk variants and accurately assessing genetic risks
across diverse populations. To address these challenges, our present study
introduces a novel approach to predicting dementia risks by leveraging
functional mapping of genetic data in conjunction with machine learning
methods in the real-world EHR setting. Our proposed method shows
remarkable improvements in prediction performance compared to well-
known approaches like APOE gene and PRS models. We successfully
identified shared and ancestry-specific risk genes and biological pathways
contributing to dementia risks for each non-European GIA group. Finally,
we bolstered the reliability and generalizability of our findings by validating
our models using a comparable EHR sample from the All of Us cohort.

Our study highlights the significance of prioritizing biologically
meaningful SNPs in genetic prediction. GWASs often identify genomic
regionswithmultiple correlated SNPs,whichmay encompass several closely
located genes. However, not all of these genes are relevant to the disease33.
Functional annotation of genetic variants enabled us to target potential
causal SNPs by considering various factors, such as regional linkage dis-
equilibrium (LD) patterns, functional consequences of variants, their impact
on gene expression, and their involvement in chromatin interaction sites31.
In ourmodels developed onUCLAATLAS samples, we achieved significant
improvements in model performance by prioritizing biologically mean-
ingful SNPs, ranging from 31–84% in AUPRC and 11–17% in AUROC
across different GIA groups, compared to the APOE-ε4 count and the best-
performing PRS models. These results underscore the critical role of con-
sidering functional and biological information in enhancing the perfor-
mance of genetic prediction models, especially in diverse populations.

It is worth highlighting that no discernible performance differences
were observed between PRSs constructed using genome-wide-significant
and gene-annotated SNPs. This can be attributed to the strong LD between
genome-wide-significant and gene-annotated SNPs within the same
genomic region. As a result, these SNPs tend to have similar effect estimates
in the GWASs. Thus, it is expected that the PRSs built with these two sets of
SNPs would exhibit a high correlation (Supplementary Table 7), which

further supports the notion that the choice of genome-wide-significant or
gene-annotated SNPs does not significantly impact the predictive perfor-
mance of the PRSs in our study.

Moreover, our study emphasizes the significance of incorporating risk
factors frommultiple dementia-related diseases whendeveloping predictive
models for complex conditions like dementia. Both ancestry-specific Elastic
Net SNPmodels highlighted several PD and PSP risk variants as significant
predictors of dementia. This finding aligns with the well-known complexity
of dementia as a multifactorial disorder that shares common features with
these related conditions34.However, it isworthnoting that includingPRSsof
those diseases did not significantly improve the overall performance
(Table 2). This result is consistent with research conducted by Clark et al.35,
in which they demonstrated that a combined genetic score, which incor-
porated risk variants forADand24other traits, had an equivalent predictive
power as the AD PRS on its own.

Our proposed Elastic Net SNPs models identified several shared risk
factors across different ancestries. Notably, a substantial proportion of the
identified shared genes were found near the chr19q13 region, which is well-
known for the AD risk gene cluster comprising APOE-TOMM40-APOC1.
These findings align with previous research6,36,37, further supporting the
significance of this genomic region in contributing to the genetic risks
associated with dementia.

At the same time, we have discovered compelling evidence supporting
our hypothesis that risk SNPs associated with dementia, along with their
corresponding weights, exhibit significant variations across diverse popu-
lations. Notably, our analysis of PRS models revealed that the performance
of PRS built with the European population GWAS was worse when pre-
dicting a non-European GIA group. This is consistent with other previous
studies. Using PRSs for 245 curated traits from the UK Biobank data, Privé
et al.38 revealed notable disparities in the phenotypic variance explained by
PRSs across different populations. Specifically, compared to individuals of
Northwestern European ancestry, the PRS-driven phenotypic variance is
only 64.7% in South Asians, 48.6% in East Asians, and 18% in West Afri-
cans. Similarly, using a population from the Health and Retirement Study,
Marden et al. demonstrated that the estimated effect of the AD PRS was
notably smaller for non-Hispanic black compared to non-Hispanicwhite in
bothdementia probability score andmemory score39.On the other hand,we
also observed that the APOE-ε4 count model performed better than most
PRSmodels in HLA and AAGIA samples. These finding further reinforces
the limitations of standardPRSwhenapplied tonon-Europeanpopulations,
in which attempting to transfer GWAS effect size from one GIA to another
GIA, or when using matched genetic ancestry GWAS with smaller sample
size, as demonstrated in several AD and other phenotype studies40–43.

In addition, we observed notable differences in the feature importance
of various SNPs within the best-performing Elastic Net models across dis-
tinct GIA groups. Consequently, this led us to identify ancestry-specific
genes and distinct biological pathways implicated in the genetic predis-
position to dementia in diverse ancestral samples. These findings highlight
the uniqueness of genetic risk factors and functional pathways in diverse
population groups.

Finally, we validated our models using samples from separate EHR
linked with genetic data (All of Us). Our proposed Elastic Net SNP model
consistently outperformed theAPOE-ε4 and the best PRSmodels.While the
Elastic Net SNPmodel demonstrated improved performance in both HLA
andAApopulations,weobserved adecrease in the general performance and
significance (AUPRCandAUROC) in theAll ofUs sample compared to the
UCLAATLAS sample. One potential explanation for this discrepancy is the
distinct population structure within each sample, as revealed by comparing
patient characteristics (Supplementary Table 6). These findings underscore
the influence of population-specific factors within GIA groups on the
generalizability of genetic risk models, highlighting the critical need to
account for population diversity in predictive models for complex diseases.

Our study boasts several notable strengths that contribute to its sig-
nificance and impact. Firstly, we conducted our research with EHRs that
mirror the practicalities of real-world community settings. Most current

Table 4 | Overall model performance of APOE-ε4 count,
polygenic risk score, and Elastic Net SNPmodels in dementia
genetic prediction in validation of All of Us sample, stratified
by genetic inferred ancestry

HLA (N = 458) AA (N = 645)

Cases Controls Cases Controls

N 68 390 129 516

Model AUPRC AUROC AUPRC AUROC

APOE ε4 count 0.206 0.601 0.211 0.588

Best
single
AD PRS

AFR
P-significant

0.231 0.593 0.253 0.524

Best
SNPs

Gene-
annotated
Neuro SNPs

0.240 0.617 0.285 0.639

AA African Americans, AD Alzheimer’s Disease, AFR African American, APOE apolipoprotein E,
AUROC Area Under the ROCCurve,AUPRC Area Under the Precision-Recall Curve,HLAHispanic
Latino Americans, PRS Polygenic Risk Score, SNP Single-Nucleotide Polymorphism.
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studies used longitudinal cohorts, which performed extensive testing and
consensus criteria44 applied by clinicians with expertize in dementias to
diagnosis dementia. However, in real-world clinical care, the expertize in
dementia may vary, and the criteria used for diagnosis may not always
align with the stringent standards of research cohorts. Diagnoses docu-
mented in the EHRs capture these real-world data and, by routinely cap-
turing patient data over extended periods, form an expansive longitudinal
cohort ideal for real-world research.Compared to traditional cohorts, EHR
cohorts offer additional benefits, such as vast sample sizes, diverse phe-
notypes, and a more inclusive representation of often underrepresented
groups, like minority groups and older adults45. Secondly, machine
learning techniques applied in our study allowed us to infer crucial
dementia risk factors for underrepresented populations, such as HLA and
AA, with GWAS summary statistics from extensively studied populations
like Europeans. This approach enabled a deeper understanding of the
genetic landscape of dementia in underrepresented populations, particu-
larly valuable given the current limitations in large-sample-size GWASs
specific to these groups. Thirdly, we fortified the robustness and general-
izability of our findings through the validation of our model on an inde-
pendent dataset from the All of Us cohort. Furthermore, our innovative
approach, which incorporated biologically relevant genetic markers and
functional annotations, significantly enhanced the accuracy of disease
prediction. This approach can be readily adapted to predict other complex
diseases, extending the scope of its applications and enriching our
understanding of diverse human populations’ genetic traits.

However, we acknowledge certain limitations. Firstly, we observed
variations in the composition of dementia subtypes among different GIA
groups’ case samples. Consequently, the distinct genes and biological
pathways identified by different ancestrymodels should be interpreted with
this consideration. Secondly, although our study identified potential risk
SNPs and genes associated with dementia, additional experimentation is
necessary to understand the precisemechanisms underlying the association
of these factors. Thirdly, the limited number of dementia cases in our non-
European GIA samples, after applying inclusion criteria, constrains the
generalizability of our findings. Future studies should aim to replicate these
findings in larger samples for eachGIA to enhance their robustness. Finally,
although detailed clinical guidelines for disease diagnoses exist46,47, clinical
providers may adapt these criteria to fit specific research focuses or popu-
lations. This adaptation can lead to variations in diagnostic criteria across
different studies or clinical practices. Consequently, the precision of
dementia diagnoses based on ICD-10 codes may vary compared to a gold
standard of research criteria or autopsy findings.

In light of these limitations, further research with more extensive and
diverse datasets, encompassing a broader range of dementia subtypes and
GIA groups is imperative to strengthen the validity and applicability of our
study’s outcomes. Such efforts will contribute to a more comprehensive
understanding of the genetic complexities underlying dementia across
diverse populations.

In conclusion, our study introduces a novel and robust approach to
assessing individual genetic risks for dementia across diverse populations in
a real-world setting. Our study demonstrates the importance of considering
functional and biological information and population diversity when
developing predictive models for complex diseases like dementia. The
findings from our research provide valuable insights into the intricate
genetic factors underlying dementia. Moreover, this work opens up pro-
mising avenues for developing more accurate and efficient predictive
models for complex genetic traits in diverse human populations. Such
advancements can potentially be paired with the development of targeted
treatments tailored to the specific genetic profiles of individuals affected by
dementia and related conditions.

Methods
Data source
Our discovery cohort for model development was derived from the
biobank-linked EHR of the UCLA Health System29. The UCLA ATLAS

CommunityHealth Initiative collects biosamples during routine labwork at
UCLAHealth labs from a diverse population, which undergoes genotyping
using a customized Illumina Global Screening Array48. Participants watch a
short video explaining the initiative’s goals and record their consent deci-
sion. Detailed information regarding biobanking and consenting proce-
dures is available in our previous publications49,50. After the genotype quality
control, there were 54,935 individuals with both genotype and UCLA EHR
data. All ethical regulations relevant to human research participants were
followed. As the genetic data and EHRs were de-identified, the study was
exempt from human subject research regulations (UCLA IRB# 21-000435).

We validated our models and findings using data from the All of Us
Research Hub, one of the most diverse biomedical data resources in the
United States. The All of Us Research Program serves as a centralized data
repository, offering secure access to de-identified data from program
participants51. For validation, we utilized data release version 7, encom-
passing 409,420 individuals, of which 245,400 have undergone whole gen-
ome sequencing.

Patient genetic data preprocessing
Quality control was conducted using PLINK v1.952, adhering to established
guidelines29. Samples with a missingness rate exceeding 5% were removed.
Low-quality SNPs with >5%missingness, monomorphic SNPs, and strand-
ambiguous SNPs were excluded. Post-quality control, genotype imputation
was performed via the Michigan Imputation Server53 to enhance the cov-
erage of genetic variants and facilitate comparison across diverse genotyping
platforms. SNPs with imputation r2 < 0.90 or minor allele frequency <1%
were pruned. After these measures, 21,220,668 genotyped SNPs were
retained across the 54,935 individuals. Finally, we restricted our analyses to
SNPs that overlapped between UCLA ATLAS and All of Us, resulting in a
total of 8,705,988 SNPs, ensuring consistency in genetic variables across
datasets.

Genetic ancestry refers to the geographic origins of an individual’s
genome, tracing back to their most recent biological ancestors54. GIA
employs genetic data, a reference population, and inferentialmethodologies
to categorize individualswithin groups likely sharing commongeographical
ancestors55. In our UCLAATLAS sample, we used the reference panel from
the 1000 Genomes Project56 and principal component analysis57 to infer
genetic ancestry. GIA groups included European American (EA), African
American (AA), Hispanic Latino American (HLA), East Asian American
(EAA), and South Asian American (SAA). For instance, individuals in the
United States with recent biological ancestors inferred to be of Amerindian
ancestry were designated as “HLA GIA”58. In addition, we calculated
ancestry-specific principal components within each GIA group using
principal component analysis.

Genetic predictors
The initial step in our study involved identifying potential risk SNPs as
candidate predictors for dementia using GWASs. A summary of the
GWASs used and the steps to select candidate SNPs is provided in Sup-
plementary Table 8 and Supplementary Fig. 2.

We selected GWASs for AD5,36,59, Parkinson’s disease (PD)60, Pro-
gressive Supranuclear Palsy (PSP)61, Lewy Body Dementia (LBD)62, and
stroke63 phenotypes. For AD, we included three GWASs conducted on
diverse populations, including European5, African American36, and multi-
ancestries59. Summary statistics from these GWAS are publicly available,
with detailed recruitment procedures and diagnostic criteria available in the
original publications.

A significant proportion of GWAS hits are located in non-coding or
intergenic regions64. Due to the correlated nature of genetic variants in LD,
distinguishing causal from non-causal variants based solely on association
P-values from GWASs is challenging31. Identifying the most likely causal
variants involves understanding the regional LD patterns and assessing the
functional consequences of correlated SNPs, such as those affecting protein-
coding, regulatory, and structural sequences65. Several functionally validated
variants have been clinically relevant to diseases pathogenesis, confirmed
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through experimental validation66. To address this, we utilized the FUMA, a
tool that leverages information frombiological data repositories to annotate
and prioritize SNPs31.

For eachGWAS summary statistic, we first identified genomic risk loci
using a P-value threshold (<5e-8) and a pre-calculated LD structure
(r2 < 0.2) based on the relevant reference population from the 1000 Gen-
omes Project56. Subsequently, we identified two distinct sets of SNPs:
1. Independent genome-wide-significant SNPs: We selected the SNP

with the most significant GWAS P-value within each genomic risk
locus. This process was iterated until all SNPs were assigned to a risk
locus cluster or considered independent.

2. Independent gene-annotated SNPs: We prioritized SNPs based on
their functional consequences on genes. Using FUMA, the mapping
from SNPs to genes was achieved by performing ANNOVAR67 using
Ensembl genes (build 85). SNPs were mapped to genes through
positional mapping, eQTL associations, and 3D chromatin interac-
tions. The Combined Annotation-Dependent Depletion (CADD)
score68 was used to select potential causal SNPs, with the SNP
possessing the highest CADD score within each genomic risk locus
being chosen, indicating a higher probability of the variant being
deleterious.

The identified independent genome-wide-significant SNPs and inde-
pendent gene-annotated SNPs were subsequently used in constructing the
disease PRSs and as candidate features in dementia prediction models. To
ensure robustness in a sensitivity analysis, we also adopted a stringent r2 cut-
off ( < 0.1) to define independent genome-wide-significant SNPs, ensuring
the selected SNPs were independent.

We computed the disease-specific PRS as the sum of an individual’s
risk allele dosages, each weighted by its corresponding risk allele effect size
from the GWAS summary statistics, as shown in the PRS equation
PRSi ¼

PM
j β̂j × dosageij. All PRSs were standardized to a mean of 0 and a

standard deviation of 1. The standardization process used the 1000Genome
European genetic ancestry as the reference population, ensuring the scores’
range and values are comparable across different GWASs. For each phe-
notype, we employed two distinct sets of SNPs identified by FUMA, namely
the independent genome-wide-significant SNPs and independent gene-
annotated SNPs, to calculate two respective PRSs: PRS.psig and PRS.map.

The APOE gene has two variants, rs7412 and rs429358, which deter-
mine the three common isoforms of the apoE protein: E2, E3, and E4,
encoded by the ε2, ε3, and ε4 alleles37. Previous research has demonstrated

that carriers of APOE-ε4 are at a higher risk of developing AD, exhibiting a
dose-dependent effect69. Therefore, to quantify the APOE genotype in our
study, we created a numerical variable, “APOE-ε4count”, representing the
number of ε4 alleles (0, 1, or 2) carried by each individual.

Dementia definition and demographic features
The primary outcome of interest was dementia, defined using the ICD-10
codes (SupplementaryTable 9).Demographic variables considered included
self-reported age and sex. The age of eachparticipant,measured in years,was
calculated based on their birth date and encounters dates. For individuals
diagnosed with dementia, we determined the age at dementia onset.

Analytical sample selection
To focus on patients with longitudinal records, our analyses included
patientswith complete demographic data (age and sex)who had at least two
medical encounters after age 55. We restricted the age at the last recorded
encounter to <90, as patients in the UCLA EHR dataset are censored at
this age.

Eligible dementia cases were identified as patients with at least one
encounter with a recorded dementia diagnosis, provided the initial onset
occurred after age 55. Eligible controls were required to meet the following
criteria: (1) no recorded dementia or related diagnoses, as determined by
predefined exclusion phenotypes70; (2) age at the last recorded visit ≥ 70, to
exclude younger patients who may not have manifested signs of demen-
tia yet; and (3) a minimum of 5 years of records with an average of at
least one encounter per year, minimizing potential bias from mis-
diagnosis (Fig. 3).

Prediction of dementia risk with machine learning models
In our discovery study, we developed machine learning models to predict
the binary dementia phenotype in the UCLA ATLAS sample, stratified by
GIA groups.

To distinctly assess genetic influences, our analysis began bymitigating
the impact of demographic factors, including age, sex, and ancestry-specific
PCs. We first employed a logistic regression model that utilized only these
variables to predict dementia status. Subsequently, we derived the predicted
values for each patient through thismodel. Applying an appropriate inverse
link function (e.g., logit), we then subtracted these predicted values from the
ultimate outcome (dementia status), generating an “offset” value. These
offset values encapsulated the dementia status after regressing out the effects
of demographic variables and genetic population structure.

Fig. 3 | Sample selection steps and modeling steps
description.
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Next, we trained genetic risk models to predict dementia status with
offset corrections applied in the linearized space, expressed as:
ŷi ¼ g�1ðβ0 þ β1xi1 þ � � � þ βpxip þ offsetiÞ, where ŷi represents the pre-
dicted dementia status, and g�1ð�Þ is the inverse of the link function71. We
compared four different sets of predictors: (1) APOE status, (2) AD PRS,
(3) multiple PRSs, and (4) smaller SNP sets with Elastic Net regularization.
For themultiplePRSmodels,we craftedmodels utilizingdiverseADPRSsof
varying ancestries or PRSs derived from other GWASs focused on neuro-
degenerative diseases. The (4) model involved the application of Elastic Net
regularization, which combines the benefits of both Lasso (L1) and Ridge
(L2) regression methods to enhance model stability and variance handling.
This technique aids in variable selection by reducing the coefficients of less
relevant variables to zero, simplifying themodel, and improving its ability to
manage multicollinearity30. The hyperparameter α, which balances L1 and
L2 regularization, was optimized using a grid search to maximize the
penalized likelihood within each training set.

As part of our sensitivity analysis, we assessed the performance of
various non-linear models incorporating different regularization techni-
ques, including GBM72 and XGBoost73. Hyperparameter optimization was
also performed using a grid search approach for each model within each
training set.

We employed a 5-fold cross-validationmethodology across all models
to evaluate performance, with final results reported on the combined hold-
out testing sets (Fig. 3). To enhance the robustness of our findings, we
utilized bootstrapping74 to determine feature importance, determine con-
fidence intervals (CIs), and establish statistical significance. Specifically, we
repeated the modeling process 1000 times using random sampling with
replacement of all subjects (cases and controls) within the analytical sample
set of each GIA group.

The primary assessment criterion was the AUPRC, chosen for its
suitability in scenarios involving imbalanced datasets where the number
of cases is significantly outnumbered by controls75. Additionally, the
AUROC was reported as a comprehensive metric for model evaluation.
To determine the optimal threshold, we selected the point that max-
imized the MCC45. Subsequent performance metrics, such as the
F1 score, accuracy, precision, recall, and specificity, were computed
based on this threshold.

To compare models, we calculated DeLong test p-values76, which are
specifically tailored for comparing two AUROC values derived from iden-
tical observations. Given the lack of an equivalent test for AUPRC com-
parisons, we employed the paired Wilcoxon signed-rank test77 to compare
AUPRC using the bootstrapping results.

Validations in the All of Us sample
We conducted a validation study using the All of Us cohort to assess the
generalizability of our findings derived from the UCLA ATLAS sample. A
comparable samplewas selected, adhering to the same criteria and sampling
scheme for the GIA groups as in the UCLA ATLAS sample. We employed
the same methodologies to define dementia cases and controls, extracting
the same genetic risk loci from the All of Us Whole Genome Sequencing
data for PRS construction or those identified through Elastic Netmodels in
the UCLA ATLAS sample. Consistent methodologies were used to regress
out demographic variables and genetic population structure (i.e., PCs) to
derive offset corrections, ensuring statistical models accurately reflect
intrinsic genetic associations without confounding from demographic or
population genetic structure.

In the All of Us sample, we compared three models: (1) the APOE-ε4
model; (2) the best-performing PRS model; and (3) the best-performing
ElasticNet SNPmodel. The same evaluationmetricswere utilized formodel
comparisons.

Gene mapping and gene set analysis
We further examined the features selected from the ElasticNet SNPmodels.
During bootstrapping, each iteration potentially identified a subset of SNPs

as important features contributing to the dementia prediction. SNPs con-
sistently identified in at least 95% of the 1000 bootstrap iterations were
retained. To facilitate biological interpretations, we employed FUMA’s
positional, eQTL, and chromatin interactionmapping toassociatedementia
risk SNPs from the top-performing Elastic Net SNP models with specific
genes31. These mapped genes were tested against gene sets procured from
MsigDB, including positional gene sets and GO gene sets, to assess the
enrichment of biological functions through hypergeometric tests., The
Benjamin-Hochberg adjustment was applied to correct for multiple
testing78.

Statistics and reproducibility
The study included diverse genetic ancestry groups: Hispanic Latino
American (610 patients, 126 cases), African American (440 patients, 84
cases), and East Asian American (673 patients, 75 cases). Sample sizes were
chosen based on availability and representativeness from UCLA Health
records and the All of Us cohort.

Each sample was treated as an independent replicate. Analyses were
conducted with appropriate statistical methods to ensure validity and
reproducibility. The robustness of the findings was further confirmed
through cross-validation techniques and comparison with established
models (APOE and PRSs).

To ensure reproducibility, we adhered to rigorous data handling and
processing standards, with detailed documentation of data sources, pro-
cessing steps, and analysis pipelines. All codes and scripts used in the ana-
lysis are available online and upon request for verification and replication
purposes.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The Genome-Wide Association Study summary statistics data analyzed in
this study are publicly available. Individual electronic health record data are
not publicly available due to patient confidentiality and security concerns.
Collaboration with the study authors who have been approved by UCLA
Health for Institutional Review Board-qualified studies are possible and
encouraged. Individual data from All of Us are publicly available for qua-
lified researchers per the National Institutes of Health.

Code availability
Codes are publicly available on GitHub: https://github.com/TSChang-Lab/
Dementia-prediction (https://doi.org/10.5281/zenodo.12754446)79. Requests
for additional information can be directed to the Lead Contact: Timothy S.
Chang (timothychang@mednet.ucla.edu).

List of abbreviations
Abbr Description
AA African American
AD Alzheimer’s disease
APOE Apolipoprotein E
AUPRC area under the precision-recall curve
AUROC area under the receiver operating characteristic
CADD Combined Annotation-Dependent Depletion
CI confidence intervals
EA European American
EAA East Asian American
EHR Electronic Health Record
FTD Frontotemporal dementia
FUMA Functional Mapping and Annotation of Genome-Wide

Association Studies
GIA Genetic Inferred Ancestry
GO Gene Ontology
GWAS Genome-Wide Association Studies
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HLA Hispanic Latino American
LBD Lewy body dementia
LD Linkage disequilibrium
MCC Matthews Correlation Coefficient
PC principal components
PD Parkinson’s disease
PRS Polygenic risk score
SAA South Asian American
SNP Single-Nucleotide Polymorphism
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