Skip to main content
. 2024 Aug 25;7:1049. doi: 10.1038/s42003-024-06742-0

Table 2.

Model performance of APOE-ε4 count, polygenic risk score, and SNP models in dementia genetic prediction, UCLA ATLAS sample, stratified by genetic inferred ancestrya

AUPRC AUROC F1 score Accuracy Precision Recall Specificity
Hispanic Latino Americans (N = 610)
 APOE ε4 count 0.308 0.652 0.424 0.707 0.357 0.524 0.754
    AD-PRS models
     AD EUR PRS P-significant 0.306 0.619 0.335 0.759 0.389 0.294 0.880
Gene-annotated 0.288 0.615 0.387 0.397 0.245 0.921 0.260
     AD AFR PRS P-significant 0.312 0.644 0.409 0.692 0.339 0.516 0.738
Gene-annotated 0.305 0.648 0.427 0.666 0.330 0.603 0.682
     AD multi-ancestry PRS P-significant 0.298 0.626 0.389 0.444 0.252 0.857 0.337
Gene-annotated 0.298 0.640 0.401 0.448 0.259 0.897 0.331
    Multi-PRS models
     PRSs using AD GWASs onlyb P-significant 0.312 0.643 0.415 0.644 0.314 0.611 0.653
Gene-annotated 0.302 0.646 0.404 0.670 0.322 0.540 0.705
     PRSs using AD + Neuro GWASsc P-significant 0.283 0.617 0.382 0.661 0.306 0.508 0.700
Gene-annotated 0.309 0.643 0.411 0.662 0.321 0.571 0.686
    Elastic Net SNPs models
     SNPs from AD GWASs only P-significant 0.321 0.662 0.408 0.530 0.276 0.786 0.463
Gene-annotated 0.351 0.679 0.436 0.602 0.308 0.746 0.564
     SNPs from AD + Neuro GWASs P-significant 0.359 0.715 0.472 0.633 0.336 0.794 0.591
Gene-annotated 0.410 0.728 0.458 0.779 0.463 0.452 0.864
    Non-linear SNPs models
     SNPs from AD + Neuro GWASs GBM 0.304 0.634 0.381 0.707 0.337 0.437 0.777
     Gene-annotated SNPs XGBoost 0.298 0.642 0.375 0.710 0.338 0.421 0.785
African Americans (N = 440)
 APOE ε4 count 0.271 0.606 0.388 0.570 0.267 0.714 0.537
    AD-PRS models
     AD EUR PRS P-significant 0.221 0.592 0.369 0.432 0.234 0.869 0.329
Gene-annotated 0.226 0.573 0.348 0.318 0.213 0.952 0.169
     AD AFR PRS P-significant 0.242 0.584 0.322 0.732 0.311 0.333 0.826
Gene-annotated 0.241 0.581 0.344 0.584 0.246 0.571 0.587
     AD multi-ancestry PRS P-significant 0.234 0.592 0.360 0.386 0.225 0.905 0.264
Gene-annotated 0.230 0.598 0.370 0.443 0.236 0.857 0.346
    Multi-PRS models
     PRSs using AD GWASs onlyb P-significant 0.238 0.589 0.358 0.527 0.242 0.690 0.489
Gene-annotated 0.233 0.590 0.357 0.484 0.234 0.750 0.421
     PRSs using AD + Neuro GWASsc P-significant 0.187 0.516 0.311 0.195 0.186 0.952 0.017
Gene-annotated 0.217 0.538 0.087 0.809 0.500 0.048 0.989
    Elastic Net SNPs models
     SNPs from AD GWASs only P-significant 0.356 0.669 0.356 0.802 0.471 0.286 0.924
Gene-annotated 0.421 0.678 0.342 0.834 0.704 0.226 0.978
     SNPs from AD + Neuro GWASs P-significant 0.391 0.704 0.342 0.825 0.606 0.238 0.963
Gene-annotated 0.446 0.710 0.365 0.834 0.677 0.250 0.972
    Non-linear SNPs models
     SNPs from AD + Neuro GWASs GBM 0.225 0.479 0.314 0.186 0.187 0.976 0.000
     Gene-annotated SNPs XGBoost 0.220 0.506 0.139 0.802 0.412 0.083 0.972

Abbreviations: AD Alzheimer’s Disease, APOE apolipoprotein E, AUROC Area Under the ROC Curve, AUPRC Area Under the Precision-Recall Curve, EUR European, GBM Gradient Boosting Machine, GWAS Genome-Wide Association Study, PRS Polygenic Risk Score, SNP Single-Nucleotide Polymorphism.

Notes:

aAll models (if not other specified) have regressed out age, sex, and ancestry-specific principal components. Thresholds were determined by maximizing absolute Matthews correlation coefficient.

bAll AD PRSs built with EUR, AFR, and multi-ancestry GWASs using P-significant/gene-annotated SNPs were included in the model at the same time.

cAll AD PRSs built with EUR, AFR, and multi-ancestry GWASs, and neurodegenerative disease PRS (Parkinson’s disease, progressive supranuclear palsy, Lewy body dementia, and stroke) using P-significant/gene-annotated SNPs were included in the model at the same time.