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Accurate long-read transcript discovery and
quantification at single-cell, pseudo-bulk and
bulk resolution with Isosceles

Michal Kabza1, Alexander Ritter 2, Ashley Byrne 3, Kostianna Sereti4,
Daniel Le3, William Stephenson 3 & Timothy Sterne-Weiler 2,4

Accurate detection and quantification ofmRNA isoforms fromnanopore long-
read sequencing remains challenged by technical noise, particularly in single
cells. To address this, we introduce Isosceles, a computational toolkit that
outperformsothermethods in isoformdetection sensitivity andquantification
accuracy across single-cell, pseudo-bulk and bulk resolution levels, as
demonstrated using synthetic and biologically-derived datasets. Herewe show
Isosceles improves thefidelity of single-cell transcriptomequantification at the
isoform-level, and enables flexible downstream analysis. As a case study, we
apply Isosceles, uncovering coordinated splicingwithin and between neuronal
differentiation lineages. Isosceles is suitable to be applied in diverse biological
systems, facilitating studies of cellular heterogeneity across biomedical
research applications.

Alternative splicing (AS) contributes to the generation of multiple
isoforms from nearly all human multi-exon genes, vastly expanding
transcriptome and proteome complexity across healthy and disease
tissues1. However, current short-read RNA-seq technology is
restricted in its ability to cover most exon-exon junctions in iso-
forms. Consequently, the detection and quantification of alternative
isoforms is limited by expansive combinatorial possibilities inherent
in short-read data2. Short read lengths can impose additional chal-
lenges at the single-cell level. For example, nearly all isoform infor-
mation is lost with UMI-compatible high-throughput droplet-based
protocols which utilize short-read sequencing at the 3′ or 5′ ends3.
Recent advances in long-read sequencing technologies provide an
opportunity to overcome these limitations and study full-length
transcripts and complex splicing events at both bulk and single-cell
levels, yet downstream analysis must overcome low read depth, high
base-wise error, pervasive truncation rates, and frequent alignment
artifacts4. To approach this task, computational tools have been
developed for error prone spliced alignment5 and isoform detec-
tion/quantification6–13. However, these tools vary widely in accuracy
for detection and quantification14, their applicability to bulk or

single-cell resolutions, and in their capabilities for downstream
analysis.

Here we present Isosceles (the Isoforms from single-cell, long-
read expression suite); a computational toolkit for reference-guided
de novo detection, accurate quantification, and downstream analysis
of full-length isoforms at either single-cell, pseudo-bulk, or bulk reso-
lution levels (https://github.com/Genentech/Isosceles). In order to
achieve a flexible balance between identifying de novo transcripts and
filtering misalignment-induced splicing artifacts, the method utilizes
acyclic splice-graphs to represent gene structure15. In the graph, nodes
represent exons, edges denote introns, and paths through the graph
correspond to whole transcripts (Fig. 1a). The splice-graph and tran-
script set can be augmented from observed reads containing novel
nodes and edges that surpass reproducibility thresholds through a de
novodiscoverymode, enhancing the adaptability of the analysis. In the
process, sequencing reads are classified relative to the reference
splice-graphs as either node-compatible (utilizing known splice-sites)
or edge-compatible (utilizing known introns), and further categorized
as truncated or full-length (Fig. 1a). Full-length reads can be directly
assigned to known transcripts, meanwhile those representing novel

Received: 23 November 2023

Accepted: 7 August 2024

Check for updates

1Roche Informatics, F. Hoffmann-La Roche Ltd, Poznań, Poland. 2Computational Biology & Translation, Genentech Inc., South San Francisco, CA, USA.
3Department of Next Generation Sequencing andMicrochemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA, USA. 4Department
of Discovery Oncology, Genentech Inc., South San Francisco, CA, USA. e-mail: sterneweiler.timothy@gene.com

Nature Communications |         (2024) 15:7316 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1998-7357
http://orcid.org/0000-0002-1998-7357
http://orcid.org/0000-0002-1998-7357
http://orcid.org/0000-0002-1998-7357
http://orcid.org/0000-0002-1998-7357
http://orcid.org/0000-0002-2177-924X
http://orcid.org/0000-0002-2177-924X
http://orcid.org/0000-0002-2177-924X
http://orcid.org/0000-0002-2177-924X
http://orcid.org/0000-0002-2177-924X
http://orcid.org/0000-0002-3779-417X
http://orcid.org/0000-0002-3779-417X
http://orcid.org/0000-0002-3779-417X
http://orcid.org/0000-0002-3779-417X
http://orcid.org/0000-0002-3779-417X
http://orcid.org/0000-0003-2023-0383
http://orcid.org/0000-0003-2023-0383
http://orcid.org/0000-0003-2023-0383
http://orcid.org/0000-0003-2023-0383
http://orcid.org/0000-0003-2023-0383
https://github.com/Genentech/Isosceles
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51584-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51584-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51584-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51584-3&domain=pdf
mailto:sterneweiler.timothy@gene.com
www.nature.com/naturecommunications


transcript paths are assigned stable hash identifiers. These identifiers
facilitate ease of matching de novo transcripts across data from the
same genome build, irrespective of sequencing run, biological sample,
or independent studies. In contrast, truncated reads may introduce
ambiguity in terms of their transcript of origin, reflecting a challenge
commonly found in short-read data analysis. To address this, we utilize
a concept developed for short-readmethods, Transcript Compatibility
Counts (TCC)16, as the intermediate quantification of all reads. TCCs
are used to obtain the maximum likelihood estimate of transcript
expression through the expectation-maximization (EM) algorithm (in
ref. 17,18; see Methods). This approach tackles another challenge:
accurately quantifying transcripts at multiple single-cell resolution
levels. First, transcripts can be quantified through EM within single-
cells, which can be subsequently used to obtain a neighbor graph and
low dimensional embedding (eg. with common tools like Seurat19).
Second, transcripts can be quantified at the pseudo-bulk level through
EM on the TCCs summed within cell groupings (Fig. 1b). This config-
uration enables versatility of quantification; pseudo-bulk can be
defined by the user in numerous ways, such as through marker label-
ing, clustering, windows along pseudotime, or for each cell based on
its k-nearest neighbors (kNN). Downstream statistical analysis and
visualization for percent-spliced-in and alternative start and end sites is
seamlessly integrated to facilitate biological interpretation of iso-
forms. Our performance evaluations demonstrate that these features
act together to enhance the accuracy of isoform detection and quan-
tification, particularly at lower expression levels. These findings sup-
port Isosceles as a robust and performant tool for long-read
transcriptome analysis across resolution levels.

Results
Isosceles is accurate for transcript discovery and quantification
To robustly assess Isosceles performance against a wide-array of cur-
rently available software6–13, we simulated ground-truth nanopore
reads from reference transcripts proportional to the bulk expression
profile of an ovarian cell line, IGROV-1, using NanoSim20 (seeMethods).
In the evaluation of annotated transcript quantification against the
ground-truth, Isosceles outperforms other programs, achieving a
highly correlated Spearman coefficient of 0.96 (Supplementary
Fig. 1b). Bambuwas the next bestmethod at 0.92, while both IsoQuant
and ESPRESSO were lower at 0.88. Assessing quantification error
through absolute relative difference, Isosceles decreases median and
mean error by 21% compared to the next most accurate method,
Bambu (0.23 vs. 0.29 and 0.41 vs. 0.52; Fig. 2a and Supplementary
Fig. 1a). Importantly, the reduction in error over othermethods is even
more pronounced, demonstrating ~45% lower error than the median
performer ESPRESSO, and 67-85% lower error than the worst perfor-
merNanoCount due to lackof detection ofmany simulated transcripts
(Fig. 2a and Supplementary Fig. 1a).

Since detection of both known and novel transcripts is a major
attraction of long-read sequencing, we investigated the ability of
various methods to detect 10%, 20% or 30% of transcripts when
they are withheld from the annotation file (3269, 6537 and 9801
transcripts respectively; 30% in Fig. 2b, 10-30% in Supplementary
Fig. 2a-c). Here, detection is defined as output of a transcript
annotation with a splicing structure correctly matching a simulated
transcript (irrespective of transcript start/end positions) and a
quantification value greater than zero in transcripts per million
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Fig. 1 | Schematic overview of Isosceles design. a Splice-graph building and path
representation of transcripts (colored lines). Augmentation with de novo nodes
and edges (dashed). Ambiguous reads are assigned to Transcript Compatibility
Counts (TCCs) to be quantifiedusing the expectation-maximization (EM) algorithm
(bottom; panel b). b The Isosceles approach to multi-resolution quantification
using theEMalgorithm.Transcripts quantified fromsingle-cell TCCs usingEM(gray

cell, right) can be used for dimensionality reduction (DimRed) with UMAP or to
derive a k-nearest neighbors graph (kNN). The original single-cell TCCs can be
grouped based on user-defined pseudo-bulk definition and transcripts re-quanti-
fied, either for clusters/markers or for each cell based on its neighborhood from
kNN. Figure 1/panel b, created with BioRender.com, released under a Creative
Commons Attribution-NonCommercial-NoDerivs 4.0 International license.
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(TPM > 0).We calculate the true-positive rate (TPR) as the number of
correct transcripts detected from the total number with reads
simulated. The false-discovery rate (FDR) is defined as the percen-
tage of incorrect transcripts out of the total detected. The overall F1-
score is computed as the harmonic mean of sensitivity (TPR) and
precision (1-FDR). Notably, most methods output low TPR even for
transcripts that are not withheld from the annotation file, as we
illustrate by separating the TPR calculations for annotated and
withheld transcripts (Fig. 2b left, Isosceles=98.9% vs. median
other=69.7%). Methods such as NanoCount and LIQA do not have a
de novo detection mode, so we benchmark them with a pre-
detection step using StringTie221, adding this step to other tools for
consistency (eg. Bambu, ESPRESSO, and also include IsoQuant
alongside single-method detection for Isosceles; Fig. 2b, Supple-
mentary Fig. 2, dashed lines). While ESPRESSO and IsoQuant alone
have modestly higher single-method TPR for withheld transcripts
than Isosceles (1.0 and 6.0 percentage points respectively;

Supplementary Fig. 2a), Isosceles demonstrates the highest single-
program TPR across all transcripts, achieving 78.2%, compared to
the next best method, IsoQuant, which has a TPR of 74.2% (Supple-
mentary Fig. 2a, middle). Moreover, combining Isosceles with pre-
detection by IsoQuant outperforms all other methods and combi-
nations for withheld and annotated transcripts, achieving an 84.5%
TPR overall (Fig. 2b). Importantly, Isosceles exhibits this relative
gain in sensitivity at lower expression levels than other methods
(<10 TPM), and at a reasonable FDR of 4.3%, which is comparable to
other programs (Fig. 2b; median FDR of 3.0%). Taken together,
Isosceles presents the highest F1-score overall both independently
(86.2%; Supplementary Fig. 2a) and with pre-detection using Iso-
Quant (89.7%; Fig. 2b). When considering the relative difference of
quantification for annotated and withheld transcripts, Isosceles
performs at 16.7% to 76.9% decrease in median error compared to
other methods on annotated transcripts and 23.4% to 82.0% when
including de novo (withheld) transcripts across the range of
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Fig. 2 | Quantification and transcript detection benchmarks against ground-
truth using simulated long-read data. aMedian relative difference of transcripts
per million [TPM] values as defined by abs(ground_truth - predicted) / ((ground_-
truth + predicted)/2) for each method on reference transcripts. b Downsampling
benchmarks for 30% transcripts withheld. Transcript detection defined as TPM>0,
the TPR, FDR and F1 score metrics as a function of the expression percentile (pri-
mary x-axis) and TPM values (secondary x-axis) of the simulated transcripts. For

each program, the better of either single-program or pre-detection combination is
plotted (see Supplementary Fig. 2 for all combinations), with TPR stratified by
annotated, withheld and all transcripts alongside FDR and F1 score, with overall
values plotted as bars below the graphs. cMedian relative difference of annotated
and withheld transcripts (30% downsampling) as a function of the simulated
expression level, as defined for panel b. Source data are provided as Source
Data files.
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expression levels (Fig. 2c left & right; Supplementary Fig. 3a). Similar
to detection sensitivity, the most pronounced improvement in
quantification accuracy occurs for the lowest half of expressed
transcripts.

In addition to read simulations, we benchmarked performance
in the context of nanopore sequencing of synthetic molecule spike-
ins. To investigate quantification accuracy, two mixtures containing
Sequins22 were analyzed and compared to ground-truth values.
Isosceles, Bambu, and IsoQuant achieved equally high Spearman
correlations for both mixtures (0.97 and 0.98; Supplementary
Fig. 3b), with Isosceles slightly outperforming the others with a
lowermean relative difference for the firstmixture (0.71 vs. 0.74). To
evaluate transcript detection in a synthetic setting that does not
resemble a model organism, we utilized SIRV spike-in samples23

alongside annotated and withheld transcript sets (Supplementary
Fig. 3c-e). Isosceles, Bambu, and IsoQuant all showed reasonably
high precision (96-99%) for read assignment to correct annotations
vs. over-annotation decoys (see Methods, Supplementary Fig. 3e).
Similar performance was also achieved for transcript detection with
all three methods F1-scores falling into the range of 76-78% (Sup-
plementary Fig. 3c). Despite identifying fewer withheld transcripts,
Isosceles, with zero false positives, outperformed IsoQuant, which
had four false positives and missed five annotated structures (Sup-
plementary Fig. 3d). Taken together, these data suggest Isosceles is
able to perform in both well-annotated and non-model organism
contexts.

Isosceles also shows favorable performance with the PacBio long-
read sequencing platform. We compared nanopore reads from the
Nanopore WGS Consortium and PacBio reads from the ENCODE
Consortium24 to short-read Illumina quantifications for the same cell
line (GM12878; see Methods). We find that Isosceles, IsoQuant and
Bambu all perform well in the ONT vs. Illumina comparison, however
Isosceles displays slightly higher Spearman correlation for PacBio vs.
Illumina (Supplementary Fig. 4a). Lastly, computational speed and
RAM usage are important metrics that impact the overall usability and
feasibility of large-scale analysis efforts. Benchmarking a 5M read
PromethION IGROV-1 sample, Isosceles emerged as one of the more
efficient tools, finishing approximately two hours sooner than the
median performer IsoQuant (93.0% of total CPU time) and out-
performing the slowest software, ESPRESSO, by two days and two
hours (33.4% of total CPU time; Supplementary Fig. 4b).

Isosceles outperforms other methods at single-cell resolution
While known ground-truth values are effective for benchmarking per-
formance, the analysis of true biological data introduces additional
complexities that synthetic and simulated data may not fully capture.
To address this, we benchmark eachmethod’s fidelity of quantification
for the same biological sample and ability to differentiate decoy sam-
ples across bulk and single-cell resolutions. We perform nanopore
sequencing on 10X Genomics single-cell libraries from the pooling of
three ovarian cancer cell lines, IGROV-1, SK-OV-3, and COV504, noting
that the cells separate into three clusters by transcript expression
and that each cluster corresponds to a separate genetic identity
according to Souporcell25 (Fig. 3a; see Methods). Conducting bulk
nanopore sequencing in parallel on MinION and PromethION plat-
forms, we investigate the consistency of those same cell lines as well as
the ability to distinguish against four additional ovarian cancer cell
lines sequenced as decoys, namely COV362, OVTOKO, OVKATE, and
OVMANA. We find that Isosceles consistently maintains the lowest
mean relative difference (24-43% less than other methods) and the
highest Spearman correlation (0.87 for Isosceles vs. 0.75 for the next
highest, Sicelore) amongst methods quantified on the same cell line in
bulk and pseudo-bulk (Fig. 3b and Supplementary Fig. 5a). We further
find that this performance is recapitulated when comparing across
technical runs, between platforms, and independent of the number of

cells included or transcripts compared for IGROV-1 (Supplementary
Fig. 4c-d). Isosceles’ application of the EM algorithm is designed to
result in greater usage of ambiguous reads, which may ultimately
provide higher apparent read depths, and influence quantification
accuracy of both matched and decoy comparisons. Therefore, to
ensure the observed results reflect accuracy and not merely precision,
we stringently consider the consistencyof differencebetweenmatched
and decoy comparisons. To enhance discriminatory power we inves-
tigate highly variable transcripts (HVT) between cell lines as deter-
mined by each program26. While all methods perform better using
fewer HVTs, Isosceles exhibits a 1.3- to 1.4-fold greater absolute dif-
ference in Spearman correlation than the next best method, IsoQuant,
using between 500 and 4,000 HVTs (Fig. 3c). This outperformance is
also observed for mean relative difference as compared to the next
best method, FLAMES, and is statistically significant across HVT num-
bers for both (p value < 5.3×10−5 for Spearman and p value < 3.4 × 10−3

for mean relative diff. vs. next best methods; Wilcoxon paired signed-
rank test, seeMethods; Fig. 3c). To provide orthogonal support for this
conclusion, we simulated 100 cells at approximately 50k reads per cell
and 5M bulk reads for each sample using NanoSimwith single-cell and
bulk error models respectively (see Methods). We repeated the same
benchmark, comparing matched and decoy metrics derived either
from each method’s estimates based on simulated reads or from the
ground-truth expression profiles used for the simulations. Isosceles
outperforms other methods by 1.4 to 2.4-fold across metrics, with the
exception of IsoQuant, which is equivalent to Isosceles for Spearman
correlation only (p value = 0.5; Supplementary Fig. 5c). Last, we com-
pare the simulated single-cell and pseudo-bulk quantifications for
IGROV-1 to ground-truth. While all methods show inflated error for
single-cells compared to pseudo-bulk, Isosceles harbors lower average
error than other methods for both, demonstrating quantification
accuracy even in a data-sparse context (Fig. 3d).

Isosceles enables biological discovery with single-cell data
Isosceles’ capabilities for accurate and flexible quantification also
enhance downstream analysis and biological discovery. To demon-
strate, we reanalyzed 951 single-cell nanopore transcriptomes from a
mouse E18 brain. Investigating transcriptional markers (Supplemen-
tary Fig. 6), we observe the major cell types identified in the original
study using Sicelore9. Isosceles quantifications provide greater reso-
lution however, separating differentiating glutamatergic neurons into
two distinct trajectories instead of one (annotated here as T1 and T2),
in addition to the single GABAergic trajectory using Slingshot27

(Fig. 4a). We also observe separation of radial glia and glutamatergic
progenitor cells, which were connected in the original study. Isosceles’
versatility of pseudo-bulk quantification coupled to generalized linear
models (GLM), further distinguishes downstream experimental design
capabilities for biological discovery. For example, to investigate tran-
scriptional dynamics within trajectories we apply the EM algorithm to
pseudo-bulk windows, quantifying transcript expression as a function
of pseudotime. To summarize individual transcript-features, Isosceles
provides the inclusion levels of alternative splicing (AS) events, such as
alternative exons and splice sites quantified as percent-spliced-in2,28

[PSI] or counts-spliced-in [CSI] (see Methods). In order to test for dif-
ferential inclusion versus exclusion as a function of pseudotime (or any
other condition), Isosceles seamlessly integrates with the DEXseq
package29 to utilize GLMs in the context of splicing (see Methods).
Applying the method identifies 25 AS events changing within trajec-
tories as well as 21 changing between trajectories respectively (Sup-
plementary Data 1). Isosceles also implements the ‘isoform switching’
approach utilized in the original study (see Methods). However, we
note that applying this method only identifies transcripts changing
between major clusters, and none within glutamatergic or GABAergic
neurogenesis trajectories (including the exemplar genes Clta andMyl6
presented in the original study; eg. Supplementary Fig. 7a).
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Onemajor challenge in the interpretation of single-cell data at the
transcript-level (or event-level) is that fluctuations in detection or
quantification may be attributable to gene expression changes alone.
To decouple splicing dynamics and visualize them independently, we
utilize a permutation-based approach. We estimate a background
distribution by shuffling each gene’s splicing quantification among
cells expressing that gene (within and between trajectories). We then
visualize log ratios of the observed CSI values versus the mean
expected CSI from these permutations (Fig. 4b and Supplementary
Fig. 7b; see Methods). Here, we observe AS events that exhibit precise
changes within specific neuronal differentiation trajectories (such as
only T1 or T2), including several RNA binding proteins (eg. Celf2,
Hnrnpa2b1, Luc7l3, Ythdc1). Exemplifying a uniquemode of alternative
splicing in the gene Celf2, we observe a coordinated switch from one
alternative donor splice site to an alternative acceptor splice site in the
same intron as cells differentiate from glutamatergic progenitor to
mature neurons (T1 trajectory, Fig. 4c-d). To validate the statistical
significance of this event, we compare observed to permuted values
using a stringent empirical test (see Methods). Here, we find the
splicing-change is robustly independent of the overall changes in Celf2
expression that simultaneously occur (Fig. 4c-d and Supplementary
Fig. 8c; p value < 3.8 × 10−4). Underscoring biological significance, we
note the two alternative splice sites have orthologs in other mamma-
lian species (as annotated inVastDB30) andhigh sequence conservation
in the intronic region surrounding both splice sites (Supplementary
Fig. 8a-b). We show the mutual exclusivity and switch-like splicing
change are similarly conserved in human and mouse, recapitulating

the longitudinal observation across embryonic brain samples from
bulk short-read datasets30 (Fig. 4e), including an in vitro study of
mouse neuronal differentiation31 (Supplementary Fig. 8d).

Discussion
In summary, Isosceles is a computational toolkit with favorable per-
formance compared to other methods, as demonstrated through rig-
orous benchmarks on simulated, synthetic spike-in, and biological
data from nanopore sequencing across ovarian cell lines. In these
benchmarks, Isosceles performs transcript detection and quantifica-
tion with accuracy, revealing improvements over existing methods
that are most pronounced at lower expression levels. Notably, tran-
scription factors and other regulatory proteins typically exhibit low
gene expression levels, accompanied by rapid, fine-tuned regulation in
mRNA and protein turnover rates32. Such regulatory genes are fre-
quently the focus of single-cell biological investigations, underscoring
the importance of precision in this range. Through multi-resolution
sequencing of ovarian cancer cell lines, we benchmark fidelity of
quantification, demonstrating Isosceles’ performant capacity to con-
sistently reproduce results for the same sample, and to differentiate
among related yet distinct samples. Such demultiplexing of pooled
samples is both a practical task in single-cell analysis33, and analogous
to the identification of distinct cell types or lineages in single-cell
studies where technical noise and data sparsity are common chal-
lenges. For example, intrinsic differences between cell lines, even
those of the same tissue origin, may be more substantial than many
biological changes typically investigated in biomedical research.
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We observe that some methods exhibit variability in perfor-
mance between simulated and biological benchmarks (eg. Figure 3c
vs. Supplementary Fig. 5c), likely attributable to inherent differences
between real and simulated long-read data. However, Isosceles
remains consistently performant, illustrating accurate quantifica-
tion in multiple contexts. As a reference-guided method, it is
designed to excel in the setting of well-annotated model organisms,
such as human and mouse. However, we note that Isosceles also
handles SIRV synthetic molecule spike-ins effectively, which feature
non-canonical splice sites and artificial sequence content. These
findings underscore Isosceles’ methodological robustness and sup-
port its utility in multiple settings.

We further illustrate that these performant capabilities are
enabling in the context of biological discovery. In our case study, we
utilize Isosceles to uncover the dynamics of alternative splicing in
differentiating neurons. Here, Isosceles provides enhanced resolution
and reveals numerous AS events not reported in the original study.

Importantly, these results reveal fine-tuned regulation within fate-
determined trajectories and not only between major clusters (eg.
radial glia vs. mature neurons). Among these events are genes
encoding disease relevant RNA binding proteins that are themselves
implicated in the regulation of neuronal differentiation. The Celf2
gene, for instance, plays a central role in neurogenesis, as it modulates
the translation of target mRNAs through its shuttling activity34. The
example in Celf2 (presented in Fig. 4) highlights a switch-like splicing
event that results in a conserved substitution of five to seven amino
acids within the protein’s disordered region. This is akin to peptide
changes introduced by microexons, which have been attributed
functional roles in neurogenesis, including translational control of
mRNAs through recruitment to membrane-less condensates, and
dysregulation in disease35–37. These results demonstrate that Isosceles
is an effective method for hypothesis generation and biological dis-
covery, offering insight into the splicing dynamics of a key regulator of
differentiation in our case study.
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Fig. 4 | Analysis of 951 single-cell nanopore transcriptomes from a mouse
E18brain. a 2DUMAPembedding fromPCAperformed jointly on variable gene and
transcript features. Gradient coloring by pseudotime according to each trajectory.
Neural Progenitor Cells are abbreviated Pro., Immature neurons Imm. and Mature
neurons Mat. T1 and T2 describe the two trajectories of Glutamatergic neurogen-
esis observed. bHeatmap of significant AS events colored by the ratio of observed
CSI vs. permuted CSI for permutations within (top) or across all (bottom) trajec-
tories. c UMAP density column from top to bottom: Celf2 gene expression, Celf2
alternative 5′ splice site (A5) in intron 12 (Celf2:i12:A5, chr2:6560659-6560670; row
highlighted in panel b), and juxtaposed alternative 3′ splice site (A3) for intron 12
(Celf2:i12:A3, chr2:6553965-6553982). d AS event diagram on the top of Celf2 gene

intron 12 where exons are shown as boxes and introns as lines, with the A5 event in
red, and the A3 event in blue, with reads from cells in the beginning and the end of
the glutamatergic T1 trajectory shown below respectively (boxed regions from the
bottom panel). In the bottom panel are plots of CSI for windows along pseudotime
for the observed data (A5, red) and (A3, blue) plotted over the background per-
mutations in gray. e Mean PSI values of sample group quantifications from the
human (Hsa38, left) and mouse (Mmu10, right) VastDB splicing databases30. Stan-
dard error is provided as bars (for sample groups with n > 1 samples), with source
accession identifiers for each sample provided in Supplementary Data 2 and raw
values in Source Data.
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Taken together, Isosceles is a flexible toolkit for the analysis of
long-read bulk and single-cell sequencing that outperforms existing
methods in detection and quantification across biological resolution
levels. Based on its accuracy and flexibility for experimental designs,
Isosceles will significantly aid researchers in transcriptomic studies
across diverse biological systems.

Methods
Isosceles Splice-graphs
Splice-graph compatibility is defined for reads using various strin-
gency levels to match their concordance with existing knowledge.
Reads are classified based on compatibility as Annotated Paths (AP),
Path Compatible (PC), Edge Compatible (EC), Node Compatible (NC),
De-novo Node (DN), Artifact Fusion (AF), Artifact Splice (AS), and
Artifact Other (AX). AP refers to full-length transcript paths that per-
fectlymatch a reference transcript from the input gene annotation and
are quantified by default. PC reads follow transcript paths that are a
traversal of anAP, andmaybe truncated or full-length orwith differing
transcript start or end positions. EC reads traverse annotated splice-
graph edges (introns) and may be truncated or full-length. NC reads
are paths that traverse only annotated splice-graph nodes (splice-sites)
but contain at least one novel edge. DN reads have paths that traverse a
de novo node (splice-site). AF reads traverse paths connecting at least
two splice-graphs for annotated genes that do not share introns with
each other. AS reads are assigned to genes, but traverse an unknown
and irreproducible node (splice-site), while AX reads lack compatibility
due to ambiguous strand or lack of gene assignment.

Reads are also classified based on their truncation status, which
includes Full-Length (FL), 5′ Truncation (5 T), 3′ Truncation (3T), Full-
Truncation (FT), and Not Applicable (NA). AP transcripts are auto-
matically annotated as FL, and truncation status is checkedonly for PC,
EC, NC, and DN transcripts. AF, AS, and AX transcripts are auto-
matically labeled NA. Reference transcripts used for truncation status
classification are recommended to be filtered to only the GENCODE
‘basic’ dataset (tag=’basic’), but also could be all transcripts in the
provided annotations, as decided by the user. Full-length reads are
those whose paths splice from a first exon (sharing a reference tran-
scripts first 5′ splice site) andwhose paths splice to a last exon (sharing
a reference transcripts final 3′ splice site).

To add nodes with one or more de novo splice sites to the splice-
graph, each splice-site must meet two conditions: it is observed in at
least theminimumnumber of reads (default: 2) and it is connected to a
known splice site in the splice-graph with least a minimum fraction
(default: 0.1) of that known splice site’s connectivity. Additionally,
annotations forknown transcripts andgenes aremerged andextended
based on specific criteria. For example, any annotated genes sharing
introns with each other are merged into one gene and given a new
gene_id & gene_symbol (comma-separated list of original Ensembl IDs
and gene symbols). Annotated spliced (and unspliced) transcripts
sharing the same intron structure, as well as transcript start and end
bins (default bin size: 50bp) are merged together and given a unique
transcript identifier.

The method offers three modes of extending annotations to
include de novo transcripts: strict, de_novo_strict, and de_novo_loose. In
the strict mode, only AP transcripts are detected/quantified. In the
de_novo_strictmode, AP transcripts and filtered FL transcripts of the EC
and NC classes are included in quantification. In the de_novo_loose
mode, AP transcripts and filtered FL transcripts of the EC, NC, and DN
classes can be included.

For downstream analysis of individual transcript features, AS
events are defined as the set of non-overlapping exonic intervals that
differ between transcripts of the same gene. These are quantified as
percent-spliced-in or counts-spliced-in according to the sum of the
relative expression or the rawcounts of the transcripts that include the
exonic interval respectively. AS events are classified into different

types similar to previous methods analyzing splicing from short-read
data2, including core exon intervals (CE), alternative donor splice sites
(A5), alternative acceptor splice sites (A3), and retained introns (RI).
Isosceles can also quantify tandem untranslated regions in the first or
last exons including transcription start sites (TSS) and alternative
polyadenylation sites (TES).

Isosceles quantification
We use the Expectation-Maximization (EM) algorithm to obtain the
maximum likelihood estimate (MLE) of transcript abundances, as used
previously in transcript quantification methods for short-read data
such as our prior software Whippet2, or the approach’s conceptual
precursors RSEM17 and/or Kallisto18. Specifically, we quantify transcript
compatibility counts (TCCs) based on fully contained overlap of reads
to the spliced transcript genomic intervals (including an extension
[default: 100 bp] for transcript starts/ends), with strand for unspliced
reads ignoredby default. For computational efficiency, TCCsmatching
more than one gene are disallowed in the current version. The like-
lihood function is defined for transcript estimation as it is defined for
short-read data with Whippet2, as L(α) proportional to the product,
over all reads, of the sum of the probabilities α(t) of selecting a read
from each compatible transcript t, divided by the effective length of t.
However, due to the long length of nanopore reads,we define effective
transcript length here to be the maximum of the mean read length or
the transcript’s actual length, then divided by the mean read length.
This directly accommodates shorter transcripts which would be fully
spanned by the average read and are thus assigned an effective length
of 1.0, whereas longer transcripts are represented proportionally to
that value. In contrast, the user defined parameter specifying single-
cell data does not use length normalization due to the anchoring of
reads to the 5′ or 3′ ends of transcripts which assumes read coverage
irrespective of transcript length. The EM algorithm iteratively opti-
mizes the accuracy of transcript abundance estimates derived from
TCCs, continuing until the absolute difference between transcript
fractions is less than a given threshold (default:0.01) between itera-
tions, or until the maximum number of iterations is reached
(default: 250).

Simulating ONT data
In this study, the Ensembl 90genomeannotation (only transcriptswith
the GENCODE ‘basic’ tag) was used for all simulations, focusing spe-
cifically on spliced transcripts of protein-coding genes to exclude
single-isoform non-coding genes. In order to simulate data with rea-
listic transcriptional profiles, we quantified the expressionof reference
annotations in IGROV-1 cells using publicly available short-read data
([sample, project] accession IDs: [SRR8615844, PRJNA523380]; https://
www.ebi.ac.uk/ena/browser/view/SRR8615844) and Whippet v1.7.3
using default settings. Only transcripts with non-zero expression in
IGROV-1 were retained for simulations. For detection benchmarks, the
Ensembl 90 annotation file (in Gene Transfer Format [GTF]) was ran-
domly downsampled such that the longest transcript of each genewas
always retained to ensure at least one full-length major isoform for
eachgene (by 10%, 20%, and 30%downsampling,where99.8-100.0%of
downsampled transcripts had unique exon-intron architectures). To
assess performance in de novo transcript detection, eachprogramwas
run individually (if de novo detection was supported) and in tandem
with StringTie2 for a pre-detection step (also including IsoQuant for
pre-detection with Isosceles). IsoQuant was executed in a similar
manner to other programs but in a consecutive two-step process
(where the first IsoQuant run identifies de novo transcripts which are
concatenated to the original annotations in a second run) instead of a
single-run due to significant improvement in performance observed
(Fig. 2b-c and Supplementary Fig. 2 for IsoQuant two-step results;
IsoQuant single-run results in Isosceles_Paper: reports_static/
simulated_bulk_benchmarks_isoquant.ipynb).
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In order to simulate Oxford Nanopore Technologies (ONT)
reads using NanoSim, we trained error models on bulk nanopore
RNA-Seq FASTQ files concatenated from sequencing three cell lines:
SK-OV-3 (SRR26865806), COV504 (SRR26865804), and IGROV-1
(SRR26865803). Nanopore single-cell RNA-Seq (nanopore scRNA-
Seq) read models were also generated from the pooled set of the
aforementioned cell lines (SRR26865982). A total of 100 million reads
were simulated from each error model and then the first 12 million
reads deemed alignable by NanoSim were extracted.

Read model error rates:

Bulk RNA-Seq scRNA-Seq

Mismatch rate 0.02982687241070872 0.02866079657952386

Insertion rate 0.024056603631908934 0.024409736896819117

Deletion rate 0.04654204334915349 0.030249793440489687

Total error rate 0.10042551939177115 0.08332032691683267

To align the simulated reads provided in BAM format to all
benchmark programs, Minimap2 was employed, using Ensembl 90
introns given in a BED file and applying a junction bonus parameter of
15 (with the exception of NanoCount, which required read alignment
directly to the transcriptome). For the scRNA-Seq ONT dataset used to
create the readmodel, various tools detected a similar number of cells
(~2460), but the median number of unique molecular identifiers
(UMIs) per cell differed. The SicelorepreprocessingofONTscRNA-seq,
identified between 3,000 and 6,000 UMIs per cell, which were pro-
vided in BAM format for biologically derived data benchmarks to
Sicelore, IsoQuant, and Isosceles with cell barcode and UMI tags
annotated (Fig. 3a-b). In contrast, FLAMES, with its own UMI detection
anddeduplicationprocesses, detectedaround 13,500UMIs per cell. To
strike a balance between the varying results from different tools, a
compromise of 10,000 reads per cell was chosen for this study.

To simulate scRNA-Seq ONT data, a BAM file containing aligned
simulated reads from the scRNA-Seq read model was randomly
downsampled 100 times using samtools, with a subsampling propor-
tion of 0.000833. This resulted in approximately 10,000 reads out of
the original 12 million for each BAM file. A custom Python script (see
supplemental Benchmark commands) was used to assign unique cell
barcode sequences and UMI sequences for each read within the 100
BAM files. These subsampled BAM files were then merged and sorted
using samtools.

Synthetic molecules and platform-comparison data processing
The data used for comparative analysis of results from different
sequencing platforms included FASTQ files for PacBio (ENCODE:
ENCFF450VAU) and ONT (cDNA Pass basecalls from the Nanopore
WGS Consortium GitHub repository: https://github.com/nanopore-
wgs-consortium/NA12878/blob/master/RNA.md23), as well as Illumina
short read transcript quantifications (ENCODE: ENCFF485OUK) for the
GM12878 cell line. Long reads were aligned to the reference genome
using Minimap2 as discussed previously for simulated data (although
in the PacBio dataset, the ‘-ax splice:hq’ parameter was used instead of
‘-ax splice’). Transcripts with >1 TPM in Illumina quantifications
(intersectedwith the Ensembl 90 transcript IDs utilized in this study to
account for annotation discrepancies with Ensembl 95 annotation
from ENCFF485OUK) were selected, and for those with one-to-many
matches of Ensembl IDs, ground-truth values were aggregated.

The alignment file in BAM format for ‘Nanopore cDNA Pass’ reads
aligned to the SIRV sequences (SIRV set 3, Lot No. 001485) was
downloaded from the Nanopore WGS Consortium GitHub repository
(see above). The three top performing tools Isosceles, Bambu and
IsoQuant were benchmarked on both insufficient annotations (44

annotated SIRV isoforms [24 withheld], compared to 68 isoforms in
the correct annotations) and over-annotations (68 annotated SIRV
isoforms with an additional 32 decoy isoforms) obtained from Lexo-
gen’s website (https://www.lexogen.com/sirvs/download). For the
over-annotations, the fraction of reads assigned to correct transcripts
(readassignment precision)was calculated for each tool (utilizing both
SIRV transcripts and 92 unspliced ERCC sequences). In case of insuf-
ficient annotations, transcript detection (comprising both annotated
and withheld) was measured with the precision, recall, and F1 score
metrics on spliced (SIRV) data only, with the metrics being calculated
on the level of unique transcript splicing structures.

Nanopore raw read files in FASTQ format were obtained fromSRA
for Sequin mix A data (SRR14286054) and mix B data (SRR14286063),
then aligned using Minimap2 and processed using individual tools.
Sequin reference sequences and annotations used for the
analysis were downloaded from (https://github.com/XueyiDong/
LongReadRNA/tree/master/sequins/annotations) as described
previously22,38. Quantifications from each tool were compared to
ground-truth Sequin expression values for mix A andmix B in order to
calculate Spearman correlations and mean relative differences for
each mix as well as for concatenated expression values from
both mixes.

Biological data processing
The bulk RNA-Seq data (GSE248114) included Promethion data, fea-
turing eight sequencing libraries for seven ovarian cancer cell lines
(OVMANA, OVKATE, OVTOKO, SK-OV-3, COV362, COV504, and
IGROV-1), as well as two technical replicates for IGROV-1. For MinION
platform data, two technical replicates for IGROV-1 were sequenced.
Factors such as RAMperformance and program speed determined the
number of reads simulated in bulk simulations and downsampled in
bulk data. For example, forperforming crossplatformcorrelations, the
Promethion data was downsampled to 5 million reads to make it more
comparable to MinION (~6-7 million raw reads) and pseudo-bulk
scRNA-Seq (3.5-4.5 million UMIs per cluster, as detected by Isosceles)
in terms of total read depth. This decision was also influenced by an
issue with IsoQuant (https://github.com/ablab/IsoQuant/issues/69),
which limited its ability to process large read files in our hands.
Notably, this issue persisted on a cluster node with 20 CPUs of 2.4GHz
and allocated 230 GB of RAM.

The scRNA-Seq data (GSE248115) consisted of a mix of three cell
lines (SK-OV-3, COV504, and IGROV-1). The Illumina sequencing
(SRR26865983) was preprocessed using CellRanger (Version 6.0.1). For
ONT sequencing data (SRR26865982) we considered two barcode pre-
processing methods (Sicelore and wf-single-cell) for cell barcode (CBC)
and unique molecular identifier (UMI) detection. We observe similar
average Spearman correlation (0.85 vs 0.88) and mean relative diff.
(0.57 vs 0.60) between the same cell lines in pseudo-bulk and bulk
between the two. However, better performance was achieved with
Sicelorepreprocessing formatchedvs. decoy (0.26 vs0.16 for Spearman
correlation, 0.22 vs 0.14 for mean relative diff.). Therefore, we used
Sicelore preprocessing to annotate the CBC and UMI tags in the ONT
sequencing BAM files for Isosceles, Sicelore, and IsoQuant (Supple-
mentary Fig. 5d; see below).

Mitochondrial transcripts common to all method’s output were
removed, as they were strong outliers across methods. Additionally,
three specific transcripts outliers across methods were removed:
ENST00000445125 (18 S ribosomal pseudogene), ENST00000536684
(MT-RNR2 like 8), and ENST00000600213 (MT-RNR2 like 12).

Benchmarks using biological data
The correlation and relative difference analyses (Supplementary
Fig. 4c) compared annotated transcripts between bulk RNA-Seq data
from two Promethion and two MinION sequencing replicates of
IGROV-1, both within each platform (using replicates) and between
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platforms (using averaged data for each platform). For each compar-
ison, only transcripts with a mean expression of at least 1 TPM were
used. In Supplementary Fig. 4d, scRNA-Seq and bulk RNA-Seq data
were also compared, again considering only annotated transcripts. For
each program, the IGROV-1 scRNA-Seq pseudo-bulk cluster (according
to genetic identity from Souporcell) was compared with the averaged
bulk RNA-Seq IGROV-1 expression values from two replicates for each
platform. Analyses were also restricted to transcripts with an expres-
sion of at least 1 TPM in the single-cell RNA-Seq results. Comparisons
were made for each platform using top k cells (highest UMI count)
using the top 5000 transcripts (highest mean expression) to ensure a
comparable number of transcripts across software package, and top N
transcripts (highest mean expression) for 64 top cells (highest UMI
count) (Supplementary Fig. 4d).

For Fig. 3a-c, scRNA-Seq and bulk RNA-Seq data analysis was
conducted using Bioconductor packages (eg. scran, scater, etc.) on the
transcript level for cells with at least 500 genes, for a range of top
highly variable transcript numbers (500, 1,000, 2,000, 4,000, 6,000
and 10,000), as determined by the scran::getTopHVGs function39.
Heatmaps were generated to show correlations and mean relative
difference between scRNA-Seq pseudo-bulk results for three cell line
clusters and PromethionbulkRNA-Seq results for sevenovariancancer
cell lines, similarly only including annotated transcripts. IGROV-1
expression was averaged from two replicates. To compare difference
betweenmatched and decoymetrics (Spearman correlation andmean
relative difference), we calculated the absolute difference and com-
puted the upper and lower bounds of the standard error using error
propagation (as sqrt(se(x)^2 + se(y)^2)). To assess the overall sig-
nificance of Isosceles results compared to each program in matched
versus decoy metrics, we computed the differences between each
matched cell line and themeanof decoys across a range of 500-10,000
HVTs. The set of differences is then compared against the matched
results from Isosceles using a Wilcoxon matched-pairs signed-
rank test.

For the simulated data version of Fig. 3c presented in Supple-
mentary Fig. 5c, nanopore reads were simulated for SK-OV-3, IGROV-1,
OVMANA, OVKATE, OVTOKO and COV362. Thesewere based on short
read TPM values obtained from Whippet v1.7.3 and Ensembl 90 tran-
scripts with the GENCODE ‘basic’ tag (excluding mitochondrial tran-
scripts) andmeanexpression of at least0.1 TPMacross all analyzed cell
lines. 5M readswereproduced byNanoSim for both bulk RNA-Seq and
scRNA-Seq read models, which were aligned to the genome using
Minimap2. For the latter, cell barcodes randomly selected from
100 sequences and unique UMI sequences were added to the BAM
files. Simulated bulk RNA-Seq and scRNA-Seq samples were analyzed
as described for biological data presented in Fig. 3c.

We also perform this benchmark for Isosceles on the BAM files
obtained from Sicelore and wf-single-cell (for the latter, Minimap2
alignment junction bonus of 15 was specified using the ‘resour-
ces_mm2_flags’ flag and the expected number of cells was set
to 2,000). As wf-single-cell doesn’t produce a deduplicated BAM
file, UMI deduplication using UMI-Tools was applied. Isosceles
results for both BAM files were compared for the top 4,000 highly
variable transcripts, defining the choice of Sicelore for single-cell
barcode preprocessing used in the manuscript (see Supplemen-
tary Fig. 5d).

Case-study analysis of biological data
For the case-study in Fig. 4, the raw reads were pre-processed to
identify cell barcodes (CBC) and unique molecular identifiers (UMI)
according to the Sicelore workflow. The reads were subsequently
aligned to the reference genome mm10/GRCm38 (with annotations
derived from GENCODE M25), using Minimap2 with a junction bonus
of 15, which targeted both annotated introns from Gencode M25 and
those extracted from the VastDB mm10 GTF file30. The aligned reads

with CBC and UMI annotations were subsequently quantified with
Isosceles. The 951-cell dataset was filtered to exclude cells that
expressed fewer than 100 genes. For dimensionality reduction, we
combine Isosceles gene and transcript counts, culminating in the total
identification of 3760 variable features (with a target of 4000), com-
prising 1735 genes and 2025 transcripts. We applied Principal Com-
ponent Analysis (PCA), calculating 30 components using the scaled
expression of the variable features. Cells were clustered using Louvain
clustering (with resolution parameter of 2) on the Shared Nearest
Neighbor (SNN) graph (setting a k-value of 10). The clusters’ identities
were determined through gene set scores, particularly the mean TPM
values of markers delineated in the original study (see Supplementary
Fig. 6). Additional marker genes were identified via the scran::find-
Markers function requiring the t-test FDR to be significant (q value <
0.05) in at least half of the comparisons toother clusters (selecting top
5 markers of each cluster).

Pseudotime analysis was performed using Slingshot for differ-
entiating glutamatergic neurons (identifying two trajectories, T1 and
T2), differentiating GABAergic neurons, radial glia, cycling radial glia
and Cajal-Retzius cells (with one trajectory each). To implement the
original ‘isoform switching’ analysis, pairs of clusters were compared,
detecting marker transcripts through the specific scran::findMarkers
function (Wilcoxon test). We filter for transcripts of the same gene
showing statistically significant differences in opposite directions (i.e.
one upregulated in one cluster, the other in another cluster). To ana-
lyze splicing changes within each trajectory, we used Isosceles to cal-
culate aggregated TCC values for windows along pseudotime, defining
the window size as 30 cells and the step size as 15 cells. AS events from
variable transcripts abiding by further criteria were selected for
downstream analysis. First, mean PSI values across all cells from the
trajectory were between 0.025 and lower than 0.975 to exclude con-
stitutively included/excluded events. Second, at least 30 cells must
have values not equal to 0, 1, or 0.5, and 30 cells must have a value
above 0.1 to select against events with only low counts. Redundant PSI
events, identical in read counts profiles within a trajectory, were
excluded, and those with >0.99 spearman correlation were excluded
from visualization in Fig. 4b and Supplementary Fig. 7b. For com-
parative analysis, percent-spliced-in (PSI) count values are denoted as
counts-spliced-in (CSI) and defined by PSI * gene counts. These are
juxtaposed with exclusion PSI counts, calculated as [(1 - PSI value) *
gene counts] and the inclusion/exclusion pair input into DEXSeq29. For
each intra-trajectory comparison, our experimental design encom-
passed ‘~sample + exon + pseudotime:exon‘. Meanwhile, the inter-
trajectory analysis included all trajectories with a design of ‘~sample +
exon + pseudotime:exon + trajectory:exon‘, compared against a null
model of ‘~sample + exon‘ using the LRT test.

To determine ratios of observed vs. expected CSI, we shuffle
TCCs across cells with non-zero counts and apply the EM algorithm,
calculating PSI for each window. To obtain expected CSI wemultiply
the shuffled PSI values * observed gene counts. The permutations
are conducted for each AS event across 100 bootstraps. For
empirical statistical validation of changes between the first and last
windows of a trajectory (eg. for Celf2), we fit a negative binomial
distribution to each window using maximum likelihood estimation
(‘fitdistrplus‘ package) on the permuted CSI, and calculate high and
low one-tailed p values for the observed CSI. Combining the high
and low, and low and high p values of the first and last windows
respectively using Fisher’s method, we defined an overall p-value as
two times the minimum combined p value. Specifically for heatmap
visualization, a broad window size of 100 cells for glutamatergic &
GABAergic neurons, and 50 cells for glia and CR cells, with a con-
sistent step size of 3 cells for smoothing was utilized. The heatmap
values were given as the log2 ratio of observed to expected, with a
pseudocount of 0.1, defining the ratio between PSI counts and the
average of the corresponding permuted PSI counts.
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Benchmark command summary:
https://github.com/Genentech/Isosceles_Paper/blob/devel/

Benchmark_commands.md
Software versions:

Software Version

Isosceles v0.2.0

Flair v1.7.0

StringTie2 v2.2.1

IsoQuant v3.0.3

NanoCount v1.0.0.post6

Sicelore v2.0

Bambu v3.2.5 (R 4.3.0, Bioconductor 3.17)

FLAMES v0.1

ESPRESSO beta1.3.0

NanoSim v3.1.0

Minimap2 v2.24-r1122

wf-single-cell v1.1.0

UMI-tools v1.1.5

Cell culture
All cell lines used in this study were validated by STR analysis and
verifiedmycoplasmanegative by PCR. No commonlymisidentified cell
lines were used in this study. IGROV1, SK-OV-3, OVTOKO, OVKATE and
OVMANA cell lines were cultured in RPMI-1640 supplemented with
10% heat-inactivated fetal bovine serum (FBS) and 2mM L-Glutamine.
COV362 and COV504 cells were cultured in DMEM supplementedwith
10%FBSand2mML-Glutamine.Cellswere cultured in 37 °Cand 5%CO2

in a humidified incubator. Cell line source and catalog numbers are
provided in the table below. Cells were cultured in 10cm2 plates until
they reached ~60-80% confluency. For bulk analysis, RNA was purified
using Qiagen’s RNeasy Plus Mini kit (Cat. #74134) according to the
manufacturer’s instructions. For single-cell analysis, IGROV1, SK-OV-3
and COV504 cells were trypsinized and pooled together at a 1:1:1 ratio
at a concentration of 1000 cells / μl and submitted for single cell long
read sequencing.

Cell line Provider Catalog number

IGROV-1 NCI DCTD

SK-OV-3 ATCC HTB-77

OVTOKO JCRB Cell Bank JCRB1048

OVKATE JCRB Cell Bank JCRB1044

OVMANA JCRB Cell Bank JCRB1045

COV362 ECACC 07071910 Lot# 07G029

COV504 ECACC 07071902 Lot# 07I007

Reference. 40:

Single-cell, long-read library preparation and nanopore
sequencing
Approximately 10 ngof cDNAgenerated fromtheNextGEMSingleCell
3′Gene expression kit (10XGenomics, Cat # PN-100268) was amplified
using 10uM of the biotinylated version of the forward primer and a
reverse primer from the single cell 3′ transcriptomics protocol (ONT,
SQK-LSK114), [Btn]_Fwd_3580_partial_read1_defined_for_3′_cDNA, 5′-/

Biosg/CAGCACTTGCCTGTCGCTCTATCTTC CTACACGACGCTCTTCC
GATCT-3′ and Rev_PR2_partial_TSO_defined_for_3′_cDNA, 5′-CAGCT
TTCTGTTGGTGCTGATATTGCAAGCAGTGGTA TCAACGCAGAG-3′. To
ensure enough cDNA was generated for the pull-down reaction
(200 ng), two PCR reactions were carried out using 2X LongAmp Taq
(NEB, Cat # M0287S) with the following PCR parameters 94°C for
3minutes, with 5 cycles of 94°C 30 secs, 60°C 15 secs, and 65°C for
3mins, with a final extension of 65°C for 5minutes. The cDNA was
pooled and cleaned up with 0.8X SPRI bead ratio and eluted in 40μL
RNAse free H20. Concentration was evaluated using the QuBit HS
dsDNA assay (Thermofisher, Cat No. Q32851). The amplified cDNAwas
then captured using 15μLM270 streptavidin beads (Thermofisher, Cat
# 65305). Beads were washed three times with 1mL of the 1X SSPE
buffer (150mM NaCl, 10mM NaH2PO4, and 1mM EDTA). Beads were
then resuspended in 10μL of 5X SSPE buffer (750mM NaCl, 50mM
NaH2PO4, and 5mM EDTA). Approximately 200ng of the cDNA in
40μL were added together with the 10μL M270 beads and incubated
at room temperature for 15minutes. After incubation, the sample and
beads were washed twice with 1mL of 1X SSPE. A final wash was per-
formed with 200 uL of 10mM Tris-HCl (pH 8.0) and the beads bound
to the sample were resuspended 10μL of RNAse free H2O. PCR was
performed on-bead using the unbiotinylated version of the primers
from the ONT single 3’ transcriptomics protocol discussed earlier for 5
cycles according to the same PCR program shown above. A 0.8X SPRI
was performed. The cDNA was eluted in 50μL in RNAse free H2O and
the concentration was evaluated with QuBit HS dsDNA assay and
Tapestation D5000 DNA kit (Agilent Technologies, Cat # 5067-5589).

Library preparation for nanopore sequencing was performed
according to the SQK-LSK110 protocol with the exception of the end-
repair step timewhichwas increased to 30min. 125 fmol offinal library
was loaded on the PromethION using the FLO-PRO002 flow cells,
R9.4.1 chemistry and sequenced for 72 h. Reads were basecalled using
Guppy v5.0.11.

Statistics and reproducibility
No statistical methods were used to predetermine sample size. The
experiments were not randomized. The investigators were not blinded
to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All biological sequencing data generated in the manuscript is depos-
ited in the NCBI Gene Expression Omnibus (GEO) under GSE248118.
Mouse E18 brain long-read single-cell sequencing data is available at
GSE130708. Sequin spike-in ONT data is available at GSE172421. SIRV
spike-in ONT data and GM12878 ONT data available from GitHub at
nanopore-wgs-consortium/NA12878 [https://github.com/nanopore-
wgs-consortium/NA12878]. PacBio data for GM12878 is available
from the ENCODE Consortium at ENCFF450VAU and the transcript
quantification file from ENCFF485OUK. Accession identifiers for
source data in Fig. 4e and Supplementary Fig. 8d are listed in Sup-
plementary Data 2. Source data are provided with this paper.

Code availability
Isosceles R package code, documentation, and vignettes are
released on GitHub (https://github.com/Genentech/Isosceles)41

under an open source GPL-3 license. All benchmarking code, virtual
environments, and quantification data necessary to reproduce the
figures/analyses in the manuscript are similarly released (analysis
code: https://github.com/Genentech/Isosceles_paper42, singularity
containers: https://doi.org/10.5281/zenodo.8180648, benchmark
quantifications: https://doi.org/10.5281/zenodo.8180604, raw
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simulated data: https://doi.org/10.5281/zenodo.8180695, simulated
ovarian cell line bulk RNA-Seq data: https://doi.org/10.5281/zenodo.
10895721, simulated ovarian cell line scRNA-Seq data: https://doi.
org/10.5281/zenodo.10895894, mouse E18 brain scRNA-Seq data:
https://doi.org/10.5281/zenodo.10028908).
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