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Abstract

Parcellation of human cerebellar pathways is essential for advancing our understand-

ing of the human brain. Existing diffusion magnetic resonance imaging tractography

parcellation methods have been successful in defining major cerebellar fibre tracts,

while relying solely on fibre tract structure. However, each fibre tract may relay infor-

mation related to multiple cognitive and motor functions of the cerebellum. Hence, it

may be beneficial for parcellation to consider the potential importance of the fibre

tracts for individual motor and cognitive functional performance measures. In this

work, we propose a multimodal data-driven method for cerebellar pathway parcella-

tion, which incorporates both measures of microstructure and connectivity, and mea-

sures of individual functional performance. Our method involves first training a

multitask deep network to predict various cognitive and motor measures from a set

of fibre tract structural features. The importance of each structural feature for pre-

dicting each functional measure is then computed, resulting in a set of structure–

function saliency values that are clustered to parcellate cerebellar pathways. We refer

to our method as Deep Multimodal Saliency Parcellation (DeepMSP), as it computes the

saliency of structural measures for predicting cognitive and motor functional
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performance, with these saliencies being applied to the task of parcellation. Applying

DeepMSP to a large-scale dataset from the Human Connectome Project Young Adult

study (n = 1065), we found that it was feasible to identify multiple cerebellar path-

way parcels with unique structure–function saliency patterns that were stable across

training folds. We thoroughly experimented with all stages of the DeepMSP pipeline,

including network selection, structure–function saliency representation, clustering

algorithm, and cluster count. We found that a 1D convolutional neural network archi-

tecture and a transformer network architecture both performed comparably for the

multitask prediction of endurance, strength, reading decoding, and vocabulary com-

prehension, with both architectures outperforming a fully connected network archi-

tecture. Quantitative experiments demonstrated that a proposed low-dimensional

saliency representation with an explicit measure of motor versus cognitive category

bias achieved the best parcellation results, while a parcel count of four was most suc-

cessful according to standard cluster quality metrics. Our results suggested that

motor and cognitive saliencies are distributed across the cerebellar white matter

pathways. Inspection of the final k = 4 parcellation revealed that the highest-saliency

parcel was most salient for the prediction of both motor and cognitive performance

scores and included parts of the middle and superior cerebellar peduncles. Our pro-

posed saliency-based parcellation framework, DeepMSP, enables multimodal, data-

driven tractography parcellation. Through utilising both structural features and func-

tional performance measures, this parcellation strategy may have the potential to

enhance the study of structure–function relationships of the cerebellar pathways.

K E YWORD S

cerebellar pathways, deep learning, diffusion MRI, explainable AI, multitask learning,
tractography, white matter parcellation

Practitioner Points

• We propose a deep learning-based cerebellar pathway parcellation approach that integrates

diffusion magnetic resonance imaging tractography with individual cognitive and motor func-

tional performance measures.

• We show that our method can identify unique cerebellar parcels with unique structure–

function saliency patterns.

• We publish a four-parcel parcellation and analyse its motor and cognitive saliency patterns,

as well as the way in which it subdivides major cerebellar white matter tracts.

1 | INTRODUCTION

The cerebellum is increasingly understood as both a motor and cogni-

tive structure (Koziol et al., 2014). Many parcellation approaches exist

for the anatomy of the human cerebellum (Carass et al., 2018;

Diedrichsen et al., 2009; Makris et al., 2005) and its cortical functional

networks that often highlight the cerebellum's role in motor and cog-

nitive performance (Buckner et al., 2011; Nettekoven et al., 2023).

However, parcellations of the cerebellar pathways as reconstructed

by diffusion magnetic resonance imaging (dMRI) tractography have

received less attention. dMRI tractography is the only method that

allows in vivo, non-invasive mapping of the human brain's white

matter connections (Basser et al., 2000). Existing tractography-based

parcellations define major cerebellar fibre tracts, including the inferior,

middle, and superior peduncles (Tang et al., 2018; van Baarsen

et al., 2016; Yeh et al., 2018; Zhang, Wu, et al., 2018), which can be

subdivided more finely using fibre clustering (Zhang, Wu, et al., 2018)

or according to cerebellar cortical terminations of streamlines

(Rousseau et al., 2022). These parcellations are powerful for enabling

quantification of tractography (Zhang et al., 2022) to study the cere-

bellar pathways in health and disease (Beez et al., 2022; Filippi

et al., 2018; Gupta et al., 2021; Habas & Manto, 2018; Harrison

et al., 2021; Mittal et al., 2014; Phillips et al., 2015; Quartarone

et al., 2020). As the cerebellum contains 80% of the total number of
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neurons in the brain (Azevedo et al., 2009), and models of cerebellar

pathways are helpful for the understanding of various conditions such

as Parkinson's disease (Haghshomar et al., 2022), Alzheimer's disease

(Toniolo et al., 2020), and autism spectrum disorder (Jeong

et al., 2014), it can be clinically beneficial to develop and improve

in vivo methods of cerebellar pathways parcellation.

However, current cerebellar pathway parcellation methods utilise

fibre tract structure, but do not leverage the relationships between

fibre tract structure and individual functional performance measures,

such as motor or cognitive performance. In the field of brain parcella-

tion, state-of-the-art methods frequently rely on multimodal sources

of information, including anatomical, functional, connectional,

cytoarchitectonic, and/or microstructural neuroimage data to define

parcels within the brain's grey or white matter (Arslan et al., 2018;

Eickhoff et al., 2015; Eickhoff et al., 2018; Glasser et al., 2016; Zhang

et al., 2022). In the cerebellum, functional information is known to be

important for parcellating the cerebellar cortex (Nettekoven

et al., 2023). Recent work has demonstrated relationships between

the structure of cerebellar pathways and individual cognitive perfor-

mance in health and disease (Chang et al., 2022; Chen et al., 2020;

Fritz et al., 2022; Kim et al., 2021; Zekelman et al., 2023). Therefore,

in this work we explore a parcellation method that can leverage the

relationship between two sources of multimodal information, includ-

ing individual structural (tractography) and functional (from individual

functional performance measure data) information.

By training a network to predict functional performance measures

from structural features, deep learning provides a data-driven

approach that can encode this relationship between individual cere-

bellar pathway structure and individual functional performance. In the

domain of medical imaging, there have been a variety of successful

deep learning architectures. These range from convolutional neural

networks [CNN; Sarvamangala & Kulkarni, 2022], to graph neural net-

works (Zhang et al., 2023) and transformers (Shamshad et al., 2023).

Despite being the most recent of these architectures, transformers

have already achieved state-of-the-art results across a variety of

imaging (Chen et al., 2021; Matsoukas et al., 2021; Usman

et al., 2022) and non-imaging (Deng et al., 2022; Peng et al., 2021;

Rao et al., 2022) tasks in the medical field. Transformers (Vaswani

et al., 2017) utilise an attention mechanism that allows for better han-

dling of long sequences of data by assigning importance to different

sections of the input (Lin et al., 2022). This makes transformers

appealing for our task of neuroimaging-based individual functional

performance prediction, where a large sequence of features (1940

dMRI microstructural and connectivity measures) is input to the

model. Additionally, the paradigm of multitask learning

(Caruana, 1997) has gained traction as a model-agnostic method for

enhancing the performance of deep models by having the model learn

to predict multiple tasks simultaneously. Multitask learning enables a

model to learn features that are relevant across the multiple tasks,

reducing the chance of learning spurious or irrelevant features

(Ruder, 2017), and has been shown to improve the performance of

deep networks across many neuroimaging tasks (He et al., 2020; Liang

et al., 2021; Liu et al., 2019).

To quantify the structure–function relationships learned by a

deep model, we leverage the computer vision concept of saliency,

which measures the importance of input features for a model's predic-

tions. In a deep learning context, a saliency estimation method assigns

a value to each input feature of the network, which represents the

importance of that feature to the network's final prediction (Fan

et al., 2021). There exist a variety of saliency estimation methods,

including gradient-based (Selvaraju et al., 2020; Simonyan et al., 2013;

Springenberg et al., 2014), perturbation-based (Fong & Vedaldi, 2017;

Ribeiro et al., 2016), and activation-based (Shrikumar et al., 2017;

Zhou et al., 2016) methods. In this work, we use the gradient-based

‘saliency maps’ (Simonyan et al., 2013) approach, where saliency

values for a particular target output are the partial derivative of the

network's target output with respect to the input. In comparison to

competing methods, the saliency maps approach has been shown

to be invariant to constant shifts in input (Kindermans et al., 2019)

and is sensitive to model parameters and output labels (Adebayo

et al., 2018), both of which are desirable properties for saliencies.

Hence, in this work, we propose Deep Multimodal Saliency Parcel-

lation (DeepMSP), a multimodal data-driven approach for human cere-

bellar pathway parcellation, which leverages the relationship between

the structural and functional information of individuals. We train a

multitask learning transformer to take a set of high-dimensional dMRI

measures describing the microstructure (fractional anisotropy, trace of

tractography tensor) and connectivity (number of streamlines [NoS],

number of points) of various fibre clusters, and predict performance

on multiple individual functional performance measures from the NIH

Toolbox. By investigating the resulting trained network, we can esti-

mate the saliency of each dMRI feature and the fibre cluster from

which it was measured, for the prediction of individual functional per-

formance measures. We refer to this measure of importance as the

structure–function saliency, as it encodes the importance of a struc-

tural measure for functional prediction. By then grouping fibre clus-

ters with similar structure–function saliencies into parcels, we aim to

discover meaningful parcellations of the cerebellar pathways. This

overall strategy can enable the usage of high-dimensional, multimodal,

structural and functional information to enhance the parcellation of

white matter connections. Overall, in this work we obtain new

insights into the predictive importance of various dMRI measures and

the potential relevance of particular parcels within pathways for

studying structure–function relationships of the human cerebellar

pathways.

2 | MATERIALS AND METHODS

2.1 | Overview

DeepMSP (Figure 1) includes four major steps. First, input tractogra-

phy data are processed to extract finely parcellated fibre clusters from

which structural features are extracted to describe microstructure and

connectivity. These parcels are based only on tractography streamline

trajectory information and therefore have no inherent functional

TCHETCHENIAN ET AL. 3 of 19



relevance, but can serve as a substrate to enable the definition of par-

cels with potential functional relevance. Second, the proposed multi-

task deep learning network is trained to predict individual functional

performance measures from the structural features. Third, during

inference on testing data, saliencies are measured to describe the

impact of each structural feature from each fibre cluster on the pre-

diction of individual functional performance measures. We call these

structure–function saliencies. Fourth, saliency values are used as input

features to a clustering algorithm, which discovers parcels with com-

mon saliency patterns. The final result is a parcellation of cerebellar

pathways.

2.2 | Dataset

We studied NIH Toolbox and dMRI data from the 1065 subjects of

the Human Connectome Project minimally preprocessed young adult

dataset (HCP-YA) (Glasser et al., 2013). The HCP-YA dataset con-

sisted of 46% male and 54% female subjects, from 22 to 35 years old,

where all dMRI scans were preprocessed according to the HCP's mini-

mal preprocessing pipeline. This pipeline included normalisation of b0

image intensity across runs, removal of various distortions (EPI distor-

tions, eddy-current-induced distortions, subject motion), correction

for gradient nonlinearities, registration of dMRI data to structural

scans, bringing the data into 1.25 mm structural space, and masking

the dMRI data with a brain mask (Glasser et al., 2013). Regarding the

NIH Toolbox measures, we studied all age-adjusted motor and cogni-

tive NIH Toolbox measures (Table 1) (Gershon et al., 2013; Weintraub

et al., 2013). We studied all measures due to the known importance

of the cerebellum for both motor and cognitive processing

(Schmahmann, 2019) and the recently reported relationships between

cerebellar input and output pathways (peduncles) and individual per-

formance across cognitive domains in many diseases (Chang

et al., 2022; Chen et al., 2020; Fritz et al., 2022; Kim et al., 2021). In

healthy individuals, our group recently showed that cerebellar path-

way microstructure significantly covaries with multiple NIH Toolbox

cognitive performance assessments in the HCP-YA dataset (Zekelman

et al., 2023).

The HCP-YA dMRI data were processed to perform whole brain

tractography in each subject using the two-tensor unscented Kalman

filter (UKF) method (Reddy & Rathi, 2016) as implemented in the ukf-

tractography package (https://github.com/pnlbwh/ukftractography)

following published methods (He et al., 2022; Zekelman et al., 2022).

In contrast to other tractography methods that fit a model to the dif-

fusion signal independently at each voxel, UKF employs prior informa-

tion from the previous tracking step to stabilise model fitting. The

two-tensor model can reconstruct fibre crossings that are prevalent in

the brain and brainstem (Ford et al., 2013; Jeurissen et al., 2013). The

first tensor is associated with the tract being traced, while the second

tensor models fibres that cross through the tract. For each subject,

the whole brain tractogram was divided into fibre clusters with a

robust machine-learning approach that consistently extracts white

matter connections across datasets, acquisitions, and the human life-

span (Zhang, Wu, et al., 2018) as implemented in the WMA package

(https://github.com/SlicerDMRI/whitematteranalysis). This fibre clus-

tering approach has been previously demonstrated to be successful

for tractography approaches beyond the UKF method used in this

article, for instance diffusion tensor and constrained spherical decon-

volution tractography (Zhang, Wu, et al., 2018). The approach first

involves the registration of the subject's tractogram to an atlas tracto-

gram (O'Donnell et al., 2012), followed by a spectral embedding to

represent each streamline using its similarity to thousands of stream-

lines in the atlas (O'Donnell & Westin, 2007). Next, spectral embed-

ding clustering is performed to extract subject-specific anatomical

fibre clusters according to the atlas. We used an anatomically curated

white matter tract atlas, the ORG tractography atlas (Zhang, Wu,

et al., 2018) (http://dmri.slicer.org/atlases/) provided by SlicerDMRI

(Norton et al., 2017; Zhang et al., 2020). The atlas defines 97 cerebel-

lum fibre clusters, which are anatomically categorised into five tract

categories, including the inferior cerebellar peduncle (ICP), the middle

cerebellar peduncle (MCP), the superior cerebellar peduncle (SCP), the

input and Purkinje cell fibres (IP, including streamlines in the medullary

white matter core of the cerebellum), and the putative parallel fibres

(PF, including intra-cortical streamlines in the cerebellar cortex). We

note that these fibre clusters describe a fine parcellation of the cere-

bellar pathways. In this work, our goal is to go beyond this structural

F IGURE 1 An overview of DeepMSP. ‘FA’ and ‘NoS’ refer to fractional anisotropy and NoS. Endurance, Strength, ReadEng (reading
decoding), and PicVocab (vocabulary comprehension) are examples of individual functional performance measures.
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parcellation to investigate parcellations that have the potential to be

more meaningful for studying structure–function relationships of the

cerebellar pathways. We used these input fibre clusters as a fine par-

cellation to enable the initial measurement of quantitative dMRI fea-

tures in all subjects.

For a given subject, from the fibre clusters extracted using the

previously described spectral embedding approach, we further

extracted 20 quantitative dMRI structural features from the subset of

fibre clusters belonging to the cerebellum. These features included

microstructural and connectional geometric information measured

within each fibre cluster. The microstructural features computed from

the multi-tensor model included the minimum, maximum, median,

mean, and variance of the fractional anisotropy of tensors 1 (FA1) and

2 (FA2), and the minimum, maximum, median, and mean trace of ten-

sors 1 (Trace1) and 2 (Trace2). FA is a measure of the amount of direc-

tionality of the diffusion, while trace is a mathematical property

derived from a diffusion tensor that measures the total amount of dif-

fusion in a voxel (O'Donnell & Westin, 2011). Rather than focusing on

the traditional mean value (Zhang et al., 2022), employing multiple

summary statistics to describe tissue microstructure in this way can

benefit machine-learning applications (He et al., 2022; Zhang,

Savadjiev, et al., 2018). In addition to these microstructural features,

connectional geometric features described the ‘connectivity’ and

geometry of each cluster and included the NoS and the number of

points (NoP) along streamlines. We note that while the NoS is popu-

larly considered to be a measure of ‘connectivity’ and is used in a

large number of studies, it is only indirectly related to structural con-

nectivity ‘strength’ (Zhang et al., 2022). Thus NoS and NoP can also

be considered to be measures of the geometry of connections. In

total, 20 dMRI features were extracted within each of the 97 fibre

clusters, resulting in 1940 input features per subject. Each input fea-

ture was standardised by subtracting the training set mean and divid-

ing by the training set standard deviation before being fed into the

model.

2.3 | Model architecture

In order to perform parcellation, we required a network that was

trained to predict individual functional performance measures so that

we could investigate the fibre clusters that were most salient for its

predictions.

We trained three multitask learning regression neural networks,

each designed to predict 11 continuous individual functional perfor-

mance measures from the NIH Toolbox, from an input of a 1D vector

with 1940 dMRI features. A 1D vector representation was chosen, as

it was shown to outperform a 2D representation (He et al., 2022). We

chose to force the network to predict multiple NIH Toolbox measures

simultaneously (i.e., multitask learning), as multitask learning has been

demonstrated to improve network performance (He et al., 2020; Liang

et al., 2021; Liu et al., 2019) by learning shared feature representa-

tions for all tasks that reduces the chance of learning irrelevant fea-

tures correlated with only a single task (Ruder, 2017).

Our first architecture was a fully connected model comprised of a

sequence of fully connected layers. This is the simplest possible deep

network architecture where each neuron in one layer is connected to

every neuron in the next layer (supplementary Figure S1), and was

chosen to establish a baseline. The second architecture was a 1D

CNN (1DCNN) (supplementary Figure S2), which was found to per-

form well in He et al. (2022) for age and sex prediction. A 1DCNN

TABLE 1 A description for each NIH Toolbox motor and cognitive
measure used in this article. Abbreviations for NIH Toolbox measures
are in brackets.

Category

NIH Toolbox

measure Description

Motor Endurance Measures cardiovascular endurance

by the distance a participant walks

in 2 minutes on a 50-foot course.

Locomotion

(GaitSpeed)

Assesses walking speed by timing

how quickly a participant walks a

4-m distance at their usual pace.

Dexterity Evaluates manual dexterity by

timing how quickly a participant can

insert and remove 9 pegs into a

pegboard with their dominant hand.

Strength Measures grip strength by having

participants squeeze a Jamar Plus

Digital dynamometer, which

provides a digital reading of force in

pounds.

Cognitive Episodic memory

(PicSeq)

Measures memory retention

through the recall of a sequence of

pictures shown on a computer

screen.

Cognitive

flexibility

(CardSort)

Assesses the ability to switch

between tasks by asking

participants to match pictures

based on varying dimensions like

shape and colour.

Inhibition

(Flanker)

Measures attention and inhibitory

control by requiring focus on a

central stimulus while ignoring

surrounding stimuli.

Reading decoding

(ReadEng)

Evaluates reading skills in English or

Spanish by asking participants to

read and pronounce letters and

words accurately.

Vocabulary

comprehension

(PicVocab)

Tests understanding of vocabulary

by presenting a spoken word and

asking participants to select the

corresponding picture.

Processing speed

(ProcSpeed)

Measures the speed at which a

participant can determine if two

side-by-side pictures are the same

or different.

Working memory

(ListSort)

Assesses the ability to remember

and sequence visually- and orally-

presented items, such as foods and

animals, in specific conditions.
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utilises specialised layers called 1D convolutional layers, which inte-

grate information from adjacent input elements via a learned convolu-

tion operation. The final model was a multi-head attention

transformer (Vaswani et al., 2017) (Figure 2), which excels in capturing

long-range dependencies in the data by focusing attention on differ-

ent regions of input (Lin et al., 2022). Each model was balanced to

contain approximately 20 million parameters, ensuring a fair compari-

son across architectures by isolating the effectiveness of the architec-

ture design, independent of model capacity.

2.4 | Model training and evaluation details

All networks were trained using fivefold cross-validation with a

60/20/20 train/validation/test split of 639/213/213 subjects, where

each subject was randomly allocated to a single fold. We utilised a

mean squared error loss function, which was optimised over

50 epochs via the AdamW optimiser (Loshchilov & Hutter, 2017), with

β1 = .9, β2 = .999, and a weight decay of 0.01. The learning rate was

reduced by a factor of 0.1 when the validation loss had not decreased

for 15 epochs. All models were implemented and trained using

PyTorch on a National Computational Infrastructure (NCI Australia)

node containing 16 GB of memory, 12 24-core Intel Xeon Cascade

Lake processors, and an Nvidia V100 GPU with 32 GB of memory.

Each model's hyperparameters were optimised via a 50-epoch

grid search on a single fold of cross-validation (learning rate [1e-3,

1e-4, 1e-5], batch size [1, 5, 10, 20], and dropout percentage [0, 10%,

50%, 90%]). The set of possible values for each hyperparameter was

chosen to cover a broad range of values, while being limited to three

values to allow for the completion of the grid search within a reason-

able timeframe. Additionally, the upper end of the batch size values

(20) was chosen based on GPU memory limits. The hyperparameter

values resulting in the lowest validation set loss across the 50 epochs

were as follows: the fully connected network had batch size 20, learn-

ing rate 1e-3, and no dropout; the 1DCNN had batch size 1, learning

rate 1e-3, and no dropout; and the transformer had batch size

10, learning rate 1e-4, and 10% dropout. Models with these

hyperparameters then underwent proper fivefold cross-validation

training and evaluation.

The prediction performance of each deep model was evaluated

using two metrics: mean absolute error (MAE) and Pearson correlation

coefficient (r) (Freedman et al., 2007). MAE calculates the average

magnitude of errors between predicted (yi) and true (xi) values, with

lower values indicating better performance:

MAE¼
Pn

i¼1 j yi�xi j
n

ð1Þ

The Pearson correlation coefficient measures the linear correla-

tion between the predicted (yi) and true (xi) values, where values

closer to 1 and �1 indicate strong positive and negative correlations

respectively, while a value of 0 indicates no correlation. It is computed

as follows, where �y and �x indicate the mean of the predicted and true

values:

r¼
P

xi��xð Þ yi��yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi��xð Þ2P yi��yð Þ2

q ð2Þ

The mean and standard deviation for these two metrics across all

cross-validation test sets were reported for each NIH Toolbox mea-

sure independently. NIH Toolbox measures for which no model

achieved r > = .1 after subtracting the standard deviation, were deter-

mined to have performed insufficiently, and were discarded from fur-

ther analysis (Gong et al., 2021). The model that performed the best

for the remaining NIH Toolbox measures was then selected for

saliency computation and parcellation.

The statistical significance of performance differences for Pear-

son correlation coefficient values between models was determined

via a repeated measures ANOVA, followed by post hoc pairwise

Tukey tests. The normality of residuals was verified using the

Shapiro–Wilk test, and homogeneity of variances was assessed via

Levene's test. Pairwise comparisons were deemed statistically signifi-

cant if the post hoc Tukey test resulted in a p-value below .05. The

F IGURE 2 Architecture diagram of our multi-head attention transformer based on (Vaswani et al., 2017). ‘FC layer’ indicates a fully
connected layer, and the number under each layer indicates the output size of that layer. Multi-head attention used eight heads, and the entire
transformer encoder block was repeated six times. The output of the penultimate fully connected layer in each encoder block is followed by an
ReLU activation function and a dropout layer. Note that layer normalisation is placed before the multi-head attention and fully connected layers
rather than after, as this was shown to improve model training time in Xiong et al. (2020).
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statistical significance of performance differences for MAE between

models was determined as follows. Because the Shapiro–Wilk test

indicated non-normality of MAE residuals, for MAE value comparisons

we applied the non-parametric Kruskal–Wallis test to determine the

statistical significance of MAE value differences, followed by a pair-

wise post hoc Dunn's test with Bonferroni correction for multiple

comparisons.

2.5 | Computing structure–function saliencies as
feature vectors for parcellation

A set of structure–function saliency values were generated for each

NIH Toolbox measure that the network was trained to predict. This

resulted in a 1940-element vector (97 fibre clusters times 20 dMRI fea-

tures per cluster) for each task of each subject, corresponding to the

importance of each dMRI feature for the network's output prediction.

To enable symmetric parcellation of cerebellar structures (Nettekoven

et al., 2023), the saliency values of bilaterally defined fibre clusters

(Zhang, Wu, et al., 2018) were averaged, resulting in a 1060 element

structure–function saliency vector, corresponding to 53 bilaterally

defined fibre clusters. Symmetric averaging of saliency vectors across

hemispheres can enhance stability to benefit this initial investigation. A

benefit of symmetric tractography parcellation is that it provides corre-

sponding structures across hemispheres, thus enabling the study of the

structural and tissue microstructure lateralization of brain pathways

(O'Donnell & Westin, 2007; Propper et al., 2010).

These saliency values were computed by taking the absolute value

of task-specific saliency maps (Simonyan et al., 2013). Saliency maps

assign a value to each element of a deep network's input vector, which

is the partial derivative of the network's output with respect to the

input at the particular point of the current input vector. Practically, this

is achieved by forward propagating the input data, resulting in an out-

put vector. The output for the target class is then backpropagated to

the input layer. Each input element is thus assigned a signed saliency

value, the magnitude of the value being proportional to the amount of

impact the corresponding input element has on the network's predic-

tion for the target class, while the sign of the value indicates whether

the element contributes to increasing (positive sign) or decreasing (neg-

ative sign) the network's predicted value. In our experimentation, we

are explicitly interested in the magnitude of the importance of each fea-

ture for predicting NIH Toolbox measures, regardless of the direction

of influence on the predicted measures; hence, we disregard the sign of

the saliency vectors by taking the absolute value.

When comparing saliency values across multiple NIH Toolbox

measures, it is necessary to establish a consistent scale for valid com-

parison. Saliency values for different NIH Toolbox measures are pro-

duced at different scales due to being a gradient value tied to the

scale of the NIH Toolbox measure. Hence, comparing the raw saliency

values across different NIH Toolbox measures would be unproductive,

as a particular feature's saliency value being larger or smaller between

different measures could be due to it being more or less salient, but

may also be due to the differing scales of the output spaces. We

address this issue by applying min-max normalisation to each

generated saliency vector, resulting in all elements falling within the

range [0,1], representing the relative saliency of input features.

Computing the saliency values for each NIH Toolbox task, and

averaging across all subjects to get a single model-level representation

of structure–function saliency, results in a 1060-element vector. This

vector can be separated into a 20-element saliency vector for each of

the 53 fibre clusters, where each value of the 20-element vector cor-

responds to one of the 20 dMRI features per fibre cluster. The sim-

plest method of parcellation involves concatenating these 20-element

vectors for each NIH Toolbox measure into a single 1D vector with

N � 20 elements, where N is the number of NIH Toolbox measures

that have been deemed as sufficiently predictive (r > = .1 after sub-

tracting standard deviation) by the deep model. However, this is a

very high-dimensional vector, which is not ideal, as clustering algo-

rithms are known to struggle in high-dimensional spaces

(Domingos, 2012). Hence, we experimented with a variety of dimen-

sionality reduction approaches, including both automated approaches

like principal component analysis (PCA), which reduces dimensionality

by transforming the original elements of the vector into a new set of

uncorrelated elements called principal components, and hand-crafted

approaches (Table 2).

2.6 | Parcellating pathways using saliencies

Parcellation of the cerebellar pathways was achieved by applying clus-

tering algorithms to the set of structure–function saliency vectors

described in Section 2.5.

To choose a suitable clustering algorithm, we experimented with

both k-means and agglomerative hierarchical clustering to parcellate

the cerebellar pathways. These algorithms were chosen as they repre-

sent different clustering paradigms (Hastie et al., 2009): partitioning

(k-means) and hierarchical (agglomerative) (Rokach, 2010). In k-means

(MacQueen, 1967) clusters are formed by initialising k centroids,

assigning clusters to their nearest centroid, and iteratively updating

datapoint-centroid assignments until cluster centroids no longer sig-

nificantly change. Alternatively, agglomerative hierarchical clustering

(Hastie et al., 2009) is a bottom-up hierarchical clustering approach

that iteratively merges nearest-neighbour datapoints into clusters

until only a single cluster remains. The resulting dendrogram is then

cut off at the desired height, where the number of branches at that

height indicates the number of clusters.

Evaluation of brain parcellation is a known challenge: selection of

a parcellation depends on the task at hand (Arslan et al., 2018) and

there may not be an optimal number of parcels because of the multi-

scale nature of the brain (Eickhoff et al., 2018). Therefore, we experi-

mented with a [2,14] range for parcel counts, choosing values within

that range for further downstream analysis based on performance

across a variety of metrics. Since we did not have a ground-truth clus-

tering dataset, we employed the following internal cluster quality met-

rics that evaluated the intrinsic properties of the clustering such as

within-cluster dispersion and between-cluster distance: Silhouette

coefficient (SC) (Rousseeuw, 1987), Davies–Bouldin index (DBI)

(Davies & Bouldin, 1979). These metrics are often applied to assess
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the quality of tractography parcellation results (Siless et al., 2013;

Vázquez et al., 2020). See supplementary Table S1 for the full descrip-

tions and equations for these metrics. For interpretation purposes, we

note that in traditional cluster analysis an SC > = 0.5 indicates a high-

quality clustering result (Mooi & Sarstedt, 2011), while for the chal-

lenging problem of tractography parcellation, SC values can range

from 0.2 to 0.4 (Siless et al., 2013). DBI has also been used to evaluate

tractography parcellation, with values around 0.7 indicating success

(lower is better) (Vázquez et al., 2020).

3 | RESULTS

3.1 | Choosing a deep network architecture

NIH Toolbox measures with satisfactory prediction performance

(r > = .1 as in Gong et al. (2021), described in Section 2.4) included

two motor (endurance, strength) and two cognitive (reading decoding,

vocabulary comprehension) measures. For each of these measures,

both the transformer and 1DCNN outperformed the fully connected

network in terms of both Pearson's r and MAE (p < .05) (Table 3), with

the exception of the MAE of the strength measure, where there was

no statistically significant difference between the fully connected net-

work and the 1DCNN (p = .071). Additionally, there was no statisti-

cally significant difference in Pearson r or MAE between the 1DCNN

and transformer for each NIH Toolbox measure. However, due to the

mean scores for both Pearson r and MAE of the transformer being

slightly better than the 1DCNN for the vast majority of metrics

(Table 3), as well as the previously stated lack of statistically signifi-

cant difference between the fully connected network and 1DCNN for

the strength measure, we chose to proceed with the transformer

model for subsequent experiments. For a complete report of the

performance of all networks for all 11 NIH Toolbox measures, see

supplementary Tables S2 and S3, and for a complete list of statistical

p-values, see Supplementary Table S4.

3.2 | Structure–function saliency values and
consistency across folds

Examining the saliency values computed from the multitask trans-

former (Figure 3a), we found that the overall mean saliency for each

dMRI feature category was relatively similar (0.24 for FA1, NoS,

Trace1, and 0.25 for FA2, NoP, and Trace2). We also found that the

‘min’ statistic was the most salient regardless of feature category

(mean saliency of 0.27), with more typical statistics used in dMRI pre-

diction tasks: ‘mean’ and ‘median’, being the lowest 2 salient statistics

for all categories (both with mean saliencies of 0.22). We also observe

different patterns of saliencies across clusters when averaging cross

motor and cognitive NIH Toolbox measures (Figure 3b), with differ-

ences in motor and cognitive scores being larger towards the right of

Figure 3b. Since we have sorted clusters based on their mean motor

and cognitive saliency, this indicates that the majority of the differ-

ence in saliency across motor/cognitive categories stems from the

most salient clusters.

Averaging the 1060-element vectors across all subjects within a

fold, we found very similar standard deviations across folds for each

NIH Toolbox measure: 0.14 for strength, and 0.13 for endurance,

reading decoding (ReadEng), and vocabulary comprehension

(PicVocab). We also found that within each task, the 1060-element

saliency vectors were very similar, achieving mean pairwise cosine

similarity scores of: 0.96 (±0.00) for strength, and 0.93 (±0.01) for

endurance, ReadEng, and PicVocab.

3.3 | Selecting a saliency vector representation

We found (Figure 4) that reducing the dimensionality of the vectors

that are being used for clustering results in higher SC values across a

variety of cluster counts, for both k-means and agglomerative cluster-

ing. We selected the ‘Category Displacements (three elements)’

TABLE 2 Descriptions of various saliency vector representations
we use in our experiments. The dimensionality column indicates the
number of elements in the saliency vector representing a fibre cluster
when performing parcellation in Section 2.6.

Name Description Dimensionality

Original

vector

The original saliency vector, which

is a concatenation of the

20-element saliency vectors for

each of the N NIH Toolbox

measures.

20*N

PCA-8 Applying PCA with eight

components to the original vector.

8

PCA-4 Applying PCA with four

components to the original vector.

4

Mean of NIH

measures

Taking the average across the 20

dMRI saliencies for each NIH

Toolbox measure to get a single

average saliency value per NIH

Toolbox measure.

4

Mean of

categories

As per ‘Mean of NIH measures’,
but further averaging saliencies

for all motor and all cognitive

measures to get a single average

saliency value for motor and

cognitive categories.

2

Category

displacements

As per ‘Mean of Category

Saliencies’ approach, but adding
an element that explicitly

measures the amount of bias

towards one of the categories,

calculated by:
motor�cognitiveffiffi

2
p

This value is the signed

perpendicular distance of a given

<motor, cognitive> point from the

motor = cognitive line in 2D

space.

3

8 of 19 TCHETCHENIAN ET AL.



representation for further analysis, as it exceeded the desired SC

threshold of 0.5 (Mooi & Sarstedt, 2011) for both clustering methods,

and achieved a higher median SC value (0.50 k-means, 0.49 agglomer-

ative) compared to the ‘Mean of Categories (two elements)’ represen-
tation (0.46 k-means, 0.44 agglomerative) which also exceeded the

threshold.

3.4 | Selecting the number of parcels and
clustering algorithm

Investigating the three-element category displacement feature repre-

sentation more closely (Figure 5), we found that a parcel count of

4 achieved the best internal cluster quality scores (k-means: 0.60 SC,

0.45 DBI; agglomerative: 0.57 SC, 0.46 DBI). Hence, we selected a

parcel count of 4 for parcellating the cerebellar pathways. In regard to

choosing a clustering algorithm, there were very small differences in

performance between k-means and agglomerative clustering for a par-

cel count of 4, with k-means achieving equal or slightly better (5.7%

higher SC, 2.17% lower DBI) performance across every metric. Hence,

k-means was selected as the clustering algorithm for creating the cer-

ebellar pathway parcellation.

3.5 | Parcellation

Cerebellar fibre clusters were parcellated into four parcels (Figure 6a).

Parcel 2 was found to have the highest mean saliency (Figure 6b) and

was motor dominant (Figure 6c), while parcel 3 was cognitive domi-

nant, and parcels 1 and 4 had very similar motor and cognitive

TABLE 3 The Pearson correlation coefficients and mean absolute errors (MAE) of the fully connected, 1DCNN, and transformer models for
endurance, strength, reading decoding (ReadEng), and vocabulary comprehension (PicVocab) NIH Toolbox measures. Values are the mean across
the five folds of cross-validation, with the standard deviation indicated in brackets. The results with the highest means for each NIH Toolbox
measure are bolded.

Category NIH Toolbox measure

Pearson's r MAE

Fully connected 1DCNN Transformer Fully connected 1DCNN Transformer

Motor Endurance 0.09 (±0.07) 0.23 (±0.06) 0.25 (±0.02) 17.89 (±0.41) 11.24 (±0.76) 11.34 (±0.76)

Strength 0.22 (±0.17) 0.57 (±0.04) 0.57 (±0.05) 19.88 (±1.36) 14.51 (±1.34) 13.51 (±1.25)

Cognitive ReadEng 0.02 (±0.07) 0.20 (±0.05) 0.21 (±0.05) 18.64 (±0.89) 12.49 (±1.01) 12.38 (±0.92)

PicVocab 0.02 (±0.06) 0.21 (±0.07) 0.25 (±0.07) 18.70 (±0.55) 12.01 (±0.75) 11.81 (±0.94)

F IGURE 3 Visualising mean saliencies. Depicted in (a) is the mean of each dMRI feature, where colour indicates a common dMRI measure,
and error bars indicate the standard deviation over folds of cross validation. Depicted in (b) is the mean motor, cognitive, and absolute difference
between motor and cognitive saliencies, where each row corresponds to a dMRI feature, and each column corresponds to a fibre cluster. Results
are averaged across all 1065 subjects. Columns are sorted by the mean motor/cognitive score of the column.
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saliencies. See supplementary Figure S3 for a more detailed break-

down of the mean saliencies for NIH Toolbox measures and dMRI fea-

tures. Each parcel was also visually distinct (Figure 7), had a different

distribution of white matter tracts, and connected different cerebellar

regions (Table 4, Figure 8). As a complement to the preceding visuali-

sations illustrating the parcels as structural connections, we include a

visualisation of the parcels coloured by their relative motor versus

cognitive saliency values (Figure 9).

4 | DISCUSSION

We have introduced DeepMSP, a novel deep learning approach for

cerebellar pathway parcellation. We thoroughly experimented with all

stages of the DeepMSP pipeline, including network selection,

structure–function saliency representation, and clustering algorithm

and cluster count. We found that the 1DCNN and transformer net-

work architectures performed comparably for the multitask prediction

F IGURE 4 Violin plots of the silhouette coefficient values for k-means and agglomerative clustering, where clustering was applied to each
vector representation across cluster counts in the range [2,14]. Black bars indicate interquartile range, with the white dot indicating the median
value. A red horizontal line is set at a silhouette coefficient value of 0.5, which is a standard criterion for a good quality SC result (Mooi &
Sarstedt, 2011).

F IGURE 5 Clustering quality for parcel counts from 2 to 14. (a) Silhouette coefficient (higher is better), (b) Davies–Bouldin index (lower is
better). Clustering was performed on ‘Category Displacements’ saliency vectors.
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of endurance, strength, reading decoding, and vocabulary comprehen-

sion, as well as both significantly outperforming a simpler fully con-

nected network architecture for these same tasks. Investigating the

saliencies of this trained transformer, which achieved slightly better

mean performance on the evaluation metrics compared to the

1DCNN, we found that the minimum statistic for all microstructural

measures (FA1, FA2, Trace1, Trace2) was more salient than commonly

used statistics such as mean and variance. This finding is in line with

other machine learning work that has found that using minima or max-

ima statistics for dMRI structural fibre cluster measures achieved

higher classification performance than summary statistic measures

such as the mean (Zhang, Savadjiev, et al., 2018). It is well known that

the mean value of a microstructure measure (such as FA) within a

fibre tract can be less informative than studying individual microstruc-

ture values along the tract (Colby et al., 2012; O'Donnell et al., 2009;

Yeatman et al., 2012). The minimum FA generally occurs at streamline

endpoints, that is, the white matter grey matter interface, an anatomi-

cal region that is highly predictive of individual cognitive performance

(Chen et al., 2024). In contrast, the minimum Trace value may occur in

the central core (or ‘skeleton’) of a fibre tract, another region that is

considered highly informative for the study of the white matter (Smith

et al., 2006). Our findings suggest the importance of including sum-

mary statistics beyond the popular mean value for machine learning

applications related to microstructure. In addition to this finding

concerning microstructural measure statistics, we also observed that

the majority of differences when comparing motor and cognitive

saliencies were for clusters which had a high saliency when averaging

over both categories. Finally, we found that a saliency representation

that explicitly encoded category bias (‘Category Displacements (three

elements)’) resulted in better clustering performance, with a cluster

count of 4 achieving the best internal cluster quality metric scores.

Applying DeepMSP, we identified four cerebellar pathway parcels

that exhibited unique structure–function saliency patterns that were

stable across training folds. We found that the parcel with the highest

mean saliency was motor dominant, with a higher mean saliency for

motor tasks compared to cognitive tasks. The opposite was true

for the second most salient parcel, while the remaining two parcels

had very similar saliencies for motor and cognitive tasks. However,

the absolute differences in cognitive and motor saliencies were rela-

tively small for each parcel. In the HCP-YA dataset, it can be observed

that motor (strength/endurance) and cognitive (reading decoding/

vocabulary comprehension) functional performance measures are cor-

related (average Pearson's r = .19), making structure–function salien-

cies for motor and cognitive categories potentially difficult to

disentangle. Hence, experimentation with categories beyond motor

and cognitive function should be explored in future work. This parcel-

lation also subdivided all cerebellar white matter tracts, where, for

example, the nine fibre clusters of the MCP were split across all four

F IGURE 6 Visualisation of the cerebellar pathway parcellation. Shown in (a) is the overall parcellation overlaid on a T1-weighted MRI scan,
with each parcel being a different colour, (b) is the mean saliency for each parcel, with error bars indicating standard deviation across clusters
within each parcel, and the colour of each bar corresponding to the parcel colour in (a), (c) is the mean motor and cognitive saliency of each
parcel.

TCHETCHENIAN ET AL. 11 of 19



parcels. Each parcel also contained clusters from multiple white mat-

ter tracts, such as the most salient parcel that included clusters from

the MCP, SCP and PF, and also connected multiple cerebellar regions,

such as Crus II, Dentate, Crus I, Lobule I_IV, and Lobule VIIb. With the

cerebellum playing a role in various disorders such as Parkinson's dis-

ease (Haghshomar et al., 2022), Alzheimer's disease (Toniolo

et al., 2020), and autism spectrum disorder (Jeong et al., 2014), find-

ings such as these, which have been produced via DeepMSP, may

impact the diagnosis and treatment of such cerebellar-related

disorders.

Several detailed observations about the experimental results are

discussed below.

We demonstrated that the proposed 1DCNN and transformer

models significantly outperformed a simpler fully connected model in

terms of predictive ability, and we showed that the saliencies derived

from the transformer were consistent across the five test–retest folds.

We also showed that different parcels had unique motor and cogni-

tive saliency patterns, as expected based on the known complex func-

tionality of the human cerebellum. Finally, the resulting parcels

demonstrated coherent spatial/anatomical patterns, even though no

F IGURE 7 Visualisations of each saliency-based cerebellar pathway parcel overlaid on a reference T1-weighted MRI scan.

TABLE 4 The distribution of white matter tracts for each parcel, and the top cerebellar regions connected by each parcel according to the
SUIT parcellation (Diedrichsen et al., 2009; Diedrichsen et al., 2011). Abbreviations of white matter tracts are: Inferior cerebellar peduncle (ICP),
middle cerebellar peduncle (MCP), superior cerebellar peduncle (SCP), Input and Purkinje (IP), parallel fibres (PF).

Parcel

Number of fibre clusters in each tract

Top 5 cerebellar regions connectedICP MCP SCP IP PF

1 2 1 1 8 10 Crus II, Crus I, Lobule I_IV, Lobule VI, Dentate

2 0 2 3 0 1 Crus II, Dentate, Crus I, Lobule I_IV, Lobule VIIb

3 0 2 0 3 3 Crus II, Crus I, Lobule VIIb, Lobule I_IV, Lobule IX

4 1 4 0 1 11 Crus I, Crus II, Lobule VI, Lobule VIIb, Vermis VI
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F IGURE 8 Visualisations of each white matter tract, where colour indicates parcel. White matter tracts shown are: inferior cerebellar
peduncle (ICP), middle cerebellar peduncle (MCP), superior cerebellar peduncle (SCP), Input and Purkinje (IP), and parallel fibres (PF).

F IGURE 9 Parcel-specific tract visualisation of motor/cognitive distribution. Each fibre cluster for a given white matter tract is assigned the
motor and cognitive mean saliency values across all fibre clusters that belong to the same tract and parcel. These motor and cognitive values are
then combined into a single score by calculating: (motor � cognitive)/(motor + cognitive). These scores are visualised from blue (lower
value = more cognitive) to red (higher value = more motor), with a white value indicating a middle neutral value of neither motor nor cognitive
dominance. For visualisation purposes, the colours for each tract are normalised independently by dividing by the absolute maximum value across
all fibre cluster scores within the tract.
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spatial or tract label information was input to the network. Overall,

these findings support the potentially meaningful nature of the salien-

cies employed in this project, and the parcellations resulting from

these saliencies. However, one aspect of network selection that

remains for future research is to investigate the stability of the parcel-

lations formed by training different architectures for the prediction of

the same NIH Toolbox measures. If relatively consistent parcellations

are produced across a variety of network architectures, it would fur-

ther validate the DeepMSP pipeline, while also allowing for smaller

and less computationally expensive networks to be used, increasing

the accessibility of DeepMSP for those with limited computational

resources. This is particularly relevant to the neuroimage analysis field,

where simpler models have been shown to perform comparably to

more complex state of the art models (Kugelman et al., 2022).

We focused our experimental results on the four-parcel parcel-

lation, which was the most successful according to the SC and DBI

cluster quality metrics. These metrics are popularly used to evalu-

ate the quality of tractography parcellation (Chen et al., 2023;

Siless et al., 2013; Vázquez et al., 2020). We relied on the use of

cluster quality metrics for the selection of the parcel count, though

it is well known that there may not be an optimal number of parcels

in neuroimaging (Eickhoff et al., 2018). This stems from the com-

plex, multiscale organisation of the brain, where different applica-

tions that leverage a parcellation may require different levels of

granularity (Eickhoff et al., 2018). Recent work in parcellation of

the cerebellar cortex suggests that a hierarchical, multiscale parcel-

lation is effective to allow analysis at multiple granularities, where

four parcels are chosen for the coarsest scale (Nettekoven

et al., 2023). Therefore, depending on the application of interest, a

finer parcellation (more than four parcels) may be useful. For this

reason, upon publication we will openly provide our four-parcel

parcellation, as well as parcellations of other scales on GitHub

(https://github.com/SlicerDMRI/DeepMSP). We note that because

the proposed parcellations are based on a finer fibre cluster parcel-

lation that can be automatically applied across the lifespan (Zhang,

Wu, et al., 2018) using open-source software (https://github.com/

SlicerDMRI/whitematteranalysis), it is straightforward to apply the

proposed parcellations for new studies.

Human brain parcellation is a crucial challenge (Arslan

et al., 2018; Bijsterbosch et al., 2020) and is increasingly important for

data reduction in large-scale neuroimaging studies (Cetin-Karayumak

et al., 2023; Eickhoff et al., 2018). There is a large body of work on

cerebellar parcellation including cerebellar cortical parcellation, cere-

bellar deep nuclei segmentation, and atlasing of major cerebellar tracts

(Buckner et al., 2011; Carass et al., 2018; Diedrichsen et al., 2009;

Makris et al., 2005; Nettekoven et al., 2023). We have aimed to situ-

ate our results in the context of this established work by using the

well-known SUIT anatomical parcellation (Diedrichsen et al., 2009)

and providing information about the cerebellar cortical connectivity of

the proposed four-parcel parcellation. In our study, the most salient

parcel was primarily connected to Crus II and Crus I, which are consid-

ered to form part of key cognitive sociolinguistic and demand net-

works (Nettekoven et al., 2023), as well as the dentate nucleus, which

participates in both motor and non-motor functions and is crucial in

the communication between the cerebellum and the rest of the brain

(Steele et al., 2017). Our results generally suggest that motor and cog-

nitive functions are distributed across the cerebellar pathways. This

finding is in line with previous research that finds microstructural

measures of the cerebellar white matter tracts are associated with

motor and cognitive function and dysfunction (Cao et al., 2021; Chang

et al., 2022; Chen et al., 2020; Fritz et al., 2022; Hernandez-Castillo

et al., 2015; Hernandez-Castillo et al., 2016; Kim et al., 2021; Travis

et al., 2015; Wu et al., 2017; Zekelman et al., 2023), as well as recent

research identifying both motor and cognitive regions within the cere-

bellar dentate nucleus (Kulkarni et al., 2023; Palesi et al., 2021).

In addition, our results are supported by anatomical and physio-

logical studies that show that cerebellar neurons, modules and regions

receive sensory and motor signals from diverse sources (e.g., Apps

et al., 2018; Huang et al., 2013; Ishikawa et al., 2015;

Schmahmann, 1996). Our results also suggest that motor and cogni-

tive saliencies are spatially organised across cerebellar cortical and

subcortical white matter pathways. Indeed, anatomical studies have

found that many sensory, motor, and association regions of the cere-

bral cortex communicate with the cerebellum via the pontine nuclei,

which indicates that the signals carried in the middle cerebellar pedun-

cle are functionally diverse (e.g., Kelly & Strick, 2003; Schmahmann

et al., 2004; Schmahmann & Pandya, 1997a; Schmahmann &

Pandya, 1997b). Similarly, the inferior cerebellar peduncle carries sen-

sory signals from the spinal cord, motor signals to vestibular nuclei,

and cognitive information likely through the principal nuclei of the

inferior olivary nuclear complex (e.g., Koziol et al., 2014;

Schmahmann, 2010). Overall, our findings are in line with the notion

that the functional organisations of the brain extend beyond the corti-

cal surface and are reflected in the composition of white matter

(Ghimire et al., 2021). Interrelating the diverse signals in cerebellar

white matter with functional localisation in the cerebellar cortex and

deep cerebellar nuclei is an important next step that this method may

begin to address (Buckner et al., 2011; Makris et al., 2003; Makris

et al., 2005; Stoodley & Schmahmann, 2009; Stoodley &

Schmahmann, 2018). Looking forward, with the cerebellar pathways

playing a role in various disorders such as Parkinson's disease

(Haghshomar et al., 2022), Alzheimer's disease (Toniolo et al., 2020),

and autism spectrum disorder (Jeong et al., 2014), future work in par-

cellation of cerebellar pathways may impact the study of such

cerebellar-related disorders.

As this is a completely novel approach to cerebellar pathway par-

cellation, there are a few current limitations and potential directions

for future work. In regards to the deep learning and saliency computa-

tion stages of DeepMSP, we focused on one high-performing network

(multitask transformer) designed to provide saliencies for the predic-

tion of multiple motor and cognitive individual functional performance

measures. However, a different network could potentially focus on a

different aspect of the high-dimensional input data, producing differ-

ent saliency patterns. We believe we have somewhat ameliorated this

concern by averaging the saliency across many dMRI features and

across over 1000 testing subjects to base our final parcellation on
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robust input saliency features representative of a large population.

However, the investigation of different saliency measures (e.g., LIME

(Ribeiro et al., 2016), Guided Backpropagation (Springenberg

et al., 2014), Guided Grad-CAM (Selvaraju et al., 2020)) and the effect

of different networks is of interest for future research, especially

when considering additional individual functional performance mea-

sures that may be of interest to inform parcellation for future studies.

We also believe it may be of interest for future work to investi-

gate measures of saliency that incorporate directional or other forms

of information beyond purely the magnitude of predictive importance.

Although we have successfully shown that saliency varies within and

across anatomical tracts, a parcel containing fibre clusters of similar

saliency suggests that these fibre clusters have similar predictive

importance, and not necessarily that they have a similar relationship

with an individual functional performance measure of interest. For

example, a fibre cluster where FA is positively correlated with an indi-

vidual functional performance measure, and another where it is nega-

tively correlated, and yet another with a nonlinear relationship could

be considered similarly important (i.e., similar saliencies) by a deep

learning model. However, as described in Section 2.5, we have exclu-

sively focused on the magnitude of the saliency values, while disre-

garding the value's sign. Future work could investigate this aspect

more deeply.

Additionally, the proposed parcellation is based on a particular

tractography algorithm (which is consistent across the lifespan and

robust) that provides a particular set of fibre-specific microstructure

measures that are estimated during fibre tracking based on a multi-

tensor model (Malcolm et al., 2010; Reddy & Rathi, 2016; Zhang, Wu,

et al., 2018). While the proposed parcellation can be applied straight-

forwardly to tractography computed using other models (via applica-

tion of our fibre cluster atlas (Zhang, Wu, et al., 2018)), it is not known

if microstructure measures from another model would have similar

saliency patterns to those observed here. Additionally, we have inves-

tigated bilateral parcellation, a popular strategy for cerebellum parcel-

lation (Nettekoven et al., 2023). However, as we did not explore an

asymmetric approach to structure–function parcellation, the degree

to which the structure–function saliency patterns are asymmetric

remains unknown. Hence, future work may benefit from exploring a

lateralized approach.

Finally, while the NIH Toolbox assessments utilised in this study

are an established and standard approach to measuring cognitive and

motor function, these assessments measure limited and broad aspects

of cognitive behaviour and motor performance (Hodes et al., 2013;

Reuben et al., 2013; Weintraub et al., 2013). We anticipate that more

refined and controlled outcome measures may reveal a stronger rela-

tionship of sensory, motor, and cognitive functions with fibre clusters

in the cerebellum. Additionally, the tractography and

fibre-cluster-based quantitative measurements in this study were per-

formed using high-quality HCP-YA data. However, it is important to

note that the fine-grained anatomy of the cerebellum requires higher

resolution scanning to depict, for example, the fine folds of the cere-

bellar cortical folia (Sereno et al., 2020). Partial volume effects in the

current study were ameliorated by using measurements (e.g., FA or

NoS) performed at the level of a fine fibre cluster parcellation, where

each cluster occupied a relatively small region of white or grey matter,

and where fibre-specific tissue microstructure measures were com-

puted from a multi-tensor model. However, future work using higher

resolution diffusion MRI (Ramos-Llordén et al., 2020) may enable

more detailed insights into finer scale cerebellar pathway parcellation.

We also note the fibre clusters in the employed tractography atlas are

biased towards the longer connections in the posterior lobe of the

cerebellum, the neocerebellum. In this way, our investigation may be

biased towards phylogenetically newer functions of the cerebellum.

Thus, future investigations may continue to investigate across the

entire cerebellum.

Looking forward, there are many future research directions for

building on DeepMSP. First, the quality of the saliency values used in

DeepMSP depends on both the prediction performance of the deep

network, and the saliency calculation algorithm. Hence, it could be

beneficial to experiment with more architectures, larger datasets or

augmentation strategies, and other well-known saliency computation

methods such as LIME (Ribeiro et al., 2016), Guided Backpropagation

(Springenberg et al., 2014), and Guided Grad-CAM (Selvaraju

et al., 2020). Second, our saliencies encoded the magnitude of the

predictive importance of a particular fibre cluster; hence, future work

could explore directional structure–function relationships.

5 | CONCLUSION

In this work, we proposed DeepMSP, a novel saliency-based parcella-

tion framework for multimodal, data-driven tractography parcellation.

Our method generates parcellations that aim to reflect the importance

of pathway microstructure and connectivity for predicting individual

cognitive and motor functional performance measures. Through utilis-

ing both structural features and functional performance measures, this

parcellation strategy may have the potential to enhance the study of

structure–function relationships of the cerebellar pathways.
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