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Abstract

During aging the inter-individual variability in both the neural and behavioral func-

tions is likely to be emphasized. Decreased competence particularly in working mem-

ory and general executive control compromises many aspects of the quality of life

also within the nonclinical population. We aimed, first, to clarify the brain basis of

visual working memory and inhibition during multi-stage natural-like task perfor-

mance, and second, to identify associations between variation in task-related neural

activity and relevant cognitive skills, namely inhibition and general working memory

capacity. We recorded, using magnetoencephalography (MEG), the neural modula-

tions associated with encoding, maintenance, and retrieval, as well as interference

suppression during a visual working memory task in older adults. We quantified the

neural correlates of these cognitive processes through two complementary

approaches: evoked responses and oscillatory activity. Neural activity during memory

retrieval and interference suppression were correlated with behavioral measures of

task switching and general executive functions. Our results show that general inhibi-

tory control induced frontocentral neural modulation across a broad range of fre-

quencies whereas domain-specific inhibition was limited to right posterior areas. Our

findings also suggest that modulations particularly in phase-locked evoked neural

activity can be reliably associated with explicit measures of cognitive skills, with bet-

ter inhibitory control linked with an early neural effect of distractor inhibition during

retrieval. In general, we show that exploiting the inherent inter-individual variability

in neural measures and behavioral markers of cognition in aging populations can help

establish reliable links between specific brain functions and their behavioral

manifestations.
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Practitioner Points

• General inhibitory control engaged broad frequency band fronto-centrally, while domain spe-

cific inhibition was limited to right posterior areas.

• Evoked responses, but not oscillatory measures, correlated with performance level.

• Better inhibition linked with early effect of distractor inhibition during retrieval.

1 | INTRODUCTION

A large body of evidence suggests that aging is associated with a

decline in performance in numerous perceptual and cognitive pro-

cesses (Bherer et al., 2013). Behavioral studies have examined this

age-related cognitive decline mainly through the lens of four distinct

domains of cognitive tasks: working memory, inhibitory control, pro-

cessing speed and long-term memory (Peich et al., 2013; Pelosi &

Blumhardt, 1999; Reuter-Lorenz & Park, 2010).

Especially working memory and inhibitory control have received

extensive attention as they have been shown to be potent core

markers of age-related cognitive decline (e.g., Chao & Knight, 1997;

Grandjean & Collette, 2011; Reuter-Lorenz & Park, 2010; Waters &

Caplan, 2001). Working memory, that is, the ability to maintain and

consciously manipulate information in short-term memory crucially

involves executive processes that afford the ability to process increas-

ing memory loads, update and manipulate items kept in memory, and

inhibit irrelevant sensory inputs (Bherer, 2015; Bherer et al., 2013).

Inhibitory control allows gating of sensory information based on their

behavioral relevance. As such, it is closely interrelated with working

memory processes as efficient inhibitory control ensures successful

maintenance of items in memory (Borella et al., 2008). Inhibitory con-

trol is also paramount in shifting of attention to relevant sensory

inputs and suppressing sensory interference (Neill et al., 1995), and

therefore represents a generally important function for coherent

behavioral and psychological integrity.

Age-related declines in working memory and inhibitory control

are reflected as impaired performance in standardized neuropsycho-

logical tests (Brennan et al., 1997; Nitrini et al., 2004; Waters &

Caplan, 2005), such as the Stroop test (Stroop, 1935; West &

Alain, 2000) and the CERAD-battery, i.e. Consortium to Establish a

Registry for Alzheimer's Disease (Ehrensperger et al., 2010; Piefke

et al., 2012). The general neural mechanisms underlying cognitive

decline can be comprehensively documented in two domains. First,

numerous reports suggest that a wide range of structural changes

take place in the aging brain that are associated with reduced cogni-

tive and memory function (Lupien et al., 1998; Penke et al., 2010):

these include losses of grey and white matter volume especially in

frontal cortical areas (Penke et al., 2010), less efficient synaptic trans-

mission (Bäckman et al., 2010) and marked reductions in the size of

frontal cortical regions and subcortical structures (Lupien et al., 1998).

Secondly, numerous reports suggest that cognitive impairments are

also associated with modulations in cortical function (e.g., Chao &

Knight, 1997; Piefke et al., 2012; Wang et al., 2011). The functional

neural markers of age-related cognitive decline can be summarized as

belonging to the following three distinct categories: altered cortical

dynamics, most notably involving alterations in activity of frontal

areas, slowing down of spontaneous cortical oscillations and compen-

satory neural activity (Reuter-Lorenz & Park, 2010).

Importantly, the above-mentioned age-related modulations in

cognitive capacity and the associated changes in brain structure and

function have been found to vary greatly between individuals (Aine

et al., 2011; Kimura et al., 2013). Indeed, there is large inter-individual

variability in cognitive abilities within same-age elderly individuals

(Bastin et al., 2012; Bherer, 2015). In fact, the, ongoing brain's state is

naturally variable (Faisal et al., 2008) and thus even in healthy, young

individuals there is, to some extent, intra- and inter-individual variabil-

ity in general functional properties of the brain (MacDonald

et al., 2006). However, this variability is emphasized in the early and

late stages of life. Indeed, in elderly populations, the variability in

functional connectivity in resting-state BOLD activity correlated with

general cognitive performance (Li et al., 2017). In children, the highly

variable brain activity across individuals is a neural signature of the

maturation of neural structures on the path towards adulthood

(e.g., Bonte et al., 2013). This variability is concretely evidenced in

both the behavioral manifestation and the brain basis of reading speed

in children, compared to a control group consisting of adult readers

(Parviainen et al., 2006).

We hypothesize that establishing the brain-behavior link, that is,

bridging the measures of neural activity and behavior, is feasible in

elderly populations. Specifically, we hypothesize that this inherent

inter-individual variability in both brain function and behavioral mea-

sures in the elderly allows one to distinguish, in a most straightfor-

ward manner, the neural signatures that are behaviorally meaningful.

Considering only the neuroscientific aspect (i.e. using cognitive func-

tion only as task requirement) is an approach that is often adopted

when addressing a given experimental question: observing the neural

modulations resulting from the demands of a given task allows one to

reach sound conclusions about neural correlates of specific cognitive

functions. However, it has been rightfully argued that theoretical and

experimental decomposition of behavior, and focusing on association

between specific neural and behavioral measures, may represent the

crucial approach to better understand also the brain functional organi-

zation (cf. Krakauer et al., 2017). Especially in the neuroscience of
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aging, it is crucial to integrate both behavioral and neuroscientific

aspects when focusing on cognitive capacity as, even though neuro-

cognitive deficits remain mild in most cases, their variability could

reveal possible trajectories leading to more severe pathologies such as

Alzheimer's disease (e.g., Bäckman et al., 2005). In a broader context,

the direct link between brain and behavioral measures informs on the

interaction between neuronal wiring and functional output and can

thus be utilized in understanding brain function and dysfunction at a

more global level, also linking to the genetic correlates of neurophysi-

ological function (Guo, 2004).

In this study, we aim to reveal the brain-behavior link in the

context of complex cognitive task, and specifically the age-sensitive

processes of working memory and inhibitory control that are impor-

tant markers of the overall course of cognitive decline in elderly.

We recorded, using magnetoencephalography (MEG), the task-

related modulations associated with working memory and inhibitory

control in the elderly. We quantified the neural correlates of work-

ing memory and inhibitory control through two distinct neural

markers: evoked responses and neural oscillatory activity. We take

into account both neural measures in unison since evoked activity

and neural oscillations have been shown to demonstrate differential

modulations in their respective characteristic patterns in response

to the effect of aging (Ziegler et al., 2010). In addition, evoked activ-

ity reflects more short-term, presumably bottom-up, neural proces-

sing whereas modulations in oscillatory activity are not strictly

locked to an external event and can be considered to represent also

top-down influence on a broader temporal scale. Therefore, evoked

responses and neural oscillatory activity provide spatiotemporally

complementary accounts of brain function during higher-level cog-

nitive tasks (Laaksonen et al., 2012). The behavioral aspect of work-

ing memory and inhibitory control were monitored through

standardized, widely used tests including the Stroop test, the

CERAD battery of neuropsychological tests and the Trail Making

Test (TMT).

We assumed that the encoding and maintenance of a face in

memory, as well as the inhibition of a distractor image, would be

reflected in modulations of neural oscillatory activity, because these

functions strongly build on task-relevant top-down processes. As our

first objective, we examined the spatiospectral distribution of oscilla-

tory activity engaged in these two distinct stages of processing. The

presentation of target image was expected to engage phase-locked,

evoked activity, reflecting bottom-up driven sequence of visual analy-

sis and memory retrieval. Focusing on evoked response strength, as

our second objective we examined the spatiotemporal distribution of

target-evoked memory retrieval. Importantly, the above brain func-

tional measures were chosen to provide robust, individual-level indi-

cators of neural resources engaged in working memory and inhibition.

As our third objective, we tested whether these distinct neural mea-

sures, quantifying the essential task-related neural operations, corre-

late with behavioral manifestations of working memory and inhibition.

These correlation analyses, in turn, would reveal relationships

between the aforementioned neural and behavioral markers of cogni-

tive processes and enable us to establish a link between functional

cortical properties and the manifestation of higher-level cognitive

functions.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty-eight older individuals (19 females; mean 74.6 years, range

71.1–82.7 years) gave their informed consent to participate in the

experiment. The participants were part of a larger sample of older

individuals (n = 314, recruited through the Finnish National Registry)

partaking to a randomized controlled trial (the PASSWORD). For the

larger PASSWORD cohort the aim was to investigate the effects of

physical activity and cognitive training interventions on walking speed,

executive functioning and the incidence of falls in sedentary individ-

uals (for more details, see Sipilä et al., 2018). Inclusion criteria to the

PASSWORD study were the following: 70–85-year-old; dwelling in

the community; able to walk 500 m without assistance; sedentary or

at most moderately active (less than 150 min of walking/week; no

attendance in resistance training) and a score of 24 points or higher in

the Mini Mental State Examination test. Exclusion criteria were the

following: severe chronic condition or medication; other medical, psy-

chiatric, or behavioral factor that may interfere with study participa-

tion; excessive alcohol use; severe vision or hearing problem. Ethical

approval for the study was received from the review board at the Eth-

ical Committee of Central Finland Health Care District (14/12/2016,

ref.: 11/2016).

2.2 | Stimuli

The MEG experimental paradigm consisted of a working memory task

involving visual images and it was designed to sequentially engage the

cognitive processes of short-term memory, inhibitory control and

retrieval. Participants were shown three images: an encoder image

representing a male or a female face, a distractor (a face of the same

gender to the encoder image or a grey oval shape), and a target image

representing either a male or a female face (gender matched to the

encoder image). After the target image was presented, the partici-

pants' task was to indicate with a button press whether the encoder

image and the target image were identical.

The stimulus set consisted of 60 unique images, 30 images of

male and 30 images of female faces, taken from the Karolinska Emo-

tional Faces database (Bowie & Harvey, 2006). All facial stimuli repre-

sented a neutral facial expression. In order to increase the difficulty of

the task, all face stimuli were modified in order to be as neutral in

appearance as possible: hair border and any other specific distinguish-

ing features were removed, but basic face characteristics were pre-

served. Importantly, the experimental task was designed to probe

specifically short-term memory capacity: all face stimuli were unfamil-

iar to the participants prior to the experiment and hence they could

not rely on long-term memory retrieval during the task. During the
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experiment, each face was used four times as the encoder image and

four times as the distractor image. The distractor image was always

different than the encoder image.

2.3 | Experimental procedure

Participants performed a total of 240 experimental trials involving

both male and female faces (120 trials for each gender). The total

number of trials was divided into four blocks of 60 trials.

Between blocks participants had an opportunity to rest for a few

minutes. A single trial (Figure 1) consisted of a fixation cross pre-

sented for 1000 ms (100 ms jitter), followed by the encoder image

presented for 500 ms, a second fixation cross presented for

2000 ms (100 ms jitter), the distractor image presented for 500 ms

and a third fixation cross presented for 1000 ms (100 ms jitter).

Subsequently, the target image was shown for 500 ms. A visually

presented question mark prompted the participants to indicate

within a 2000-ms time-window whether the target image was

identical or nonidentical to the encoder image (i.e., there were

separate buttons for “yes” and “no” answers). The target image

matched the encoder image in 50% of the trials, and in 50% of

trials it was another image of the 29 alternative face images of

the same gender, but never the distractor image of the same trial.

For each trial, the button presses representing the participants'

responses to the task were digitally encoded and subsequently

used to compute accuracy scores (see the “Behavioral data analy-

sis” section for more information). During the experiment, partici-

pants were instructed to remain still and to keep their gaze on a

fixation point projected on a screen at �1 m from their sitting

position.

2.4 | MEG data recordings

MEG data was collected using a 306-channel whole head Elekta Neu-

romag system (Elekta Oy, Helsinki, Finland) in a magnetically shielded

room (VacuumSchmelze GmbH, Hanau, Germany) at the Jyväskylä

Centre for Interdisciplinary Brain Research. Data were filtered at 0.1–

330 Hz and sampled at 1000 Hz. The participants were seated, with

the head covered by the MEG helmet. Each participant's head position

with respect to the MEG sensor array was determined by attaching

five head position indicator coils to the scalp and briefly energizing

them before the measurement. The coil locations were determined in

reference to anatomical landmarks (nasion and right/left preauricular

points) using a 3-D digitizer (Isotrak 3S1002, Polhemus Navigation

Science). Blinks and eye movements (saccades) during the MEG mea-

surement were monitored using electro-oculography (EOG).

F IGURE 1 Experimental paradigm and examined contrasts. The encoder, distractor and target images were separated by visual presentation
of fixation crosses lasting for 1000–2000 ms. After the target image, a question mark visually presented for 2000 ms prompted the participants
to indicate with the button press whether the target image was identical or different than the encoder image. In the analyses of the oscillatory
data, we examined neural processes related to encoding and maintenance by comparing the first to the second fixation window (1000 ms time
windows), and related to inhibitory control by comparing the second to the third fixation window (500 ms time windows) and the third fixation
window preceded by difficult distractor to the third fixation window preceded by easy distractor (500 ms time windows). In the analysis of the
evoked data, we examined neural processes related to retrieval by comparing the matching target image preceded by difficult distractor to the

matching target image preceded by easy distractor (time windows of 0–300, 300–500, and 500–700 ms after the presentation of the target
image). TFR, time–frequency representation.
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2.5 | Behavioral data recordings

Task accuracy, a metric of cognitive skills specific to the current task,

was computed by estimating the proportion of correct responses to

the total number of button presses. We obtained accuracy as a per-

centage by dividing the total number of correct responses to the task

with the total number of button presses and multiplying them by a

factor of 100. This quantification was conducted across the trials

where the subjects had responded after the response cue before the

onset of the next trial.

The reaction times of the subjects were determined based on

these trials. We also counted for each subject for how many trials

they had responded too early (before the cue), responded more than

one time, or not responded at all.

The following three behavioral measures were collected in the

broader context of PASSWORD study (for more information, see

Sipilä et al., 2018) and were subsequently considered in the present

experimental paradigm: the CERAD battery of neuropsychological tests,

the Stroop test and the TMT.

The CERAD battery of neuropsychological tests consists of the fol-

lowing subtests: Category Verbal Fluency, Modified Boston Naming

Test (BNT), Mini Mental State Examination, Word List Memory, and

Constructional Praxis. Based on the outcome of these tests, the

CERAD total score can be computed by summing scores from

the individual CERAD subtests excluding the Mini Mental State Exam-

ination into a total composite (maximum score = 100) (Chandler

et al., 2005). The CERAD total score provides an index of the overall

level of cognitive functioning (Chandler et al., 2005; Paajanen

et al., 2010) with higher score representing a higher level of overall

cognitive functioning (Ehrensperger et al., 2010).

The Stroop test examines executive function, and more specifically

inhibition (Graf et al., 1995; Scarpina & Tagini, 2017). It includes three

test conditions. In the first condition, participants are instructed to

read aloud 72 words printed in black ink. In the second condition, they

are instructed to read aloud the color of 72 colored letter X's. In the

third and final condition, they are shown a page with 72 color words

printed in incongruent colored inks (e.g., the word “GREEN” printed in

yellow ink). Participants are asked to name the color in which the

words are printed and ignore the word itself. Participants were asked

to do the test as quickly and as accurately as possible. The time taken

to complete each condition was recorded and the time difference

between the third and the second condition was calculated (Stroop

difference). Smaller time differences indicate better performance in

the most demanding 3rd condition, and thus the ability to efficiently

inhibit cognitive interference (Scarpina & Tagini, 2017).

The TMT comprises two parts, Part A and Part B. It is used to

assess executive function, and specifically the ability to efficiently

switch between tasks (Bowie & Harvey, 2006). The TMT Part A

(TMTA) evaluates psychomotor speed and involves drawing a line

connecting circles that contains the numbers 1–25 sequentially. The

TMT Part B (TMTB) also evaluates psychomotor speech but is more

demanding than TMTA. It consists of circles with numbers and letters;

it requires participants to draw a line from 1 to A, A to 2, 2 to B, B to

3, etc., until the letter L. Participants were instructed to perform both

tasks as quickly and as correctly as possible. The time to complete

each task was recorded and the time difference to complete TMTB

and TMTA was calculated (TMT B-A). Smaller time differences are

indicative of a better performance, as a small time difference signifies,

in most cases, that the time taken to complete the more challenging

TMTB is similar to the time taken to complete the easier TMTA. In

subsequent analysis, we only considered TMT B-A, as it was thought

to be the most relevant metrics of task switching abilities and thus

executive control.

In the context of the larger PASSWORD cohort, these behavioral

tests were performed 6 months (except CERAD total score) and

12 months after the initial measurement following the same behav-

ioral data measurement procedures. MEG data were also collected

6 and 12 months after the initial measurement following the same

MEG data recording procedure and the same experimental protocol

as for the initial MEG measurements. These data were used to con-

strain the analyses of link between neural activity and behavior to

phenomena that showed stability across the latter two measurement

points.

2.6 | MEG data analysis

MEG data preprocessing and subsequent analysis was carried out

using the MNE Python toolbox implemented in Python computing

environment (Gramfort et al., 2013), unless stated otherwise.

2.6.1 | Preprocessing

Only gradiometers were included in MEG data analysis as they

have a narrow spatial sensitivity pattern and are well suited for

recording data from superficial sources; in contrast, magnetome-

ters more readily pick up signals from distant sources, including

external artifacts. First, channels visually identified during MEG

data collection being contaminated with artifacts or flat were

interpolated using MNE Python's built-in functions. Subsequently,

oversampled temporal projection was used in order to suppress

noise and interpolate bad channels (Clarke et al., 2020). There

were 3.36 ± 0.85 bad channels (mean ± SD; range 1–5 channels)

across the subjects. Afterwards, MaxFilter (Elekta Oy) was used to

remove external disturbances from the MEG data with spatiotem-

poral signal space separation and transformation of all participants'

head position to one reference head position (Taulu &

Simola, 2006). As the reference head position, we used the sub-

ject's head position whose position was closest to the median

position across the subjects. Finally, independent component anal-

ysis (fastICA) (Hyvärinen, 1999) was used in order to reduce arti-

facts of ocular and cardiac origin. ICA was applied to the data

processed with oversampled temporal projection and spatiotempo-

ral signal space separation, and maximally three components were

removed both for suppressing the cardiac and ocular artefacts.
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Prior to further analysis, we discarded trials in which the button

presses occurred too early (before the cue): pressing a button is asso-

ciated with motor activity and would therefore obscure neural activity

relative to the cognitive processes of interest. Subsequently, based on

the preprocessed and artifact-free trials, two complementary neural

measures to be considered in the correlations with the behavioral

data. These neural measures consisted of both measures reflecting

stimulus-induced (nonphase-locked) modulation of oscillatory activity

(time–frequency representations [TFRs]) and evoked (phase-locked)

neural activity (evoked responses).

2.6.2 | Computation of TFRs

TFRs were computed in the 1–90 Hz frequency range (based on Mor-

let wavelets; half a cycle per Hz, i.e., at 10 Hz a wavelet with the

width of 5 cycles was used). The range from 1 to 31 Hz was sampled

at 1 Hz steps, whereas the range from 32 to 90 Hz was sampled at

2 Hz steps. In the encoding/maintenance analyses (comparison 1),

TFRs were computed for the 1000 ms-long fixation time-windows

preceding and succeeding the encoder image, where the preceding

window was immediately before image presentation and the succeed-

ing window was placed between 1000 and 2000 ms from image

onset. In the analyses of general inhibition (comparison 2), TFRs were

computed for the last 500 ms of the fixation time-window preceding

and succeeding the distractor image. In the analyses of level of inhibi-

tion (comparison 3), TFRs were computed for the last 500 ms of the

fixation time-window following the distractor image. All TFR time-

windows were at the end of the fixation periods so that the evoked

neural activity due to the presentation of the face images would not

bias the estimation of the induced responses.

2.6.3 | Computation of evoked responses

The evoked neural activity associated with the ease of retrieval (fol-

lowing inhibition of a difficult vs. an easy distractor) was examined by

computing evoked responses in the time-window following the pre-

sentation of the target image (see Figure 1, comparison 4). Specifi-

cally, the evoked responses were computed in the �200 to 700 ms

time-window, with �200 to 0 ms as a baseline, where zero represents

target image onset. For each subject, responses were averaged across

trials and visualized after low-pass filtering at 40 Hz.

2.6.4 | Statistical analyses of the TFR MEG data

TFR data was used to examine the neural basis of encoding and main-

tenance (comparison 1, Figure 1), inhibitory control (comparison 2,

Figure 1), as well as level of inhibition (comparison 3, Figure 1). For

each of these comparisons, statistically significant differences were

evaluated using a cluster-based permutation test (1000 permutations;

statistical threshold: alpha = 0.05; clustering threshold: F = 8.0) that

was implemented in distinct frequency bands of interest (1–30, 8–13,

15–25, 35–45, 60–90 Hz). In the cluster-based permutation testing

each gradiometer was treated separately and the neighborhood infor-

mation of between the gradiometers was determined based on the

template connectivity matrix within MNE-Python. Statistical testing

for each of the comparisons was done by averaging across each fre-

quency band of interest, thus obtaining one value per frequency range

across all time points of interest (referred as time-sensitive TFR

statistical analysis). Here, the values that were averaged were the

time-resolved spectral power estimates obtained by multiplying the

wavelet transformation with its complex conjugate. This analysis

allows the identification of time-intervals in which the whole fre-

quency bands of interest show modulation of neural activity across

conditions. The extraction of values of interest can be done also by

averaging across all time points in each time-window of interest, yield-

ing one value per frequency bin across the frequency range of interest

(referred as frequency-sensitive TFR statistical analysis). This analysis

allows the identification relevant frequency components within the

frequency bands of interest. The results of this analysis are provided

as the Supplementary material.

Subsequently, any potential correlation effects were estimated

within spatiospectral clusters of interest (COIs) identified based on

the time-sensitive TFR statistical analysis (for the frequency-

sensitive TFR analysis, see the Supplementary material). Specifically,

the COIs enabled us to define time-windows, frequency bands and

sensors of interest that reflect spatiospectral profiles of neural

activity associated with the two cognitive processes of interest in

the TFR analysis: first, encoding and maintenance of an image

(before vs. after encoder) and second, inhibitory control (for the

neural correlates of general inhibitory control we contrasted before

versus after distractor; for the neural effects due to level of inhibi-

tion, we contrasted difficult versus easy distractor) (cf. Figure 1).

Once COI identification for each of the three statistical contrasts

of relevance was completed, we extracted the difference in TFRs

for each of the three contrasts of relevance to probe the relation-

ship between neural modulations and behavioral data. Here, we

first identified for each contrast and cluster the sensor showing

the largest difference between the two conditions and extracted

for each subject the TFR values within the frequency-bands of

interest across the significant time-points. We then averaged these

subject-specific values across time. This yielded, for each contrast-

specific COI, a single power value extracted from a single-sensor

for each subject for each frequency band.

To minimize the influence of outliers, this vector of power values

was subsequently normalized by an individual normalization factor

(the standard deviation of neural activity for each individual partici-

pant averaged across the experimental conditions of interest, as well

as across time-points [e.g., 1000 ms], frequency bands [e.g., 1–30 Hz]

and sensors in which the statistically significant modulation in MEG

signal power was observed). These normalized values of neural oscilla-

tory activity were considered in the elucidation of the brain-behavior

link, that is, the correlation analysis between neural activity measures

and behavioral measures.
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2.6.5 | Statistical analyses of the evoked response
MEG data

To evaluate the neural correlates associated with the ease of retrieval,

we contrasted evoked responses time-locked to a matching target

image after a difficult versus an easy distractor in the 0–300, 300–

500 and 500–700 ms time-windows post-stimulus (maximum statis-

tics based permutation t-test on all 204 gradiometers; 1000 permuta-

tions; statistical p-threshold = .05). These time-windows covered the

task-related sensory-perceptual processes and processes related to

memory-based retrieval and enabled coarse timing of the effects. This

procedure yielded a list of sensors that demonstrated statistically sig-

nificant differences in evoked activity in each of the three time-

windows of interest. For each of these sensors, we computed, for

each subject, the difference in evoked activity between the two con-

ditions being contrasted. This yielded, for each MEG sensor, a single

evoked activity value for each participant.

Similarly to power values derived from TFR analysis, to minimize

the influence of outliers, the evoked activity values were subse-

quently normalized by an individual normalization factor (the standard

deviation of evoked activity for each individual participant averaged

across the two conditions of interest, as well as across time-points

[e.g., 0–300 ms] in which the significant effect was observed). These

normalized values of evoked activity were considered in the correla-

tion analysis between neural activity measures and behavioral

measures.

2.7 | Correlations between the neural activity and
behavioral measures

As described above we obtained, for each participant, a single value

for each contrast-specific COI (COIs specific either to encoding and

maintenance, general inhibition, level of inhibition) or sensor (ease of

retrieval) representing neural activity associated with the cognitive

processes of working memory and inhibitory control. We subse-

quently examined the correlations between these neural activity mea-

sures and behavioral measures of cognitive skills and executive

control.

Correlation analysis was carried out in IBM SPSS Statistics for

Mac, version 26 (IBM Corp., Armonk, N.Y., USA). Using Spearman's

nonparametric correlation method (alpha = 0.05), we performed all-

to-all correlations between the neural activation measures described

above and the behavioral data collected in the context of the present

experiment (see the “Behavioral data” section). Specifically, we corre-

lated neural activity measures with the following behavioral measures:

CERAD total score, Stroop difference and TMT B-A.

The considerably large number of neural and behavioral measures

of interest resulted to an even larger number of possible correlation

tests (69 correlation tests; 15 ERF and eight TFR values and three dis-

tinct behavioral measures). To limit the number of conducted tests,

we applied a masking procedure based on the fact that MEG and

behavioral data were available for two additional measurement ses-

sions, carried out 6 and 12 months, after the MEG and behavioral

measurement of interest (baseline; see the sections “MEG data

recordings” and “Behavioral data recordings” for more details). Our

correlation-test mask was thus based on correlations observed

between neural and behavioral measures at these two additional mea-

surement sessions. These additional correlations were derived in the

COIs defined through the time-sensitive TFR analysis (gradiometer

with largest neural effect in each COI) and the sensors demonstrating

significant modulations in evoked activity for the contrasts of interest

(for frequency-sensitive TFR analysis, see Supplementary material).

For these specific COIs and sensors of interest, we extracted power

and evoked response values for MEG data measured 6 and 12 months

after the initial measurement session, following the same procedure

described above for the MEG data from the measurement of interest.

We then correlated these measures of neural activity with the behav-

ioral data collected at the corresponding measurement sessions (car-

ried out at 6 and 12 months). For behavioral measures where data

were available for all three measurement points (Stroop, TMT B-A),

we tested for significant correlations (p < .05) at baseline if the corre-

lation values at 6 months and 12 months had the same sign between

them and each of the two correlation values had an absolute rho value

of at least .1. For CERAD total score there were only two measure-

ment points available (baseline and 12 months), and the correlation

masking criteria involved testing for significant correlations (p < .05)

at baseline if the correlation value at 12 months had an absolute rho

value of at least .15. This correlation masking criteria was instrumental

in limiting correlation testing at the measurement point of interest to

a reasonable number of tests. Specifically, it yielded the following lim-

ited set of testable correlations between neural and behavioral data:

seven ERF tests (five CERAD, two Stroop) and eight TFR tests (three

CERAD, five Stroop). The statistical significance (p < .05) of these cor-

relations at baseline were evaluated separately for ERF and TFR,

corrected for multiple comparisons using the False Discovery Rate

correction.

3 | RESULTS

3.1 | Task performance

Overall, the subjects were able to perform the task well, with an accu-

racy of 81 ± 7% (mean ± SD, range 61%–90%). The mean response

time of the subjects was 563 ± 225 ms (range 287–1147 ms). The

subjects responded within the correct time interval (after

the response cue but before the next trial) in 225 ± 20 trials (range

176–250). For some trials the subjects responded too early (8 ± 12

trials, range 0–35) or not at all/not before the next trial (6 ± 13 trials,

range 0–59). In individual trials the subjects responded more than one

time before the next trial (1 ± 2 trials, range 0–7). In the MEG ana-

lyses, only trials in which the subjects had responded only within the

correct time interval and only once were considered.
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3.2 | MEG results

3.2.1 | TFRs: Encoding and maintenance of an
image in memory, general inhibitory control, and the
level of inhibition

We found statistically significant modulations in TFRs specifically in

the alpha, beta and low gamma frequency bands in specific time-

windows reflecting the encoding of an image to be kept in short-term

memory, inhibition of an irrelevant visual input, and processing of a

difficult, compared to an easy distractor (see Figure 2). Overall, the

outcome of the TFR analysis emphasized frequencies below 45 Hz,

covering the theta, alpha, beta and low gamma frequency bands.

The spatiospectral patterns of these effects demonstrated differ-

ent characteristics for encoding and maintenance versus inhibition

stages. The encoding and maintenance of an image in memory was

associated with modulations in neural activity in MEG sensors mostly

located at the vertex. This effect highlighted a special emphasis on the

low gamma band (35–45 Hz) at the central channels and alpha band

(8–13 Hz) in more frontally distributed channels (Figure 2a).

General inhibitory control was associated with two distinct

patterns of activation: spatially and spectrally delimited effects in

central-to-frontal areas at alpha and low gamma bands as well as

broader spatiospectral patterns of neural activation specifically at

beta-band (Figure 2b). Finally, neural modulations associated with the

level of inhibition emphasized more posterior cortical regions, with the

F IGURE 2 Statistically significant results of the cluster-based permutation analysis for the time-sensitive time–frequency representation
(TFR) statistical analysis. The information on the contrasts of interest (left) is followed by the mean TFR difference (normalized values, AU) across
all gradiometers and topoplots of the significant effects. The small insets next to the topoplots represent the contrast-specific modulation of

neural activity across time (normalized values, AU; mean ± 2 � SEM) within the identified cluster for the frequency-band showing the significant
effect. Each topoplot represents one statistically significant cluster. White circles indicate MEG channels that demonstrate statistically significant
modulations in MEG signal power. The frequency bands and time-windows in which the statistically significant effect is observed, as well as the
p-values are reported underneath each topoplot. (a) Statistically significant modulations in magnetoencephalography (MEG) signal power for the
first versus second fixation contrast (before vs. after encoder image). (b), statistically significant modulations in MEG signal power for the second
versus third fixation contrast (before vs. after distractor image). (c) Statistically significant modulations in MEG signal power for the within third
fixation contrast (after an easy vs. a difficult distractor).
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significant effects being delimited within the 1–30 Hz frequency

range (Figure 2c). The frequency-sensitive TFR analysis results

(Figure S1) were in line with the above, time-sensitive results, but

revealed statistically significant modulations in MEG signal power that

were less spatially and spectrally specific, especially for the encoding

and maintenance stage as well as for general inhibitory control. The

neural correlates of the level of inhibition, in turn, aligned well with

the time-sensitive analysis but decomposed the findings into several

low-frequency posterior clusters. See Figure 2 (time-sensitive TFR

analysis) and Figure S1 (frequency-sensitive TFR analysis) for a com-

plete list of the frequency bands, and time-windows in which statisti-

cally significant effects are observed. The p-values associated with

these significant findings are also displayed.

3.2.2 | Evoked responses: Level of inhibition on
retrieval

We found statistically significant differences in evoked responses to

the matching target image after a difficult versus an easy distractor,

interpreted to indicate the required level of inhibition for the

preceding distractor image and thus ease of retrieval (Figure 3). These

differences were observed for all three time-windows of interest: 0–

300, 300–500 and 500–700 ms. Spatially, there was an emphasis on

MEG sensors located above the right posterior brain regions. In addi-

tion, in the late time-window (500–700 ms), we observed statistically

significant differences also in centrally located MEG sensors. It is

noteworthy that the direction of difference indicated higher ampli-

tudes for the difficult distractor compared to the easy distractor for

some of the sensors whereas for other sensors we observed the

opposite trend. However, for the right posterior cluster, the ampli-

tudes were always higher for difficult than easy distractor.

3.3 | Correlation results between MEG data and
behavioral data

The statistically significant modulations in neural activity described

above, defined in specific COIs (TFRs) or sensors (ERFs) and specific

time-windows (TFRs/ERFs) and/or frequency bands (TFRs) were

tested for significant correlations with behavioral data using the corre-

lation tests mask as described in “Correlations between neural activity

F IGURE 3 Statistically significant differences between evoked responses time-locked to a matching target stimulus after a difficult versus an
easy distractor image. Evoked activity for each of the two contrasted conditions (y-axis: evoked response amplitude, in ft/cm; x-axis: time, in ms)
is plotted for the magnetoencephalography (MEG) sensors demonstrating statistically significant differences between the two conditions for each
of the three time-windows (0–300 ms; 300–500 ms and 500–700 ms) in which the significant effects were observed. The topoplots depict
significant MEG sensors as white circles; significant p-values and names of significant MEG sensors (Elekta Neuromag) are reported separately for
each-time window under each topoplot.
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and behavioral measures” in the Methods section (see Table 1). Signif-

icant correlations between neural activity and behavioral data were

exclusively detected for evoked activity, i.e., no correlations

were found between TFR measures and behavioral measures.

We observed a statistically significant negative correlation

between CERAD total score and difference in evoked activity in

response to a matching target image after difficult versus easy distrac-

tor in one MEG sensor in the right posterior cluster (Channel 4 in

Table 1 and Figure 3), which reflects persistent activity and higher

amplitude for retrieval image after difficult than after easy distractor.

The correlation emerged in the time-windows of 500–700 ms

(Figure 4a; MEG2523: p = .011, rho = �.48). This correlation signifies

that the smaller the difference in evoked responses to a matching tar-

get image after a difficult versus easy distractor, the larger the CERAD

total score (which indicates a higher level of overall cognitive

functioning).

We also found a statistically significant negative correlation

between the Stroop difference and difference in evoked activity in

response to matching target image after difficult versus easy distrac-

tor in the 0–300 ms time-window (Figure 4b; MEG2523: p = .011,

TABLE 1 Rho-values for the 15
correlation tests that were performed on
the basis of our masking procedure.

CERAD STROOP Time-window

Ease of retrieval: Evoked response at matching target after difficult versus easy distractor

Ch 1, frontocentral �0.22 0.0–0.3 s

Ch 5, r occ/temporal �0.26 0.0–0.3 s

Ch 6, r occ/temporal �0.16 0.0–0.3

Ch 4, r occ/temporal �/�0.36/�0.48* �0.48*/�/� 0–0.3/0.3–0.5/0.5–0.7 s

Ch 11, central �0.16 0.5–0.7 s

CERAD STROOP

Encoding and maintenance: MEG signal power before versus after encoder

8–13 Hz 0.13 �0.24

35–45 Hz (cluster 2) �0.27

General inhibition: MEG signal power before versus after distractor

15–25 Hz 0.26

35–45 Hz �0.037

1–30 Hz �0.2 0.23

Level of inhibition: MEG signal power for difficult versus easy distractor

1–30 Hz �0.16

Note: Values are shown for all tested correlations (that survived the masking procedure), and the tests

that reached statistical significance are highlighted in bold. The locations of the channels in which evoked

responses were examined are shown in Figure 3 and the time–frequency representation clusters in

Figure 2.

Abbreviation: MEG, magnetoencephalography

(a) (b)

F IGURE 4 Scatterplots demonstrating the statistically significant correlations between neural activity measures and behavioral measures.
Significant correlations were detected exclusively for evoked activity reflecting ease of retrieval, specifically for the difference in strength for the
target-evoked response after a difficult versus an easy distractor. For each scatterplot, we report the significant p-value and Spearman's rho.
(a) Scatterplot between neural measures (x-axis; in ft/cm) and CERAD scores (y-axis). (b) Scatterplot between neural measures (x-axis; in ft/cm)
and the Stroop difference (y-axis; in s). MEG, magnetoencephalography.
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rho = �.48). This negative correlation suggests that the smaller the

difference in evoked activity in response to matching target image

after difficult versus easy distractor the larger the Stroop difference

(which indicates weaker performance in the most demanding third

condition).

4 | DISCUSSION

Our study clarified the existence and robustness of the brain-behavior

link in elderly subjects, focusing on temporally varying neuronal activ-

ity involved in visual working memory and inhibitory control. The neu-

ral dynamics demonstrated distinct spatiospectral pattern of

oscillatory activity underlying visual working-memory and inhibition

task stages mainly within the expected fronto-central areas, as well as

robust evoked activity to target-triggered visual memory retrieval in

the posterior visual areas. Interestingly, our results suggest that

although the oscillatory activity shows task-relevant modulation, the

brain-behavior link can be only identified in the evoked response-

derived measures. Specifically, we showed that individual-level capac-

ity for executive control as well as general cognitive skills are linked

with evoked response amplitude reflecting the level of processing

engaged in retrieval and manipulation of memory-based items. The

present findings highlight that, when considering the complementary

markers of neural activity (evoked responses and modulation of oscil-

latory activity), and standardized tests of cognitive function (CERAD

total score, TMT, Stroop difference), it is possible to associate brain

measures with the individual level behavioral competence.

Our starting point in bridging brain and behavior was to obtain

better understanding of the neural correlates of cognitive processes

that are central to psychological wellbeing and functional capacity,

especially in elderly individuals. Indeed, inhibitory control, understood

from broad perspective, has been indicated as one of the key domains

predicting individual wellbeing and cognitive competence (Ganesan &

Steinbeis, 2021; Moffitt et al., 2011). In line with existing evidence on

cognitive function of younger individuals (Honkanen et al., 2015;

Palva et al., 2010), and confirming our hypotheses, oscillatory power

in the alpha, beta and gamma frequency bands was modulated by task

periods requiring working memory and inhibitory control. However,

contrary to our expectations, these oscillatory phenomena did not

show significant correlations with the behavioral measures. The

evoked activity in response to target triggered retrieval of the memo-

rized item, in turn, showed associations with individually defined level

of behavioral performance in executive processes, although only in

restricted area in the right posterior occipital cortex. This result is

compatible with the interpretation of oscillatory versus evoked activ-

ity, where modulation of oscillatory rhythms, particularly at alpha and

beta-bands, subserve the general top-down driven (perhaps less speci-

fied) milieu (e.g. attention allocation) for processing while evoked

responses may be more strictly bound to the specific bottom-up

driven pathway directly associated with task-specific requirements.

Stronger specificity could explain why evoked responses indicate

more intimate link to behavioral variance. Indeed, evoked response

amplitude in response to target- or feedback trials at around 300 ms

(such as P300) has shown individually robust association with behav-

ioral measures of inhibitory control (Rueda-Delgado et al., 2021) to a

degree to be useful also in context of neurofeedback applications

(e.g. Zioga et al., 2019). On the other hand, the frequency of oscilla-

tions, namely alpha peak frequency, has been shown to reflect the

level of cognitive engagement (Haegens et al., 2014). However, even

though the alpha frequency was reported to increase with increasing

cognitive demands at individual level, it did not predict the perfor-

mance level across individuals.

The brain functional basis of cognitive processes, specifically

executive skills, has been extensively studied across the life-span, and

our findings are in general agreement with this literature. In line with

the present findings regarding the stage of encoding and maintenance,

these cognitive functions have been repeatedly shown to engage the

vertex and frontally distributed oscillations at alpha (Jensen

et al., 2002) and gamma bands (Honkanen et al., 2015; Lozano-

Soldevilla et al., 2014; Lundqvist et al., 2016; Meeuwissen

et al., 2011; Morgan et al., 2011). Alpha and beta frequencies, in par-

ticular, have also been shown to provide the relevant computational

basis for inhibition (Bonnefond & Jensen, 2012, 2013;

Klimesch, 2012; Klimesch et al., 2007; Schaum et al., 2021). Thus, our

results bring confirmation to the established importance of alpha and

gamma-bands for working memory processes, and to the evidence of

the role of beta-band oscillations for active anticipatory inhibition

(Solís-Vivanco et al., 2021) also outside motor control. Interestingly,

while the contrast indicating general engagement of resources for

inhibiting distracting visual input reflected mainly central (vertex and

frontal) brain regions, the more specific contrast sensitive to the

required level of inhibition (namely easy vs. difficult visual distractor)

evidenced exclusively posterior (visual) localization. Indeed, specifi-

cally in tasks where the process of working memory maintenance is

distracted by information within the same (visual) modality, it is likely

that domain specific suppression of processing is required besides the

domain-general inhibitory control.

In elderly, the brain basis of cognitive skills is usually studied from

the perspective of general decrease in performance level, which is

characterized by age-related differences both in evoked responses

and in brain oscillations (Dustman et al., 1996; Friedman et al., 2007;

Reuter-Lorenz & Park, 2010). Aging has been associated with changes

in the task-related (induced) modulations in signal power of oscillatory

activity measured using MEG and electroencephalography—more spe-

cifically, attenuations and increasing spatial uniformity in neural activ-

ity at alpha band (Rossini et al., 2007) in context of working memory,

alterations in beta band (Rossiter et al., 2014) during motor inhibition,

and attenuation in higher frequencies (>30 Hz) (Kurimoto et al., 2012)

with relevance for working memory processes (Lisman, 2010). The

spectral distribution of these effects clearly overlaps with the current

results. Although our interest was not in contrasting young and old

individuals, but rather on individual variability, together these findings

suggest that aging is associated with broad changes in oscillatory

dynamics, of which our results suggest that low gamma (35–45 Hz)

modulation in vertex area underlies the encoding and maintenance of
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visual information, and to some extent also inhibition, and broadly dis-

tributed beta-band (15–25 Hz) modulation links especially with inhibi-

tory control. Alpha-band seem to relate to both working memory and

inhibitory stages. From a methodological point of view, it is important

to note, however, that the specific frequencies showing significance

varied somewhat depending on whether the time-varying nature of

frequencies was taken into account or not (cf. time-sensitive

vs. frequency-sensitive analysis; Figure 3 vs. Figure S1).

The general time-course of target-evoked activity in our data is in

line with earlier literature, and the robust evoked response overlaps

in time with the P3 complex. Indeed, the target-related task require-

ments are likely to evoke similar processes to P3, broadly associated

with stimulus evaluation and decision making, as the ongoing visual

information processing needs to be compared against the encoder

image simultaneously suppressing the distractor image. Particularly

relevant for the present study, P300 has been shown to differ

between groups with typical aging versus memory disorders (Polich &

Corey-Bloom, 2005; Rossini et al., 2007). In general, the time-window

where behaviorally relevant contrasts in evoked responses were

shown in the current study match with the time-window of age-

related effects in evoked activity reported earlier. Specifically, declines

in working memory capacity in ageing population are associated with

increases in (early) evoked response amplitude (Nowak et al., 2021),

shifts of amplitude maxima and altered amplitude distribution at later

time-windows (Pelosi & Blumhardt, 1999). Impaired inhibitory control

in the elderly has also been associated with enhanced evoked

responses time-locked to irrelevant stimuli, suggested to reflect

decreased capacity to suppress unnecessary inputs (Vallesi

et al., 2009). To reach behaviorally meaningful markers of brain activ-

ity, we focused on task-relevant contrast also in evoked activity,

which showed an expected shift from posterior and right lateralized

distribution prior to 500 ms to more vertex-emphasized distribution

at later latencies.

The conventional approach in neuroimaging has followed the

tradition of experimental psychology, where the focus is on the

neural correlates of specific cognitive tasks and individual variabil-

ity is consider as noninformative noise. However, in past 10 years,

the variability in neural activity has been increasingly considered

as a tool to reach a deeper understanding about key cognitive

processes and individual patterning of spontaneous oscillatory

rhythms (e.g., Haegens et al., 2014) or evoked response measures

(Duarte et al., 2013). Importantly, neurophysiological studies of

cognitive processing in elderly have revealed marked inter-

individual variability in neural activity. The variability in cognitive

aging is further associated with increases in moment-to-moment

fluctuations that drive behavioral mechanisms (Lindenberger

et al., 2006; Lindenberger & von Oertzen, 2006; MacDonald

et al., 2006). While variability, even in younger populations where

it is less pronounced, is often considered as a caveat in MEG data

analysis (e.g., Olivetti et al., 2014), the present study was founded

on the assumption that variability is instead a valuable resource

that can reveal meaningful connections between behavioral and

brain measures.

In the present study, we considered the behavioral correlations

with the modulations in TFR's for encoding, maintenance and inhibi-

tion task periods, and evoked responses to retrieval task period. The

selection of these specific neural measures was based on the substan-

tial earlier literature evidencing their relevance for the cognitive oper-

ations engaged by our task requirements (see, e.g., Palva et al., 2011).

We found correlation between evoked response measures and behav-

ioral measures, but surprisingly, no significant correlations between

neural oscillatory activity and behavior. Specifically, differences in

evoked activity supposedly reflecting level of inhibition that is

engaged during mental manipulation of memorized (encoder image)

and interference (distractor image) items correlated with behavioral

measures. In other words, larger difference in evoked activity in the

0–300 ms time-window after difficult versus easy distractor was asso-

ciated with more efficient executive control (as evidenced by smaller

Stroop difference). We also observer that a smaller difference in

evoked activity in the 500–700 ms time-window after difficult versus

easy distractor was associated with higher level of overall cognitive

functioning (as indexed by a higher CERAD total score). These results

may be interpreted as indexing the behavioral relevance of the brain's

capability to internally attend to relevant inputs (encoder face), and

interindividual variability in the ability to suppress competing stimuli

of the same category (difficult distractor, i.e. another face stimulus) or

a different category (easy distractor, i.e. an oval shape) (Chen &

Huang, 2016; Pulvermüller et al., 1996). The evoked response ampli-

tude across time-windows could thus reflect the ability to mobilize

inhibitory control resources to efficiently switch between tasks

(Bowie & Harvey, 2006), or the ability to focus internal attention to

task-relevant information in memory, evidenced earlier by using retro-

cues (Barth & Schneider, 2018). Indeed, Duarte and colleagues

(Duarte et al., 2013) reported reduced evoked activity in old versus

young individuals indicative of impaired resources in the old for retro-

spective attention to modulate working memory content. According

to our results, there may be individual variance even among the older

individuals in this neurocognitive capacity, that link also more broadly

to executive skills. Importantly, as the evoked response was measured

to the presentation of the target stimulus, i.e. following the (presum-

able) identification of the matching visual input after the distractor

image, this increase in amplitude must in our study be interpreted as

an indicator of successful inference suppression while performing

mental comparison between encoder and target images.

It is noteworthy, and somewhat puzzling, that our correlation

findings exclusively emphasize the relationship between evoked

responses and behavior, and there were no significant correlations

involving neural oscillatory activity. This observation may be due to

the small sample size combined with the fact that neural oscillatory

activity presents a lower signal-to-noise ratio than evoked responses.

It may also be, that stimulus-induced change in power is not the best

choice to capture individually varying characteristics in oscillatory

dynamics. Indeed, some earlier studies suggest that for example phase

locking or other synchronization measures either during rest (Jauny

et al., 2022) or task performance (Hinault et al., 2020; López

et al., 2014) are associated with the individually measured cognitive
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task performance. However, our findings highlight the sensitivity of

evoked response measure to the individual variance in cognitive

capacity. The validity of evoked responses in reflecting individually

meaningful information is also demonstrated by the brain computer

interfaces that are built on the P300 response component. This time-

window between 350 and 600 ms has shown to robustly reflect

attention, error awareness and memory of the target stimuli. Partly in

line with our correlational findings, specifically for the later 500–

700 ms time-window, stronger amplitude of P300 has been associ-

ated with superior performance in these tasks (Polich, 2007), and at

group level Alzheimer patients show diminished P300 amplitude in

comparison with typically aging individuals. Although the focus on

oscillatory (the periods of encoding, maintenance and inhibition) ver-

sus evoked (target-based retrieval) activity was based on characteris-

tics of the utilized experimental design and literature-based

assumption regarding the best neural markers for the given cognitive

function, it is important to clarify in the future whether the relevance

of target-related activation for behavioral capacity would also be pre-

sent in oscillatory activity.

It should also be noted that it is not straightforward to interpret

the correlation measures. We observed significant correlations in two

distinct time-windows. In the early time-window (0–300 ms) a larger

difference between the conditions (difficult versus easy distractor)

was associated with better performance whereas in the late time-

window (500–700 ms) better performance was associated with a

smaller difference between the conditions. Correlation was measured

between behavioral performance and a task contrast in the brain. As

the evoked response amplitude reflects changing cognitive operations

along its progression (Galer et al., 2015; Parviainen & Kujala, 2023;

Wen et al., 2019), it is possible that the amplitude values (hence syn-

chronization of neural activity) show distinct associations with behav-

iour in distinct stages of the processing. Indeed, our results suggest

that a pattern of a larger difference between task conditions in the

early time-window and a smaller difference between task conditions

in the later time-window is linked with better performance in inhibi-

tory and working-memory functions. This pattern would be in line

with benefit of early emerging inhibition, perhaps overlapping with

perceptual judgement, and thus successfully directing of internal

attention to relevant memory content. If the inhibitory contrast

emerges only later (as was the case for individuals performing more

poorly), the timing may be too late to support successful retrieval. This

interpretation is supported by Andersen and Müller (2010), who

showed that in selective visual attention task suppression of unat-

tended visual stimuli and enhancement of responses to visual targets

commenced in neural activity already before 300 ms, and the behav-

ioral performance (reaction times) was best explained not by the abso-

lute amplitudes, but the relative difference between these activations

to attended versus nonattended stimuli. It must be noted, however,

that we only analysed successfully retrieved trials. Moreover, it is also

possible that, especially at the later time-window also processes

related to motor preparation influence the evoked response ampli-

tude. Further studies are needed to clarify the core neural measure

underlying the evoked response effects.

An important future direction for the current study is to expand

the focus from correlations to causal relationships between neural

activity and behavioral measures. This would afford a more direct

proof that neural measures that correlate with behavioral measures

are indeed the generators of the behaviors of interest. Recent interest

in decoding cognitive operations from electrophysiological recordings

during attentional selection (Wen et al., 2019) could be applied also to

inform about the contribution of different neural processes on

memory-based decision making (cf. Foster et al., 2016). Moreover,

modulating the neural activity through stimulation techniques and

observing the associated changes in behavior can achieve a novel,

causality-based view on the brain-behavior link. Notably, transcranial

magnetic stimulation has been shown to transiently alter neural

dynamics on a stimulation-dependent manner. It could thus be used in

conjunction with functional neuroimaging measures that emphasize

correlational relationships and further consolidate the observed brain-

behavioral link through the angle of causality (Silvanto & Pascual-

Leone, 2012).

These findings are of relevance in the more general context of

developmental neuroscience (Lindenberger et al., 2006), that involves

mapping the link between brain and behavior across the lifespan. The

relationship between individual level behavioral performance and spe-

cific brain measures is particularly complex, as this link dynamically

changes as a function of time both on the time-scale of cognitive per-

formance itself, and in more larger time-scale of individual life-span,

and is subject to gene–environment influences. In order to reach any

stable, age-invariant neural level markers of the level of behavioral

performance, it would be beneficial to examine the similar brain-

behavior link in children, another population in which inter-individual

variability is large (Bonte et al., 2013; Parviainen et al., 2011). Append-

ing additional data points in the continuously evolving association

between brain and behavioral measures could strengthen the under-

standing of how neural activity ultimately contributes to behavioral

performance. This emerging understanding of the interconnection

between neural activation and behavioral patterns at individual level

is of particular relevance in neurogenomics and psychopathology,

where genetic predispositions are considered in conjunction to inter-

individual variability in brain function and the subsequently observed

behaviors (Bogdan et al., 2013).

5 | CONCLUSIONS

The question of whether specific patterns of neural activity are indi-

vidually meaningful to certain behavior or cognitive performance has

remained poorly understood and pertain to an important next step in

understanding the brain basis of cognitive functions. The present find-

ings suggest that neural activity can be associated with individually

defined performance at cognitive tasks involving working memory

and inhibitory control. Importantly, although induced oscillatory activ-

ity showed task-related modulation in expected frequency bands, pre-

sumably providing the top-down driven frame for mental

manipulation of memorized items, only the evoked response
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amplitude, bound to the bottom-up information processing pathway,

correlated with behavioral performance. Further studies are needed

to extract the core elements reflected by this effect, but our findings,

together with earlier evidence of, e.g., P3 effects, evidence the robust-

ness of evoked activity measures also at individual level.
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