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Abstract

Background: Ghana introduced the monovalent rotavirus vaccine (Rotarix) into its national 

paediatric vaccination programme in May2012. Vaccine introduction was initiated nationwide and 

achieved >85% coverage within a few months. Rotavirus strain distribution pre- and post-RV 

vaccine introduction is reported.

Methods: Stool samples were collected from diarrhoeic children <5 years of age hospitalized 

between 2009 and 2016 at sentinel sites across Ghana and analyzed for the presence of group 

A rotavirus by enzyme immunoassay. Rotavirus strains were characterized by RT-PCR and 

sequencing.
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Results: A total of 1363 rotavirus EIA-positive samples were subjected to molecular 

characterization. These were made up of 823 (60.4%) and 540 (39.6%) samples from the pre- and 

post-vaccine periods respectively. Rotavirus VP7 genotypes G1, G2 and G3, and VP4 genotypes 

P[6] and P[8] constituted more than 65% of circulating G and P types in the pre–vaccine period. 

The common strains detected were G1P [8] (20%), G3P[6] (9.2%) and G2P[6] (4.9%).

During the post-vaccine period, G12, G1 and G10 genotypes, constituted more than 65% of 

the VP7 genotypes whilst P[6] and P[8] made up more than 75% of the VP4 genotypes. The 

predominant circulating strains were G12P[8] (26%), G10P[6] (10%) G3P[6] (8.1%) and G1P[8] 

(8.0%). We also observed the emergence of the unusual rotavirus strain G9P[4] during this period.

Conclusion: Rotavirus G1P[8], the major strain in circulation during the pre-vaccination era, 

was replaced by G12P[8] as the most predominant strain after vaccine introduction. This strain 

replacement could be temporary and unrelated to vaccine introduction since an increase in G12 

was observed in countries yet to introduce the rotavirus vaccine in West Africa. A continuous 

surveillance programme in the post-vaccine era is necessary for the monitoring of circulating 

rotavirus strains and the detection of unusual/emerging genotypes.
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1. Background

Diarrhoea is the fourth leading cause of childhood mortality worldwide, responsible for an 

estimated 550,000 deaths annually among children below the age of five years, representing 

8.9% of all deaths within this age group [1]. Group A rotaviruses (RVAs) are the most 

important etiologic agent of acute gastroenteritis in children <5 years worldwide, accounting 

for about 200,000 deaths per annum, with a greater percentage of mortality occurring in 

developing countries [2]. In Ghana, rotaviruses account for up to 28% of diarrhoeal disease 

hospitalizations [3,4]. To reduce the high morbidity and mortality due to rotavirus infection, 

the World Health Organization (WHO) recommended the introduction of rotavirus vaccines 

into national immunization programmes in 2009.

Rotavirus gastroenteritis in humans is associated with mainly six genotype combinations; 

G1P[8], G2P[4], G3P[8], G4P[8], G9P [8] and G12P[8], causing majority of infections [5]. 

Although the distribution of these six globally important rotavirus genotypes can change 

dramatically in regions from year to year, the G1P[8] rotavirus strain has remained the 

most prevalent strain worldwide [6–8]. However, significant diversity of rotavirus genotypes 

continues to be observed worldwide with several novel combinations due to accumulation 

of point mutations, genome re-assortments, and/or zoonotic transmission to human host 

resulting in the introduction of new antigenic variants across regions [9,10].

Presently, there there are two rotavirus vaccines; RotaTeq, (Merck Vaccines, Whitehouse 

Station, New Jersey) and Rotarix (GlaxoSmithKline Biologicals, Rixensart, Belgium) that 

have been licensed and recommended by the WHO for inclusion in the immunization 

programmes in developing countries, especially those with a high burden of childhood 
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diarrhoea disease as part of its strategy to control RV-associated diarrhoeal diseases [11,12]. 

The WHO has also recommended surveillance programmes at sentinel sites across Africa 

to monitor the burden of rotavirus disease and circulating strains before and after vaccine 

introduction as one of the crucial tools in measuring the impact of rotavirus vaccines [11]. 

Ghana has actively participated in the WHO surveillance programme and introduced the 

monovalent rotavirus vaccine (Rotarix, GSK) in May 2012. The introduction of rotavirus 

vaccines into national immunization programmes has led to the decline in the burden 

of severe childhood acute gastroenteritis (AGE) in many vaccine-introducing countries, 

including Ghana [3,4,13,14]. This report describes temporal trends in RV strain distribution 

pre- and post-vaccine introduction in Ghana.

This study was reviewed and approved by the Institutional Review Boards of the Centers for 

Disease Control and Prevention (Atlanta, Georgia), and the Noguchi Memorial Institute for 

Medical Research, University of Ghana (Accra).

2. Methods

2.1. Study population

The surveillance studies were carried out in rotavirus sentinel surveillances sites in health 

institutions across the southern, middle and northern belts of Ghana. The surveillance sites 

were Southern belt (Korle-Bu Teaching Hospital and Princess Marie Louise Children’s 

Hospital in the Greater Accra Region); Middle Belt (Agogo Presbyterian Hospital and 

Komfo Anokye Teaching Hospital in the Ashanti Region); Northern Belt (Navrongo War 

Memorial Hospital, Paga Health Centre and Kassena East Health Centre in the Upper East 

region). Diarrhoea disease surveillance and epidemiological studies have been on-going 

at these sites since 2009. Fecal samples were collected from children less than 5 years 

of age admitted with a primary diagnosis of AGE from participating hospitals and health 

Centers within 48 h of hospitalization and tested for the presence of rotavirus antigen 

using enzyme immunoassay (EIA) (ProSpecT™, Oxoid Cambridge, United Kingdom). A 

total of 1363 rotavirus (RV) EIA-positive stool samples sent to the Regional Rotavirus 

Reference Laboratory (RRL) located at the Noguchi Memorial Institute for Medical 

Research, University of Ghana, wee characterization. Demographic and clinical information 

of patients were also provided for each sample.

3. Laboratory analysis

3.1. Polyacrylamide gel Electrophoresis

All RV EIA-positive stool specimens were subjected to Polyacrylamide Gel Electrophoresis 

(PAGE) to ascertain the integrity of the RNA genome. All EIA-negative samples were 

also subjected to PAGE to screen for any non-group A rotavirus. Briefly, viral RNA was 

extracted from 10% faecal suspensions by the Bender method [15] with slight modification 

for PAGE analysis [16]. The extracted double-stranded RNA (dsRNA) was electrophoresed 

on a 10% polyacrylamide slab gel for 18–20 h at 100 V using the discontinuous buffer 

system as described by Laemmli [17]. A 3% stacking gel was employed to enhance the 

resolution of the segmented genes. Bands were visualized by silver-staining technique [18].
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3.2. RT-PCR

RVA dsRNA was extracted from 10% fecal suspensions of EIA-positive and EIA negative 

PAGE-positive samples by the phenol/chloroform method as described by Steele and 

Alexander and purified with an RNaid® Kit (Bio 101, Carlsbad, USA) [18]. RT-PCR 

was carried out using consensus primers Beg9/End9 and Con2/Con3 to amplify the VP7 

and VP4 genes respectively [19–21]. Semi-nested multiplex PCR was done for G- and 

P-typing by using genotype-specific primers as described previously [20–22]. The amplified 

product was electrophoresed on a 2% agarose gel, and the genotypes determined by the 

sizes of the amplicons. Ten percent of all genotypes determined by PCR were further 

confirmed by sequencing. Briefly, the PCR amplicons were purified with the ExoSap-IT 

purification kit (USB products) following the manufacturer’s instructions and sequenced by 

the dideoxynucleotide chain termination method using the ABI PRISM® BigDye Terminator 

Cycle Sequencing Reaction kit v3.1 (Perkin-Elmer Applied Biosystems, Foster City, CA). 

Sequences were read on an automated sequencer (ABI PRISM™ 3130), and assembled 

contigs identified by querying the nucleotide database in GenBank using the Basic Local 

Alignment Search Tool [BLAST] (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The genotypes 

obtained were confirmed using the automated genotyping tool, RotaC v2.0 [23]. All 

demographic, clinical and laboratory data were entered into a database and analyzed using 

Stata version 13 (Stata Corp, College Station, TX, USA).

4. Results

A total of 1363 rotavirus-positive diarrhoeic stool samples from the southern (n = 876), 

middle (n = 173) and northern (n = 314) regions were successfully genotyped. Of these, 

823 were from the pre-vaccine period (January 2009–April 2012) and 540 from the 

post-vaccination period (May 2012–December 2016). The most common G-genotypes 

detected during the entire period (2009 to 2016) were G1 (30.7%; 418/1363), G12 (13.8%; 

188/1363), G3 (12.1%; 165/1363) and G2 (10.7%; 146/1363) whilst the most commonly 

detected P-genotypes were P[8] (37.8%; 515/1363), P[6] (31.6%; 431/1363), and P[4] 

(8.9%; 121/1363).

The circulation and detection of rotavirus VP7 and VP4 genotypes during the pre and 

post vaccine introduction periods were very similar. The most common VP7 and VP4 

types detected during the pre vaccine introduction period were G1 (40.0%; 330/823) and 

P[8] (34.6%; 285/823) respectively as shown in Table 1a. Rotaviruses bearing the VP[6] 

genotypes were also commonly detected (30.7%, 253/823). The most prevalent G and P 

types detected were G1P[8] (20.0%, 165/823, G3P[6] (9.2%, 76/823) more than eighteen 

percent of all Vp7 could not be genotypes whilst the percentage of un-typable P types were 

less than 3%. More than 11% of all strains detected had mixed VP4 genotypes.

During the post vaccine period, the most common G and P types detected were G12 

(32.6%; 176/540) and P[8] (42.6%; 230/540). The predominant rotavirus strains detected 

were G12P[8] (25.6%; 138/540), G10P[6] (10.0; 54/540) and G3P[6] (8.1%; 44/540) strains 

as shown in Table 1b. Strains bearing the common VP7 genotypes, G1 and G2, constituted 

24.3% (131/540) of all rotavirus strains detected.
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In addition to common strains, we identified several rare/uncommon genotype combinations 

in a low percentage of samples: G1P[4], G4P[4], G6P[6], G8P[8], G9P[4], G10P[4], 

G10P[6] and G12P[4]. The overall prevalence of these rare/uncommon strains is 10% 

(Tables 1a and 1b. We did not see significant differences between dominant strains within 

the three regions during the pre- or post-vaccine era.

4.1. Temporal strain distribution pre- and post- vaccine era

G1P[8] was the predominant rotavirus strain (>20%) during the pre-vaccine era (Fig. 1). 

Other common strains detected were G3P [6] (9.2%), G1P[6] (4.1%), G10P[6] (3.8%) and 

G2P[6] (4.9%). The first three rotavirus seasons after vaccine introduction (2012–2015) 

saw the emergence and dominance of G12P[8] (138/540; 26%) and G10P[6] (54/540; 10%) 

strains as shown in Table 1b. However, this observed phenomenon was short lived and 

there was a return of G1P[8] as one of the dominant strains in the fourth year post-vaccine 

introduction (2015–2016 rotavirus season) (Fig. 1). The 2015–2016 rotavirus season also 

saw the emergence of the unusual G9[P4] strains (16/540; 3.0%), most of which were 

detected in the middle belt. This unusual strain was first detected in Ghana in the early 

2000s. Successive detections of G9P[4] strain were in 2013 (2/144, 1.4%), 2015 (1/53, 

1.3%), and the spike in 2016 (8/51, 15.7%) (Fig. 1). Phylogenetic analysis of the VP7 gene 

revealed these G9 genotypes to be of human origin (unpublished data).

5. Discussion

Rotavirus infection was monitored as part of the ongoing World Health Organization 

sponsored rotavirus surveillance study in Ghana. A total of 1363 RVA positive samples were 

subjected to G and P genotyping as described earlier [20–22]. Genotype data before vaccine 

introduction showed that strains carrying the G1 genotype specificity were responsible for 

40% of all RV cases recorded during the pre-vaccine period (2009–2012) and this was 

followed by G3 (13.9%) and G2 (12.5%). Most of the common genotypes identified (G1, 

G2) were usually found in combinations with P[8] and P[4] VP4 genotypes (Tables 1a 

and 1b). The prevalence of the common G3P[8] strain remained below 2% during the 

study period. In addition to common strains, we identified several rare/uncommon genotype 

combinations in a few samples: G1P [4] (1.5%; 21/1363) G4P[4] (<1%; 10/1363), G9P[4] 

(1.2%; 16/1363) and G10P[6] (6.2%; 85/1363).

The sudden appearance of G12P[8] rotavirus strains soon after the introduction of rotavirus 

vaccines in 2012 and its drop to less than 6% of detected strains by 2016 is quite interesting. 

Concurrent genotyping of diarrhoeal stool samples submitted to the Rotavirus Regional 

Reference Laboratory (RRL) in Ghana (data not shown) from countries in the WHO 

sponsored African Rotavirus surveillance programme showed the emergence of G12 strains 

as the dominant strain in Nigeria and Senegal, countries that had not yet introduced rotavirus 

vaccines in their immunization programme. Therefore, the observed emergence of G12 

strains post-vaccine introduction may not be associated with vaccine introduction and may 

represent natural secular variation in rotavirus strains.

Earlier reports indicate that rotavirus G9s were usually in combination with the P[8] 

genotypes and to a lesser extent, P[6] [24]. The emergence of the unusual G9[P4] 
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strain more than ten years after its first detection in a child with diarrhoea in northern 

Ghana [25] was intriguing. Outbreaks of rotavirus G9P[4] strains have also been reported 

over the last decade in Asia (India, Bangladesh and Japan) and Latin America (Brazil, 

Mexico, Guatemala and Honduras) [26–33]. Though several of these countries reporting the 

increased detection of G9P[4] rotavirus strains had previously introduced the monovalent 

rotavirus vaccine, it remains unclear whether the observed increased detection of this 

unusual strain is due to vaccine introduction. Earlier reports from Ghana have shown 

increased diversity in circulating strains [34] and it is quite likely that the observed increase 

of these unusual strains may be due to increased re-assortment processes in the community. 

It is important to note that studies in Mexico showed that the monovalent rotavirus vaccine 

(Rotarix) provided protection against the fully heterotypic G9P[4] strains [33]. However, this 

study was limited by its small sample size and the observational nature of the evaluation. 

While it has not yet been established whether the Ghanaian G9P[4] strains are identical to 

the Mexican strains, it remains unclear whether they will become established or transient, 

and what the implications will be for vaccine efficacy in Ghana. The observed increase in 

detection of rotavirus strains with mixed G and P types in circulation after Rotarix vaccine 

introduction has also been reported in other countries in India, Bangladesh, South Africa 

and Malawi [35–38] where a substantial proportion of mixed rotavirus circulating strains 

were also detected post-vaccination. Whilst these findings may indicate naturally occurring 

variations in circulating rotavirus strains, it could also be due to selective pressure from the 

introduction of rotavirus vaccination. A continuous rotavirus surveillance programme is thus 

necessary and important for the monitoring of circulating strains in the post-vaccine era to 

fully understand the effect of vaccine introduction on strain distribution and the emergence 

of new strains.
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Fig. 1. 
Temporal rotavirus strain distribution in Ghana (2009 to 2016). Black broken line indicates 

vaccine introduction in Ghana. MIX: mixed genotypes; NT: either G, P or both were 
non-typeable.
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Table 1a

Distribution of rotavirus strains detected in Ghana – Pre-vaccine era (January 2009–April 2012).

VP7 VP4 Total

P[4] P[6] P[8] P[MIX] P[NT]

G1 6 34 165 97 28 330

G10 0 31 0 2 1 34

G12 0 4 8 0 0 12

G2 17 40 14 26 6 103

G3 3 76 19 10 6 114

G4 10 2 1 1 1 15

G6 0 1 0 0 0 1

G8 0 0 1 0 0 1

G9 0 12 10 2 2 26

GMIX 1 10 12 11 1 35

GNT 4 43 55 23 27 152

Total 41 253 285 172 72 823

MIX: mixed genotypes; NT: either G, P or both were non-typeable.
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Table 1b

Distribution of rotavirus strains detected in Ghana - Post-vaccine era (May 2012–December 2016).

VP7 VP4 Total

P[4] P[6] P[8] P[MIX] P[NT]

G1 15 21 43 6 3 88

G10 1 54 12 2 0 69

G12 2 22 138 13 1 176

G2 33 6 4 0 0 43

G3 0 44 5 2 0 51

G4 0 2 6 0 0 8

G8 0 0 1 0 0 1

G9 16 10 4 2 2 34

GMIX 10 10 6 15 0 41

GNT 3 9 11 1 5 29

Total 80 178 230 41 11 540

MIX: mixed; NT: either G, P or both were non-typeable.
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