Stereoselectivity of $Ins(1,3,4,5)P_4$ recognition sites: implications for the mechanism of the $Ins(1,3,4,5)P_4$ -induced Ca^{2+} mobilization

Robert A. WILCOX,*§ R. A. John CHALLISS,* Giséle BAUDIN,† Andrea VASELLA,† Barry V. L. POTTER‡ and Stefan R. NAHORSKI* *Department of Pharmacology and Therapeutics, University of Leicester, P.O. Box 138, Medical Sciences Building, University Road, Leicester LE1 9HN, U.K., tOrganisch-Chemisches lnstitut, Universitat Zurich, CH-8057 Zurich, Switzerland, and tSchool of Pharmacy & Pharmacology and Institute for Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

Ins(1,3,4,5) P_4 was able to mobilize the entire Ins(1,4,5) P_3 sensitive intracellular Ca²⁺ store in saponin-permeabilized SH-SY5Y human neuroblastoma cells in a concentration-dependent manner, yielding an EC₅₀ value of $2.05 \pm 0.45 \mu M$, compared with $0.14 \pm 0.03 \mu M$ for Ins(1,4,5) P_3 . However, L-Ins(1,3,4,5) P_4 $[= D-Ins(1,3,5,6)P₄]$ failed to cause mobilization of intracellular Ca^{2+} at concentrations up to 100 μ M. Binding studies using pig cerebellar membranes as a source of both $\text{Ins}(1,4,5)P_3$ / $Ins(1,3,4,5)P₄$ -specific binding sites have revealed a marked contrast in their stereospecificity requirements. $Ins(1,4,5)P_3$ receptors from pig cerebella exhibited stringent stereospecificity, L-Ins(1,4,5) P_3 and L-Ins(1,3,4,5) P_4 were > 1000-fold weaker, whereas Ins(1,3,4,5) P_4 (IC₅₀ 762 \pm 15 nM) was only about 40-fold weaker than D-Ins(1,4,5) P_3 (IC₅₀ 20.7 ± 9.7 nM) at displacing specific $[{}^3H]Ins(1,4,5)P_3$ binding from an apparently homogeneous $Ins(1,4,5)P_3$ receptor population. In contrast, the

INTRODUCTION

Many cell-surface receptors activate phosphoinositide-specific phospholipase C via G-proteins, to catalyse the hydrolysis of phosphatidylinositol 4,5-bisphosphate and produce the second messengers Ins $(1,4,5)P_3$ and diacylglycerol [1]. Ins $(1,4,5)P_3$ specifically interacts with a family of $Ins(1,4,5)P_3$ -receptor-gated channels to mobilize non-mitochondrial intracellular Ca²⁺ stores [1,2]. In animal cells $Ins(1,4,5)P_3$ is rapidly metabolized by 5phosphatase and 3-kinase activities, to form $Ins(1,4)P_2$ and Ins $(1,3,4,5)P_4$ respectively [1]. Although controversy exists as to whether Ins(1,3,4,5) P_4 also plays a role in cell signalling, evidence has accumulated suggesting it may have a role in Ca^{2+} entry across the plasma membrane (reviewed in [3-5]). Ins(1,3,4,5) P_4 -activated Ca²⁺ channels have been recently identified in the plasma membrane of endothelial cells [6], and Ins $(1,3,4,5)P_4$ -activated Ca²⁺ mobilization has been observed using crude microsomes and enriched vesicular plasma membranes prepared from T-lymphocyte and monocyte cell lines [7]. Furthermore, $Ins(1,3,4,5)P_4$ has also been reported to induce a heparin-insensitive Ca^{2+} sequestration into intracellular pools of the 261B rat liver epithelial cell line [8,9].

In some cell types, $Ins(1,3,4,5)P_4$ apparently fails to mobilize intracellular Ca²⁺ stores or to modulate Ins(1,4,5) P_3 -induced Ca2+ mobilization [10-13]. However, several studies have reported either Ins $(1,4,5)P_3$ -independent or Ins $(1,4,5)P_3$ -synergistic effects of Ins(1,3,4,5) \tilde{P}_4 on intracellular Ca²⁺ mobilization, although the problems of $Ins(1,4,5)P_3$ contamination of the Ins(1,3,4,5) P_4 used [14,15], back-conversion into Ins(1,4,5) P_3 by

Abbreviation used: CLB, 'cytosol-like' buffer.

 $Ins(1,3,4,5)P_4$ -binding site exhibited poor stereoselectivity. Ins(1,3,4,5) $\overline{P_4}$ produced a biphasic displacement of specific $[^{32}P]Ins(1,3,4,5)P_4$ binding, with two-site analysis revealing K_{D} values for high- and low-affinity sites of 2.1 ± 0.5 nM and 918 \pm 161 nM respectively. L-Ins(1,3,4,5) P_4 also produced a biphasic displacement of specific $[{}^{32}P]$ Ins(1,3,4,5) P_4 binding which was less than 10-fold weaker than with D-Ins(1,3,4,5) P_4 (IC₅₀) values for the high- and low-affinity sites of 17.2 ± 3.7 nM and 3010 ± 542 nM respectively). Therefore, although L-Ins(1,3,4,5) P_4 appears to be a high-affinity $Ins(1,3,4,5)P₄$ -binding-site ligand in pig cerebellum, it is a very weak agonist at the Ca^{2+} -mobilizing receptors of permeabilized SH-SY5Y cells. We suggest that the ability of D-Ins(1,3,4,5) $P₄$ to access intracellular Ca²⁺ stores may derive from specific interaction with the $Ins(1,4,5)P₃$ - and not the Ins $(1,3,4,5)P₄$ -receptor population.

endogenous 3-phosphatase activity in the cells [16,17] or indirect effects of Ins(1,3,4,5) P_4 by protection of Ins(1,4,5) P_3 from 5phosphatase metabolism [18], have not always been convincingly addressed. Ins $(1,3,4,5)P_4$ has been shown directly to mobilize the $Ca²⁺$ stores in cerebellar [19] and adrenal [20] microsomes, permeabilized SH-SY5Y neuroblastoma cells [15,21] and microinjected Xenopus oocytes [22]. In all these studies the maximal concentrations of Ins(1,3,4,5) P_4 (20–30 μ M) used mobilized significantly less intracellular $Ca²⁺$ than could be achieved with $Ins(1, 4, 5)P_3$.

At present it is not clear how, or indeed if, the different physiological effects of Ins(1,3,4,5) P_4 (i.e. stimulation of Ca²⁺ entry and intracellular Ca^{2+} mobilization and sequestration), are mediated via the specific high-affinity $Ins(1,3,4,5)P_4$ -binding sites detected in certain tissues. Here we have assessed where Ins(1,3,4,5) P_4 -binding sites might be linked to Ca²⁺ mobilization from intracellular stores. Ins(1,3,4,5) P_4 and L-Ins(1,3,4,5) P_4 were used to characterize the stereospecific requirements of ligand binding in pig cerebellar membranes and Ca²⁺ mobilization in permeabilized SH-SY5Y neuroblastoma cells.

MATERIALS AND METHODS

Materials

 $^{45}CaCl₂$ (approx. 1000 Ci/mmol; Amersham International), $[^{3}H]Ins(1,4,5)P_3$ (17 Ci/mmol) and $[^{32}P]Ins(1,3,4,5)P_4$ (116– ¹⁶² Ci/mmol) were generously given by NEN DuPont. Heparin (M_r 4000-5000), disodium ATP, fura-2 and EGTA were from Sigma; all other reagents were of the highest purity

[§] To whom correspondence should be addressed.

available. L-Ins(1,4,5) P_3 [23] and L-Ins(1,3,4,5) P_4 [24] were synthesized as previously described.

Chemically synthesized Ins $(1,4,5)P₃$ [25] and Ins $(1,3,4,5)P₄$ [26] were obtained from the University of Rhode Island Foundation Chemistry Group, U.S.A., and were used for all the $45Ca^{2+}$ release assays. Both compounds were extensively characterized by ³¹P- and ¹H-n.m.r., and were found to be $> 99\%$ pure, with no other detectable inositol polyphosphates, reflecting that the respective synthetic pathways effectively exclude the possibility of Ins $(1,4,5)P_3$ /Ins $(1,3,4,5)P_4$ cross-contamination [26].

Radioligand-binding studies using pig cerebellar membranes

Preparation of cerebellar P_2 ' membrane fraction

Pig cerebella were obtained from a local abattoir. Portions of cerebellum were either used immediately or frozen in liquid nitrogen and stored at -70 °C. Cerebellum was chopped with scissors at ⁴ °C and homogenized in ²⁰ vol. of ²⁰ mM NaHCO₃/1 mM dithiothreitol, pH 8.0, with a Polytron (setting 5, 2×15 s). The homogenate was centrifuged (4000 g, 10 min, 4 °C) and the supernatant kept. The pellet was re-homogenized and centrifuged as above. The pooled supematants from the lowspeed centrifugation steps were then centrifuged $(35000 g,$ 20 min, 4 °C). The resulting pellets were then homogenized and the high-speed centrifugation step was repeated twice. The final pellet was resuspended in homogenization buffer at 6-8 mg of protein/ml, 'snap'-frozen in liquid nitrogen and stored at -20 °C until required.

Characterization of $Ins(1,4,5)P_3$ - and $Ins(1,3,4,5)P_4$ -binding sites

Increasing concentrations (0.5-1000 nM) of Ins(1,4,5) P_3 were incubated in a total assay volume of $120 \mu l$ with $2-\frac{3}{2}$ nM [³H]Ins(1,4,5) P_3 in a buffer containing 25 mM Tris/HCl, 5 mM NaHCO₃, 1 mM EDTA and 0.25 mM dithiothreitol, pH 8.0. Incubations were initiated by addition of $50-70 \mu$ g of cerebellar membrane protein and continued for 30 min at 4 'C. Bound and free ligand were separated by centrifugation $(12000 g, 4 min)$. Pellets were dissolved in 2% SDS. Residual bound radioactivity in the presence of 10 μ M D-Ins(1,4,5) P_3 (Research Biochemicals Inc., St. Albans, Herts., U.K.), 1 mM Ins P_6 , 100 μ g/ml heparin or $3 \text{ mM } 2,3$ -bisphosphoglycerate was similar (< 5% of total binding) and was defined as non-specific binding.

Increasing concentrations (0.1-10000 nM) of Ins(1,3,4,5) P_4 were incubated in a total assay volume of 120 μ l with 0.2-0.4 nM $[^{32}P]$ Ins(1,3,4,5) P_4 in a buffer containing 25 mM sodium acetate, $25 \text{ mM } KH_2PO_4$, $5 \text{ mM } NaHCO_3$, $1 \text{ mM } EDTA$ and 0.25 mM dithiothreitol, pH 5.0. Incubations were initiated by addition of $200-250 \mu g$ of cerebellar membrane protein and continued for 30 min at 4 'C. Bound and free ligand were separated by rapid vacuum filtration over GF/B filters, with 3×3 ml washes with 25 mM sodium acetate/25 mM $KH_{2}PO_{4}/5$ mM NaHCO₃, pH 5.0. Residual bound radioactivity in the presence of 100 μ M DL-Ins $(1,3,4,5)P_4$ (generously given by Dr. D. C. Billington, Merck Sharp and Dohme Research, Harlow, Essex, U.K.), 1 mM Ins P_6 , 100 μ g/ml heparin or 3 mM 2,3-bisphosphoglycerate was similar (10-15 $\%$ of total binding) and was defined as non-specific binding. Where indicated, competition curves were constructed for other inositol polyphosphates, by using the assays described above.

Cell culture

SH-SY5Y human neuroblastoma cell monolayers (passage 70-90), initially a gift from Dr. J. L. Biedler (Sloane-Kettering Institute, New York, NY, U.S.A.), were subcultured and maintained as described [27].

4Ca2+-mobilization assays

SH-SY5Y cell monolayers were harvested in 25 ml of Hepesbuffered saline, consisting of ¹⁰ mM Hepes, ¹⁵ mM NaCl and 0.02% (w/v) EDTA (pH 7.2). The cell suspension was centrifuged at 500 g for 2 min, and the resulting pellet resuspended in ^a 'cytosol-like' buffer (CLB), consisting of ¹²⁰ mM KCl, ² mM Na₂ATP, 2.4 mM $MgCl₂, 6H₂O$, 2 mM KH₂PO₄, 5 mM sodium succinate and 20 mM Hepes (pH 7.2). The free Ca^{2+} concentration of the CLB was buffered between ⁸⁰ and ¹⁵⁰ nM by addition of $1-3 \mu M$ EGTA; this was confirmed fluorimetrically in 2 ml samples by using fura-2 (250 nM) as described [28]. The cells were washed twice in CLB, by spinning at 500 g for 1 min, and then resuspended in CLB containing 100 μ g/ml saponin and a cell protein concentration of 1.5-2 mg/ml. After exactly ¹ min the cells were centrifuged $(500 g, 1 min)$ and the pellet was resuspended to 0.3–0.4 mg/ml in CLB containing 1μ Ci of $45Ca²⁺/ml.$

Ins(1,3,4,5) P_4 -induced ⁴⁵Ca²⁺ mobilization was performed at 4 °C to preclude the possibility of 3-phosphatase activity causing Ins $(1,4,5)P₃$ formation in the permeabilized SH-SY5Y cells [21]. Cells were preincubated for 20 min at 25° C to allow ATPdependent loading of intracellular Ca^{2+} stores, cooled to 4 °C in ice/water, and then 50 μ l of cell suspension was added to 50 μ l of CLB containing the inositol polyphosphates or other agents in 1.5 ml microcentrifuge tubes. After 3 min incubation at 4 °C, cells were pelleted by centrifugation (16000 g, 2 min); then 250 μ l of a silicone oil mixture (Dow-Corning 556/550; 1:1, v/v) was added and the tubes were re-centrifuged (16000 g , 1 min). Buffer and oil were removed by aspiration, and the tubes allowed to drain for 20 min. The resultant cell pellets were solubilized in ¹ ml of Optiphase X scintillation fluid for 6-8 ^h at ⁴ °C, and the radioactivity was then counted. All experiments were performed in duplicate; 20 μ M ionomycin (free acid; Calbiochem) was used to define the total releasable $^{45}Ca^{2+}$ pool and $20-30 \mu M$ Ins(1,4,5) P_3 to define the Ins(1,4,5) P_3 -sensitive ⁴⁵Ca²⁺ pool.

Data analysis

 EC_{50} , IC_{50} , K_{D} and slope values were estimated by computerassisted curve fitting by using GraphPad INPLOT version 3.1 (GraphPad Software, U.S.A.) and Allfit [29]. Where slope factors were significantly less than unity, computer-assisted one- and two-site analyses were compared [30]. Where data were best fitted by two-site analysis, the concentrations of agents required to cause 50 % displacement from high (K_H) - and low (K_L) -affinity populations are given. Combined data from the independent experiments were expressed as means \pm S.E.M., where $n \ge 3$.

RESULTS

inositol polyphosphate binding to pig cerebellar membranes

Ins(1,4,5) P_3 displaced specific [³H]Ins(1,4,5) P_3 binding from an apparently homogeneous single site (slope 0.97 ± 0.03). Scatchard transformation of isotope-dilution data yielded K_D 17.5 \pm 1.8 nM and B_{max} 20.8 \pm 2.4 pmol/mg of protein (n = 5). As reported previously for rat cerebellar membranes prepared in an identical fashion, L-Ins(1,4,5) P_3 was > 1000-fold weaker in its displacing activity [30], as was L-Ins(1,3,4,5) P_4 in pig cerebellum, in this study. The other inositol polyphosphates tested exhibited similar IC_{50} values to those reported previously for rat cerebellar membranes [30] (Table 1).

Displacement of specific $[^{32}P]$ Ins(1,3,4,5) P_4 binding by

Results are shown as means \pm S.E.M. ($n \ge 3$) for IC₅₀ (M) and slope factors (h) where appropriate. Abbreviation: ND, not determined.

Figure 1 Inhibition of specific $[^3H]$ Ins(1,4,5) P_3 and $[^{32}P]$ Ins(1,3,4,5) P_4 binding to pig cerebellar membranes by increasing concentrations o $Ins(1,3,4,5)P_4$ (\blacksquare) and L- $Ins(1,3,4,5)P_4$ (\bigcirc)

Results are shown as means \pm S.E.M. for $n \geq 3$ independent experiments.

Figure 2 Inositol polyphosphate-induced $45Ca^{2+}$ mobilization in saponinpermeabiized SH-SY5Y cells

Results are shown as means \pm S.E.M. for $n = 4$ independent experiments using Ins(1,4,5) P_3 (A) , lns(1,3,4,5) P_4 (and L-lns(1,3,4,5) P_4 (\bigcirc). The respective mean EC₅₀ and slope values are reported in the Results section.

Ins $(1,3,4,5)P₄$ yielded curves with slope factors significantly less than unity $[0.53 \pm 0.04 \, (n = 3)]$. These were poorly fitted by single-site analysis, but could be accurately modelled by using a two-site analysis. Such analysis yielded K_D values for high- and low-affinity binding sites of 2.1 ± 0.5 nM and 918 ± 161 nM respectively $(n = 3)$: at the concentration of $[^{32}P]$ Ins $(1,3,4,5)P_4$ used, the high-affinity site accounted for $75.4 \pm 2.5\%$ of total binding and corresponded to a density of sites of 212 ± 30 fmol/mg of protein (Figure 1). In contrast with the stereospecificity exhibited by the $Ins(1,4,5)P₃$ -binding site, L-Ins(1,3,4,5) P_1 [= Ins(1,3,5,6) P_2] also caused a biphasic displacement of specific $[^{32}P]Ins(1,3,4,5)P_4$ binding and was < 10-fold weaker in its displacing activity relative to the D -isomer (IC₅₀ for high-affinity site 17.2 ± 3.7 nM; IC₅₀ for low-affinity site 3010 ± 542 nM). The proportional distribution of high- and lowaffinity sites observed in the L-Ins $(1,3,4,5)P_4$ -displacement studies (high-affinity $72.4 \pm 3.1\%$) was similar to that estimated from Ins $(1,3,4,5)P_4$ isotherms. Comparison of the ability of other inositol polyphosphates to displace specific $[{}^{32}P]$ Ins(1,3,4,5) P_4 binding from pig cerebellar membranes was entirely consistent with the rank-order of potency previously determined by using rat cerebellar membranes [30] (Table 1; Figure 1).

$Ca²⁺$ mobilization by inositol polyphosphates

Ins(1,4,5) P_3 mobilized 56.4 \pm 1.4% (n = 20) of pre-loaded ⁴⁵Ca²⁺ from saponin-permeabilized SH-SY5Y cells at 4°C, with a mean EC₅₀ (and slope) value of 141 ± 27 nM (0.91 \pm 0.03). Ins(1,3,4,5) P_4 (100 μ M) was able to mobilize the entire Ins(1,4,5) P_3 -sensitive intracellular Ca²⁺ store of saponinpermeabilized SH-SY5Y with a mean EC_{50} (and slope) value of $2.05 \pm 0.45 \mu M$ (1.03 \pm 0.09), which was only about 15-fold weaker than $Ins(1,4,5)P_3$ (Figure 2).

However, L-Ins(1,3,4,5) P_4 did not significantly mobilize intracellular Ca²⁺ even at concentrations up to 100 μ M (Figure 2). Also, co-incubation of the SH-SY5Y cells with $10 \mu M$ L-Ins(1,3,4,5) P_4 failed to produce a significant shift of either the Ins $(1,4,5)P_3$ - or Ins $(1,3,4,5)P_4$ -induced Ca²⁺-release concentration-response curves. These were superimposable, with their control curves yielding mean EC_{50} values for the Ins(1,4,5) P_3 or Ins $(1,3,4,5)P_4$ -induced Ca²⁺-release concentration-response curves of 170 ± 53 nM and 1.70 ± 0.58 μ M respectively. These results suggest that L-Ins $(1,3,4,5)P₄$ fails to interact functionally with any $Ca²⁺$ -mobilizing inositol polyphosphate receptor(s) in SH-SY5Y cells.

DISCUSSION

In previous studies we have demonstrated that the binding of Ins $(1,4,5)P_s$ to its receptor(s) [31] and its ability to mobilize intracellular Ca^{2+} [32] are highly stereospecific, with the D-isomer greater than 300-fold more potent than $L\text{-}Ins(1,4,5)P_a$. The value of comparing stereoisomers is also emphasized in the present study, where we have been able to dissociate clearly the ability of Ins(1,3,4,5) P_A to mobilize Ca²⁺ in SH-SY5Y cells from its activity at specific binding sites in pig cerebellum. Thus the marked stereospecificity of D- over L-Ins(1,3,4,5) P_4 to mobilize Ca²⁺ mirrors its activity at Ins(1,4,5) P_3 - but not Ins(1,3,4,5) P_4 -binding sites. Although it remains possible that SH-SY5Y cells contain specific Ins $(1,3,4,5)P₄$ sites with totally distinct properties from those in pig cerebellum, they were not detectable by using $[^{32}P]Ins(1,3,4,5)P₄$. Indeed, although we have previously detected $Ins(1,4,5)P₃$ -receptor binding sites in membranes prepared from SH-SY5Y cells [33], we have not been able to detect any specific binding sites for $[^{32}P]$ Ins(1,3,4,5) P_4 under conditions identical with those used in cerebellum studies. We believe that the most parsimonious interpretation of the data at present is that Ins(1,3,4,5) P_4 releases Ca²⁺ by interacting with Ins(1,4,5) P_3 receptors, at least in SH-SY5Y cells. SIMUSE (19) $\frac{1}{2}$ (19)

Here we have demonstrated that $Ins(1,3,4,5)P₄$ can mobilize the entire Ins $(1,4,5)P₂$ -sensitive Ca²⁺ store in SH-SY5Y cells, using highly pure synthetic D-isomer and under conditions that we have previously shown preclude the possibility of enzymic conversion into $Ins(1,4,5)P_3$ [21]. We had previously reported that chemically synthesized DL-Ins $(1,3,4,5)P₄$ mobilizes intracellular Ca^{2+} in SH-SY5Y cells [15,21], but that the presumed maximal concentration of DL-Ins(1,3,4,5) P_{4} (10-30 μ M) utilized in these studies mobilized at best only 62% of the intracellular Ins(1,4,5) P_s -sensitive store. Additionally, 10 μ M DL-Ins(1,3,4,5) $P₄$ failed to affect significantly the Ins(1,4,5) $P₃$ -induced $Ca²⁺$ mobilization [15]. These previous data led us to speculate that Ins(1,3,4,5) P_4 might therefore be mobilizing Ca²⁺ via a receptor distinct from the Ins $(1,4,5)P_3$ receptor. In contrast, the present study indicates that maximal concentrations of synthetic D-Ins(1,3,4,5) P_4 between 30 and 100 μ M are required to mobilize fully the Ins(1,4,5) P_3 -sensitive intracellular Ca²⁺ store. Since we now know L-Ins(1,3,4,5) P_4 to be a very weak Ins(1,4,5) P_3 -receptor ligand and Ca2+-mobilizing agent, the affects that we previously observed with DL-Ins(1,3,4,5) P_4 are probably mediated exclusively by the D-isomer, suggesting that $5-15 \mu M$ was the maximal effective concentration present in our earlier studies [15,21]. This may at least partially explain why we only observed 60 $\%$ release of the Ca²⁺ stores, since Ins(1,3,4,5) P_4 concentrations of 3–30 μ M span the 50-90% Ca²⁺-release range on the Ins(1,3,4,5) P_4 concentration/response relationship. We now also suggest that the inability of DL-Ins(1,3,4,5) P_4 (10 μ M) to shift the Ins(1,4,5) P_5 concentration/response curve [21] is consistent with Ins(1,3,4,5) P_4 being a weak but full agonist at the Ins $(1,4,5)P₃$ receptor. Clearly Ins(1,3,4,5) P_4 shares key structural motifs with Ins(1,4,5) P_3 , including the 6-OH group, the 1-phosphate and the crucial Dvicinal 4,5-phosphate grouping that are apparently requisite for receptor binding and Ca^{2+} -mobilizing activity [34–36]. Analysis of our Ins(1,4,5) P_3 -binding and Ins(1,3,4,5) P_4 -induced Ca²⁺mobilization data show that $Ins(1,3,4,5)P_4$ is a 40-fold weaker ligand, and 20-fold weaker agonist than $Ins(1,4,5)P_3$ (Table 1). We have also observed a similar $Ca²⁺$ -mobilizing profile in 1321N1 human astrocytoma cells, at 4 °C (R. A. Wilcox, unpublished work), and Parker and Ivorra [22] have estimated a similar potency in microinjected Xenopus oocytes. Collectively, these data in conjunction with the critical behaviour of the stereoisomers of Ins $(1,3,4,5)P_4$ indicate that Ins $(1,3,4,5)P_4$ induced Ca²⁺ mobilization may occur via the Ins(1,4,5) $\overline{P_3}$ receptor population, at least in some cell types. We are currently utilizing 3-position-modified $\text{Ins}(1,4,5)P_3/\text{Ins}(1,3,4,5)P_4$ analogues and Ins $(1,4,5)P₃$ -receptor partial agonist(s) to test the validity of our hypothesized interaction of $Ins(1,3,4,5)P₄$ with the $Ins(1,4,5)P₃$ receptor.

This work was supported by the S.E.R.C. B. V. L.P. is a Lister Institute Fellow.

REFERENCES

- ¹ Shears, S. B. (1992) in Advances in Second Messenger and Phosphoprotein Research (Putney, J. W., ed.), pp. 63-92, Raven Press, New York
- 2 Berridge, M. J. (1993) Nature (London) 361, 315-325
- 3 Irvine, R. F. (1990) FEBS Lett. 263, 5-9
- 4 Irvine, R. F. (1991) BioEssays **13**, 419–428
5 Smith, P. M. (1992) Biochem. J. **283**, 27–3
- 5 Smith, P. M. (1992) Biochem. J. 283, 27-30
- 6 Luckhoff, A. and Clapham, D. E. (1992) Nature (London) 355, 356-358
- 7 Guse, A. H., Roth, E. and Emmrich, F. (1992) Biochem. J. **288**, 489–495
8 Hill, T. D., Dean, N. M. and Boynton, A. L. (1988) Science **242**, 1176–11
- Hill, T. D., Dean, N. M. and Boynton, A. L. (1988) Science 242, 1176-1178
- 9 Hill, T. D. and Boynton, A. L. (1990) J. Cell. Physiol. 142, 163-169
- 10 Irvine, R. F., Letcher, A. J., Lander, D. J. and Berridge, M. J. (1986) Biochem. J. 240, 301-304
- 11 Ehrlich, B. E. and Watras, J. (1988) Nature (London) 336, 583-586
- 12 Taylor, C. W., Berridge, M. J., Cooke, A. M. and Potter, B. V. L. (1989) Biochem. J. 259, 645-650
- 13 Changya, L., Gallacher, D. V., Irvine, R. F., Potter, B. V. L. and Petersen, 0. H. (1989) J. Membr. Biol. 109, 85-93
- 14 Bird, G. S. J., Rossier, M. F., Hughes, A. R., Shears, S. B., Armstrong, D. L. and Putney, J. W. (1991) Nature (London) 352, 162-165
- 15 Gawler, D. J., Potter, B. V. L., Gigg, R. and Nahorski, S. R. (1991) Biochem. J. 276, 163-167
- 16 Cullen, P. J., Irvine, R. F., Drobak, B. K. and Dawson, A. P. (1989) Biochem. J. 259, 931-933
- 17 Loomis-Husselbee, J. W., Cullen, P. J., Irvine, R. F. and Dawson, A. P. (1991) Biochem. J. 277, 883-885
- 18 Joseph, S. K., Hansen, C. A. and Williamson, J. R. (1987) FEBS Lett. 219, 125-129
- 19 Joseph, S. K., Hansen, C. A. and Williamson, J. R. (1989) Mol. Pharmacol. 36, 319-397
- 20 Ely, J. A., Hunyady, L., Baukal, A. J. and Catt, K. J. (1990) Biochem. J. 268, 333-338
- 21 Gawler, D. J., Potter, B. V. L. and Nahorski, S. R. (1990) Biochem. J. 272, 519-524
- 22 Parker, I. and Ivorra, I. (1991) J. Physiol. (London) 433, 207-227
- 23 Cooke, A. M., Gigg, R. and Potter, B. V. L. (1987) Biochem. Soc. Trans. 15, 904-906 24 Baudin, G., Glänzer, B. I., Swaminathan, K. S. and Vasella, A. (1988) Helv. Chim.
- Acta 71, 1367-1377
- 25 Liu, Y.-C. and Chen, C.-S. (1989) Tetrahedron Lett. 30, 1617-1620
- 26 Gou, D.-M. and Chen, C.-S. (1992) Tetrahedron Lett. **33**, 721–724
27 Lambert, D. G., Ghataorre, A. S. and Nahorski, S. R. (1989) Eur. J.
- Lambert, D. G., Ghataorre, A. S. and Nahorski, S. R. (1989) Eur. J. Pharmacol. 165, 71-77
- 28 Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440-3449
- 29 DeLean, A., Munson, P. J. and Rodbard, D. (1978) Am. J. Physiol. 235, E97-E102
- 30 Challiss, R. A. J., Willcocks, A. L., Mulloy, B., Potter, B. V. L. and Nahorski, S. R. (1991) Biochem. J. 274, 861-867
- 31 Willcocks, A. L., Cooke, A. M., Potter, B. V. L. and Nahorski, S. R. (1987) Biochem. Biophys. Res. Commun. 146,1071-1078
- 32 Strupish, J., Cooke, A. M., Potter, B. V. L., Gigg, R. and Nahorski, S. R. (1988) Biochem. J. 253, 901-905
- 33 Wojcikiewicz, R. J. H. and Nahorski, S. R. (1992) J. Biol. Chem. 266, 22234-22241
- 34 Potter, B. V. L. (1990) Nat. Prod. Reports. 7, 1-24
- Potter, B. V. L. and Nahorski, S. R. N. (1992) Biochem. Soc. Trans. **20**, 434-442
- 36 Nahorski, S. R. (1988) Trends Neurosci. 11, 444-448

Received 9 December 1992/31 March 1993; accepted 19 April 1993