Stereoselectivity of $Ins(1,3,4,5)P_4$ recognition sites: implications for the mechanism of the $Ins(1,3,4,5)P_4$ -induced Ca^{2+} mobilization

Robert A. WILCOX,*§ R. A. John CHALLISS,* Giséle BAUDIN,† Andrea VASELLA,† Barry V. L. POTTER‡ and Stefan R. NAHORSKI* *Department of Pharmacology and Therapeutics, University of Leicester, P.O. Box 138, Medical Sciences Building, University Road, Leicester LE1 9HN, U.K., †Organisch-Chemisches Institut, Universität Zurich, CH-8057 Zurich, Switzerland, and ‡School of Pharmacy & Pharmacology and Institute for Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

Ins(1,3,4,5) P_4 was able to mobilize the entire Ins(1,4,5) P_3 sensitive intracellular Ca²⁺ store in saponin-permeabilized SH-SY5Y human neuroblastoma cells in a concentration-dependent manner, yielding an EC₅₀ value of $2.05\pm0.45 \mu$ M, compared with $0.14\pm0.03 \mu$ M for Ins(1,4,5) P_3 . However, L-Ins(1,3,4,5) P_4 [= D-Ins(1,3,5,6) P_4] failed to cause mobilization of intracellular Ca²⁺ at concentrations up to 100μ M. Binding studies using pig cerebellar membranes as a source of both Ins(1,4,5) P_3 / Ins(1,3,4,5) P_4 -specific binding sites have revealed a marked contrast in their stereospecificity requirements. Ins(1,4,5) P_3 receptors from pig cerebella exhibited stringent stereospecificity, L-Ins(1,4,5) P_3 and L-Ins(1,3,4,5) P_4 were > 1000-fold weaker, whereas Ins(1,3,4,5) P_4 (IC₅₀ 762±15 nM) was only about 40-fold weaker than D-Ins(1,4,5) P_3 (IC₅₀ 20.7±9.7 nM) at displacing specific [³H]Ins(1,4,5) P_3 receptor population. In contrast, the

INTRODUCTION

Many cell-surface receptors activate phosphoinositide-specific phospholipase C via G-proteins, to catalyse the hydrolysis of phosphatidylinositol 4,5-bisphosphate and produce the second messengers $Ins(1,4,5)P_a$ and diacylglycerol [1]. $Ins(1,4,5)P_a$ specifically interacts with a family of $Ins(1,4,5)P_3$ -receptor-gated channels to mobilize non-mitochondrial intracellular Ca2+ stores [1,2]. In animal cells $Ins(1,4,5)P_3$ is rapidly metabolized by 5phosphatase and 3-kinase activities, to form $Ins(1,4)P_2$ and $Ins(1,3,4,5)P_4$ respectively [1]. Although controversy exists as to whether $Ins(1,3,4,5)P_4$ also plays a role in cell signalling, evidence has accumulated suggesting it may have a role in Ca²⁺ entry across the plasma membrane (reviewed in [3-5]). $Ins(1,3,4,5)P_{4}$ -activated Ca^{2+} channels have been recently identified in the plasma membrane of endothelial cells [6], and $Ins(1,3,4,5)P_4$ -activated Ca²⁺ mobilization has been observed using crude microsomes and enriched vesicular plasma membranes prepared from T-lymphocyte and monocyte cell lines [7]. Furthermore, $Ins(1,3,4,5)P_4$ has also been reported to induce a heparin-insensitive Ca²⁺ sequestration into intracellular pools of the 261B rat liver epithelial cell line [8,9].

In some cell types, $Ins(1,3,4,5)P_4$ apparently fails to mobilize intracellular Ca²⁺ stores or to modulate $Ins(1,4,5)P_3$ -induced Ca²⁺ mobilization [10–13]. However, several studies have reported either $Ins(1,4,5)P_3$ -independent or $Ins(1,4,5)P_3$ -synergistic effects of $Ins(1,3,4,5)P_4$ on intracellular Ca²⁺ mobilization, although the problems of $Ins(1,4,5)P_3$ contamination of the $Ins(1,3,4,5)P_4$ used [14,15], back-conversion into $Ins(1,4,5)P_3$ by

Abbreviation used: CLB, 'cytosol-like' buffer.

Ins $(1,3,4,5)P_4$ -binding site exhibited poor stereoselectivity. Ins $(1,3,4,5)P_4$ produced a biphasic displacement of specific [³²P]Ins $(1,3,4,5)P_4$ binding, with two-site analysis revealing K_D values for high- and low-affinity sites of 2.1 ± 0.5 nM and 918±161 nM respectively. L-Ins $(1,3,4,5)P_4$ also produced a biphasic displacement of specific [³²P]Ins $(1,3,4,5)P_4$ binding which was less than 10-fold weaker than with D-Ins $(1,3,4,5)P_4$ (IC₅₀ values for the high- and low-affinity sites of 17.2 ± 3.7 nM and 3010 ± 542 nM respectively). Therefore, although L-Ins $(1,3,4,5)P_4$ appears to be a high-affinity Ins $(1,3,4,5)P_4$ -binding-site ligand in pig cerebellum, it is a very weak agonist at the Ca²⁺-mobilizing receptors of permeabilized SH-SY5Y cells. We suggest that the ability of D-Ins $(1,3,4,5)P_4$ to access intracellular Ca²⁺ stores may derive from specific interaction with the Ins $(1,4,5)P_3$ - and not the Ins $(1,3,4,5)P_4$ -receptor population.

endogenous 3-phosphatase activity in the cells [16,17] or indirect effects of $Ins(1,3,4,5)P_4$ by protection of $Ins(1,4,5)P_3$ from 5-phosphatase metabolism [18], have not always been convincingly addressed. $Ins(1,3,4,5)P_4$ has been shown directly to mobilize the Ca²⁺ stores in cerebellar [19] and adrenal [20] microsomes, permeabilized SH-SY5Y neuroblastoma cells [15,21] and micro-injected Xenopus oocytes [22]. In all these studies the maximal concentrations of $Ins(1,3,4,5)P_4$ (20-30 μ M) used mobilized significantly less intracellular Ca²⁺ than could be achieved with $Ins(1,4,5)P_3$.

At present it is not clear how, or indeed if, the different physiological effects of $Ins(1,3,4,5)P_4$ (i.e. stimulation of Ca^{2+} entry and intracellular Ca^{2+} mobilization and sequestration), are mediated via the specific high-affinity $Ins(1,3,4,5)P_4$ -binding sites detected in certain tissues. Here we have assessed where $Ins(1,3,4,5)P_4$ -binding sites might be linked to Ca^{2+} mobilization from intracellular stores. $Ins(1,3,4,5)P_4$ and L-Ins $(1,3,4,5)P_4$ were used to characterize the stereospecific requirements of ligand binding in pig cerebellar membranes and Ca^{2+} mobilization in permeabilized SH-SY5Y neuroblastoma cells.

MATERIALS AND METHODS

Materials

⁴⁵CaCl₂ (approx. 1000 Ci/mmol; Amersham International), [³H]Ins(1,4,5) P_3 (17 Ci/mmol) and [³2P]Ins(1,3,4,5) P_4 (116– 162 Ci/mmol) were generously given by NEN DuPont. Heparin (M_r 4000–5000), disodium ATP, fura-2 and EGTA were from Sigma; all other reagents were of the highest purity

[§] To whom correspondence should be addressed.

available. L-Ins $(1,4,5)P_3$ [23] and L-Ins $(1,3,4,5)P_4$ [24] were synthesized as previously described.

Chemically synthesized $Ins(1,4,5)P_3$ [25] and $Ins(1,3,4,5)P_4$ [26] were obtained from the University of Rhode Island Foundation Chemistry Group, U.S.A., and were used for all the ⁴⁵Ca²⁺release assays. Both compounds were extensively characterized by ³¹P- and ¹H-n.m.r., and were found to be > 99% pure, with no other detectable inositol polyphosphates, reflecting that the respective synthetic pathways effectively exclude the possibility of $Ins(1,4,5)P_3/Ins(1,3,4,5)P_4$ cross-contamination [26].

Radioligand-binding studies using pig cerebellar membranes

Preparation of cerebellar 'P2' membrane fraction

Pig cerebella were obtained from a local abattoir. Portions of cerebellum were either used immediately or frozen in liquid nitrogen and stored at -70 °C. Cerebellum was chopped with scissors at 4 °C and homogenized in 20 vol. of 20 mM NaHCO₃/1 mM dithiothreitol, pH 8.0, with a Polytron (setting 5, 2 × 15 s). The homogenate was centrifuged (4000 g, 10 min, 4 °C) and the supernatant kept. The pellet was re-homogenized and centrifuged as above. The pooled supernatants from the low-speed centrifugation steps were then centrifuged (35000 g, 20 min, 4 °C). The resulting pellets were then homogenized and the high-speed centrifugation step was repeated twice. The final pellet was resuspended in homogenization buffer at 6–8 mg of protein/ml, 'snap'-frozen in liquid nitrogen and stored at -20 °C until required.

Characterization of $Ins(1,4,5)P_3$ - and $Ins(1,3,4,5)P_4$ -binding sites

Increasing concentrations (0.5–1000 nM) of $Ins(1,4,5)P_3$ were incubated in a total assay volume of 120 μ l with 2–3 nM [³H]Ins(1,4,5) P_3 in a buffer containing 25 mM Tris/HCl, 5 mM NaHCO₃, 1 mM EDTA and 0.25 mM dithiothreitol, pH 8.0. Incubations were initiated by addition of 50–70 μ g of cerebellar membrane protein and continued for 30 min at 4 °C. Bound and free ligand were separated by centrifugation (12000 g, 4 min). Pellets were dissolved in 2 % SDS. Residual bound radioactivity in the presence of 10 μ M D-Ins(1,4,5) P_3 (Research Biochemicals Inc., St. Albans, Herts., U.K.), 1 mM Ins P_6 , 100 μ g/ml heparin or 3 mM 2,3-bisphosphoglycerate was similar (< 5% of total binding) and was defined as non-specific binding.

Increasing concentrations (0.1-10000 nM) of $\text{Ins}(1,3,4,5)P_4$ were incubated in a total assay volume of 120 μ l with 0.2–0.4 nM $[^{32}P]Ins(1,3,4,5)P_4$ in a buffer containing 25 mM sodium acetate, 25 mM KH₂PO₄, 5 mM NaHCO₃, 1 mM EDTA and 0.25 mM dithiothreitol, pH 5.0. Incubations were initiated by addition of 200–250 μ g of cerebellar membrane protein and continued for 30 min at 4 °C. Bound and free ligand were separated by rapid vacuum filtration over GF/B filters, with 3×3 ml washes with 25 mM sodium acetate/25 mM KH₂PO₄/5 mM NaHCO₃, pH 5.0. Residual bound radioactivity in the presence of 100 μ M DL-Ins $(1,3,4,5)P_4$ (generously given by Dr. D. C. Billington, Merck Sharp and Dohme Research, Harlow, Essex, U.K.), $1 \text{ mM } \text{Ins}P_6$, $100 \,\mu\text{g/ml}$ heparin or $3 \,\text{mM}$ 2,3-bisphosphoglycerate was similar (10-15% of total binding) and was defined as non-specific binding. Where indicated, competition curves were constructed for other inositol polyphosphates, by using the assays described above.

Cell culture

SH-SY5Y human neuroblastoma cell monolayers (passage 70–90), initially a gift from Dr. J. L. Biedler (Sloane-Kettering

Institute, New York, NY, U.S.A.), were subcultured and maintained as described [27].

⁴⁵Ca²⁺-mobilization assays

SH-SY5Y cell monolayers were harvested in 25 ml of Hepesbuffered saline, consisting of 10 mM Hepes, 15 mM NaCl and 0.02% (w/v) EDTA (pH 7.2). The cell suspension was centrifuged at 500 g for 2 min, and the resulting pellet resuspended in a 'cytosol-like' buffer (CLB), consisting of 120 mM KCl, 2 mM Na₂ATP, 2.4 mM MgCl₂,6H₂O, 2 mM KH₂PO₄, 5 mM sodium succinate and 20 mM Hepes (pH 7.2). The free Ca²⁺ concentration of the CLB was buffered between 80 and 150 nM by addition of 1–3 μ M EGTA; this was confirmed fluorimetrically in 2 ml samples by using fura-2 (250 nM) as described [28]. The cells were washed twice in CLB, by spinning at 500 g for 1 min, and then resuspended in CLB containing 100 μ g/ml saponin and a cell protein concentration of 1.5-2 mg/ml. After exactly 1 min the cells were centrifuged (500 g, 1 min) and the pellet was resuspended to 0.3–0.4 mg/ml in CLB containing 1 μ Ci of ⁴⁵Ca²⁺/ml.

 $Ins(1,3,4,5)P_4$ -induced ⁴⁵Ca²⁺ mobilization was performed at 4 °C to preclude the possibility of 3-phosphatase activity causing $Ins(1,4,5)P_3$ formation in the permeabilized SH-SY5Y cells [21]. Cells were preincubated for 20 min at 25 °C to allow ATPdependent loading of intracellular Ca2+ stores, cooled to 4 °C in ice/water, and then 50 μ l of cell suspension was added to 50 μ l of CLB containing the inositol polyphosphates or other agents in 1.5 ml microcentrifuge tubes. After 3 min incubation at 4 °C, cells were pelleted by centrifugation (16000 g, 2 min); then 250 μ l of a silicone oil mixture (Dow-Corning 556/550; 1:1, v/v) was added and the tubes were re-centrifuged (16000 g, 1 min). Buffer and oil were removed by aspiration, and the tubes allowed to drain for 20 min. The resultant cell pellets were solubilized in 1 ml of Optiphase X scintillation fluid for 6-8 h at 4 °C, and the radioactivity was then counted. All experiments were performed in duplicate; 20 µM ionomycin (free acid; Calbiochem) was used to define the total releasable ${}^{45}Ca^{2+}$ pool and 20-30 μM $Ins(1,4,5)P_3$ to define the $Ins(1,4,5)P_3$ -sensitive ${}^{45}Ca^{2+}$ pool.

Data analysis

EC₅₀, IC₅₀, $K_{\rm D}$ and slope values were estimated by computerassisted curve fitting by using GraphPad INPLOT version 3.1 (GraphPad Software, U.S.A.) and Allfit [29]. Where slope factors were significantly less than unity, computer-assisted one- and two-site analyses were compared [30]. Where data were best fitted by two-site analysis, the concentrations of agents required to cause 50 % displacement from high ($K_{\rm H}$)- and low ($K_{\rm L}$)-affinity populations are given. Combined data from the independent experiments were expressed as means \pm S.E.M., where $n \ge 3$.

RESULTS

Inositol polyphosphate binding to pig cerebellar membranes

Ins(1,4,5) P_3 displaced specific [⁸H]Ins(1,4,5) P_3 binding from an apparently homogeneous single site (slope 0.97±0.03). Scatchard transformation of isotope-dilution data yielded K_D 17.5±1.8 nM and B_{max} . 20.8±2.4 pmol/mg of protein (n = 5). As reported previously for rat cerebellar membranes prepared in an identical fashion, L-Ins(1,4,5) P_3 was > 1000-fold weaker in its displacing activity [30], as was L-Ins(1,3,4,5) P_4 in pig cerebellum, in this study. The other inositol polyphosphates tested exhibited similar IC₅₀ values to those reported previously for rat cerebellar membranes [30] (Table 1).

Displacement of specific $[^{32}P]Ins(1,3,4,5)P_4$ binding by

Results are shown as means \pm S.E.M. ($n \ge 3$) for IC₅₀ (M) and slope factors (h) where appropriate. Abbreviation: ND, not determined.

Displacing ligand	[³ H]Ins(1,4,5) <i>P</i> ₃ IC ₅₀ (M)/ <i>h</i>	[³² P]Ins(1,3,4,5) <i>P</i> ₄ IC ₅₀ (M)/ <i>h</i>
$lns(1,4,5)P_3$ L-lns(1,4,5)P_3 lns(1,3,4,5)P_4 L-lns(1,3,4,5)P_4	2.07 $(\pm 0.21) \times 10^{-8}/0.97 \pm 0.03$ 2.24 $(\pm 0.39) \times 10^{-5}/0.90 \pm 0.05$ 7.62 $(\pm 0.15) \times 10^{-7}/0.95 \pm 0.04$ 2.38 $(\pm 0.84) \times 10^{-5}/0.89 \pm 0.07$	$\begin{array}{c} 1.40 \ (\pm 0.25) \times 10^{-5} / 0.96 \pm 0.02 \\ \text{ND} \\ \mathcal{K}_{\text{H}} \ 2.10 \ (\pm 0.50) \times 10^{-9} \\ \mathcal{K}_{\text{L}} \ 9.18 \ (\pm 1.62) \times 10^{-7} \\ \mathcal{K}_{\text{H}} \ 1.72 \ (\pm 0.37) \times 10^{-8} \\ \mathcal{K}_{\text{L}} \ 3.01 \ (\pm 0.54) \times 10^{-6} \\ 1.03 \ (\pm 0.09) \times 10^{-6} / 0.88 \pm 0.08 \end{array}$
Ins(1,3,4,6)P ₄	8.31 $(\pm 0.38) \times 10^{-7}/0.90 \pm 0.09$	

Figure 1 inhibition of specific [³H]ins(1,4,5) P_3 and [³²P]ins(1,3,4,5) P_4 binding to pig cerebellar membranes by increasing concentrations of $lns(1,3,4,5)P_4$ (\blacksquare) and L-Ins(1,3,4,5) P_4 (\bigcirc)

Results are shown as means \pm S.E.M. for $n \ge 3$ independent experiments.

Figure 2 Inositol polyphosphate-induced $^{45}\text{Ca}^{2+}$ mobilization in saponin-permeabilized SH-SY5Y cells

Results are shown as means \pm S.E.M. for n = 4 independent experiments using $lns(1,4,5)P_3$ (\blacktriangle), $lns(1,3,4,5)P_4$ (\blacksquare) and L-lns(1,3,4,5) P_4 (\bigcirc). The respective mean EC₅₀ and slope values are reported in the Results section.

Ins $(1,3,4,5)P_4$ yielded curves with slope factors significantly less than unity $[0.53\pm0.04 \ (n=3)]$. These were poorly fitted by single-site analysis, but could be accurately modelled by using a

two-site analysis. Such analysis yielded $K_{\rm D}$ values for high- and low-affinity binding sites of 2.1 ± 0.5 nM and 918 ± 161 nM respectively (n = 3): at the concentration of $[{}^{32}P]Ins(1,3,4,5)P_{4}$ used, the high-affinity site accounted for $75.4 \pm 2.5\%$ of total binding and corresponded to a density of sites of 212 ± 30 fmol/mg of protein (Figure 1). In contrast with the stereospecificity exhibited by the $Ins(1,4,5)P_2$ -binding site, L- $Ins(1,3,4,5)P_{4}$ [= $Ins(1,3,5,6)P_{4}$] also caused a biphasic displacement of specific $[^{32}P]Ins(1,3,4,5)P_{4}$ binding and was < 10-fold weaker in its displacing activity relative to the D-isomer (IC₅₀ for high-affinity site $17.2 \pm 3.7 \text{ nM}$; IC₅₀ for low-affinity site 3010 ± 542 nM). The proportional distribution of high- and lowaffinity sites observed in the L-Ins $(1,3,4,5)P_4$ -displacement studies (high-affinity 72.4 ± 3.1 %) was similar to that estimated from $Ins(1,3,4,5)P_4$ isotherms. Comparison of the ability of other inositol polyphosphates to displace specific $[^{32}P]Ins(1,3,4,5)P_4$ binding from pig cerebellar membranes was entirely consistent with the rank-order of potency previously determined by using rat cerebellar membranes [30] (Table 1; Figure 1).

Ca²⁺ mobilization by inositol polyphosphates

Ins(1,4,5) P_3 mobilized 56.4±1.4% (n = 20) of pre-loaded ⁴⁵Ca²⁺ from saponin-permeabilized SH-SY5Y cells at 4 °C, with a mean EC₅₀ (and slope) value of 141±27 nM (0.91±0.03). Ins(1,3,4,5) P_4 (100 μ M) was able to mobilize the entire Ins(1,4,5) P_3 -sensitive intracellular Ca²⁺ store of saponinpermeabilized SH-SY5Y with a mean EC₅₀ (and slope) value of 2.05±0.45 μ M (1.03±0.09), which was only about 15-fold weaker than Ins(1,4,5) P_3 (Figure 2).

However, L-Ins(1,3,4,5) P_4 did not significantly mobilize intracellular Ca²⁺ even at concentrations up to 100 μ M (Figure 2). Also, co-incubation of the SH-SY5Y cells with 10 μ M L-Ins(1,3,4,5) P_4 failed to produce a significant shift of either the Ins(1,4,5) P_3 - or Ins(1,3,4,5) P_4 -induced Ca²⁺-release concentration-response curves. These were superimposable, with their control curves yielding mean EC₅₀ values for the Ins(1,4,5) P_3 or Ins(1,3,4,5) P_4 -induced Ca²⁺-release concentration-response curves of 170±53 nM and 1.70±0.58 μ M respectively. These results suggest that L-Ins(1,3,4,5) P_4 fails to interact functionally with any Ca²⁺-mobilizing inositol polyphosphate receptor(s) in SH-SY5Y cells.

DISCUSSION

In previous studies we have demonstrated that the binding of $Ins(1,4,5)P_s$ to its receptor(s) [31] and its ability to mobilize intracellular Ca²⁺ [32] are highly stereospecific, with the D-isomer greater than 300-fold more potent than L-Ins $(1,4,5)P_3$. The value of comparing stereoisomers is also emphasized in the present study, where we have been able to dissociate clearly the ability of Ins $(1,3,4,5)P_{A}$ to mobilize Ca²⁺ in SH-SY5Y cells from its activity at specific binding sites in pig cerebellum. Thus the marked stereospecificity of D- over L-Ins $(1,3,4,5)P_4$ to mobilize Ca²⁺ mirrors its activity at $Ins(1,4,5)P_3$ - but not $Ins(1,3,4,5)P_4$ -binding sites. Although it remains possible that SH-SY5Y cells contain specific $Ins(1,3,4,5)P_4$ sites with totally distinct properties from those in pig cerebellum, they were not detectable by using $[^{32}P]Ins(1,3,4,5)P_{4}$. Indeed, although we have previously detected $Ins(1,4,5)P_3$ -receptor binding sites in membranes prepared from SH-SY5Y cells [33], we have not been able to detect any specific binding sites for $[^{32}P]Ins(1,3,4,5)P_4$ under conditions identical with those used in cerebellum studies. We believe that the most parsimonious interpretation of the data at present is that $Ins(1,3,4,5)P_4$ releases Ca^{2+} by interacting with $Ins(1,4,5)P_3$ receptors, at least in SH-SY5Y cells.

Here we have demonstrated that $Ins(1,3,4,5)P_A$ can mobilize the entire $Ins(1,4,5)P_s$ -sensitive Ca^{2+} store in SH-SY5Y cells, using highly pure synthetic D-isomer and under conditions that we have previously shown preclude the possibility of enzymic conversion into $Ins(1,4,5)P_3$ [21]. We had previously reported that chemically synthesized DL-Ins $(1,3,4,5)P_A$ mobilizes intracellular Ca²⁺ in SH-SY5Y cells [15,21], but that the presumed maximal concentration of DL-Ins $(1,3,4,5)P_A$ (10-30 μ M) utilized in these studies mobilized at best only 62% of the intracellular Ins(1,4,5)P_a-sensitive store. Additionally, 10 μ M DL- $Ins(1,3,4,5)P_{4}$ failed to affect significantly the $Ins(1,4,5)P_{3}$ -induced Ca²⁺ mobilization [15]. These previous data led us to speculate that $Ins(1,3,4,5)P_A$ might therefore be mobilizing Ca^{2+} via a receptor distinct from the $Ins(1,4,5)P_3$ receptor. In contrast, the present study indicates that maximal concentrations of synthetic D-Ins(1,3,4,5) P_4 between 30 and 100 μ M are required to mobilize fully the $Ins(1,4,5)P_3$ -sensitive intracellular Ca²⁺ store. Since we now know L-Ins $(1,3,4,5)P_4$ to be a very weak Ins $(1,4,5)P_3$ -receptor ligand and Ca²⁺-mobilizing agent, the affects that we previously observed with DL-Ins $(1,3,4,5)P_{a}$ are probably mediated exclusively by the D-isomer, suggesting that 5–15 μ M was the maximal effective concentration present in our earlier studies [15,21]. This may at least partially explain why we only observed 60% release of the Ca²⁺ stores, since Ins(1,3,4,5)P₄ concentrations of 3-30 μ M span the 50–90 % Ca²⁺-release range on the Ins(1,3,4,5) P_4 concentration/response relationship. We now also suggest that the inability of DL-Ins $(1,3,4,5)P_A$ (10 μ M) to shift the Ins $(1,4,5)P_B$ concentration/response curve [21] is consistent with $Ins(1,3,4,5)P_A$ being a weak but full agonist at the $Ins(1,4,5)P_3$ receptor. Clearly $Ins(1,3,4,5)P_4$ shares key structural motifs with $Ins(1,4,5)P_3$, including the 6-OH group, the 1-phosphate and the crucial Dvicinal 4,5-phosphate grouping that are apparently requisite for receptor binding and Ca²⁺-mobilizing activity [34-36]. Analysis of our $Ins(1,4,5)P_3$ -binding and $Ins(1,3,4,5)P_4$ -induced Ca^{2+} mobilization data show that $Ins(1,3,4,5)P_4$ is a 40-fold weaker ligand, and 20-fold weaker agonist than $Ins(1,4,5)P_{a}$ (Table 1). We have also observed a similar Ca²⁺-mobilizing profile in 1321N1 human astrocytoma cells, at 4 °C (R. A. Wilcox, unpublished work), and Parker and Ivorra [22] have estimated a similar potency in microinjected Xenopus oocytes. Collectively, these data in conjunction with the critical behaviour of the stereoisomers of $Ins(1,3,4,5)P_4$ indicate that $Ins(1,3,4,5)P_4$ induced Ca²⁺ mobilization may occur via the $Ins(1,4,5)P_{3}$ receptor population, at least in some cell types. We are currently utilizing 3-position-modified $Ins(1,4,5)P_3/Ins(1,3,4,5)P_4$ analogues and $Ins(1,4,5)P_3$ -receptor partial agonist(s) to test the validity of our hypothesized interaction of $Ins(1,3,4,5)P_4$ with the $Ins(1,4,5)P_3$ receptor.

This work was supported by the S.E.R.C. B.V.L.P. is a Lister Institute Fellow.

REFERENCES

- 1 Shears, S. B. (1992) in Advances in Second Messenger and Phosphoprotein Research (Putney, J. W., ed.), pp. 63–92, Raven Press, New York
- 2 Berridge, M. J. (1993) Nature (London) 361, 315-325
- 3 Irvine, R. F. (1990) FEBS Lett. 263, 5-9
- 4 Irvine, R. F. (1991) BioEssays 13, 419-428
- 5 Smith, P. M. (1992) Biochem. J. 283, 27-30
- 6 Lückhoff, A. and Clapham, D. E. (1992) Nature (London) 355, 356-358
- 7 Guse, A. H., Roth, E. and Emmrich, F. (1992) Biochem. J. 288, 489-495
- 8 Hill, T. D., Dean, N. M. and Boynton, A. L. (1988) Science 242, 1176-1178
- 9 Hill, T. D. and Boynton, A. L. (1990) J. Cell. Physiol. 142, 163-169
- 10 Irvine, R. F., Letcher, A. J., Lander, D. J. and Berridge, M. J. (1986) Biochem. J. 240, 301–304
- 11 Ehrlich, B. E. and Watras, J. (1988) Nature (London) 336, 583-586
- 12 Taylor, C. W., Berridge, M. J., Cooke, A. M. and Potter, B. V. L. (1989) Biochem. J. 259, 645–650
- Changya, L., Gallacher, D. V., Irvine, R. F., Potter, B. V. L. and Petersen, O. H. (1989) J. Membr. Biol. **109**, 85–93
- 14 Bird, G. S. J., Rossier, M. F., Hughes, A. R., Shears, S. B., Armstrong, D. L. and Putney, J. W. (1991) Nature (London) 352, 162–165
- 15 Gawler, D. J., Potter, B. V. L., Gigg, R. and Nahorski, S. R. (1991) Biochem. J. 276, 163–167
- 16 Cullen, P. J., Irvine, R. F., Drobak, B. K. and Dawson, A. P. (1989) Biochem. J. 259, 931–933
- 17 Loomis-Husselbee, J. W., Cullen, P. J., Irvine, R. F. and Dawson, A. P. (1991) Biochem. J. 277, 883–885
- 18 Joseph, S. K., Hansen, C. A. and Williamson, J. R. (1987) FEBS Lett. 219, 125-129
- 19 Joseph, S. K., Hansen, C. A. and Williamson, J. R. (1989) Mol. Pharmacol. 36, 319–397
- 20 Ely, J. A., Hunyady, L., Baukal, A. J. and Catt, K. J. (1990) Biochem. J. 268, 333–338
- 21 Gawler, D. J., Potter, B. V. L. and Nahorski, S. R. (1990) Biochem. J. 272, 519–524
- 22 Parker, I. and Ivorra, I. (1991) J. Physiol. (London) 433, 207-227
- Cooke, A. M., Gigg, R. and Potter, B. V. L. (1987) Biochem. Soc. Trans. 15, 904–906
 Baudin, G., Glänzer, B. I., Swaminathan, K. S. and Vasella, A. (1988) Helv. Chim.
- Acta 71, 1367–1377
- 25 Liu, Y.-C. and Chen, C.-S. (1989) Tetrahedron Lett. 30, 1617-1620
- 26 Gou, D.-M. and Chen, C.-S. (1992) Tetrahedron Lett. 33, 721-724
- 27 Lambert, D. G., Ghataorre, A. S. and Nahorski, S. R. (1989) Eur. J. Pharmacol. 165, 71–77
- 28 Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440-3449
- 29 DeLean, A., Munson, P. J. and Rodbard, D. (1978) Am. J. Physiol. 235, E97-E102
- 30 Challiss, R. A. J., Willcocks, A. L., Mulloy, B., Potter, B. V. L. and Nahorski, S. R. (1991) Biochem. J. 274, 861–867
- 31 Willcocks, A. L., Cooke, A. M., Potter, B. V. L. and Nahorski, S. R. (1987) Biochem. Biophys. Res. Commun. 146, 1071–1078
- 32 Strupish, J., Cooke, A. M., Potter, B. V. L., Gigg, R. and Nahorski, S. R. (1988) Biochem. J. 253, 901–905
- 33 Wojcikiewicz, R. J. H. and Nahorski, S. R. (1992) J. Biol. Chem. 266, 22234-22241
- 34 Potter, B. V. L. (1990) Nat. Prod. Reports. 7, 1-24
- 35 Potter, B. V. L. and Nahorski, S. R. N. (1992) Biochem. Soc. Trans. 20, 434-442
- 36 Nahorski, S. R. (1988) Trends Neurosci. 11, 444-448

Received 9 December 1992/31 March 1993; accepted 19 April 1993