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Purpose: To determine endothelial cell density (ECD) from real-world donor cornea
endothelial cell (EC) images using a self-supervised deep learning segmentationmodel.

Methods: Two eye banks (Eversight, VisionGift) provided 15,138 single, unique EC
images from 8169 donors along with their demographics, tissue characteristics, and
ECD. This dataset was utilized for self-supervised training and deep learning inference.
The Cornea Image Analysis Reading Center (CIARC) provided a second dataset of 174
donor EC images based on image and tissue quality. These images were used to train a
supervised deep learning cell border segmentationmodel. Evaluation betweenmanual
and automated determination of ECD was restricted to the 1939 test EC images with at
least 100 cells counted by both methods.

Results: The ECDmeasurements from both methods were in excellent agreement with
rc of 0.77 (95% confidence interval [CI], 0.75–0.79; P < 0.001) and bias of 123 cells/mm2

(95% CI, 114–131; P< 0.001); 81% of the automated ECD values were within 10% of the
manual ECDvalues.When the analysiswas further restricted to the cropped image, the rc
was 0.88 (95%CI, 0.87–0.89; P< 0.001), biaswas 46 cells/mm2 (95%CI, 39–53; P< 0.001),
and 93% of the automated ECD values were within 10% of the manual ECD values.

Conclusions: Deep learning analysis provides accurate ECDs of donor images,
potentially reducing analysis time and training requirements.

Translational Relevance: The approach of this study, a robust methodology for
automatically evaluating donor cornea EC images, could expand the quantitative deter-
mination of endothelial health beyond ECD.

Introduction

The determination of the central endothelial cell
density (ECD) of the donor corneal endothelium
has been a certification requirement for donor tissue
suitability of the Eye Bank Association of America
(EBAA) since 2001.1 However, the training and

operating procedures for specular microscopic image
capture, quality, and analysis for ECD determination
have been left up to the individual eye bank medical
directors. The impact of this variability in specu-
lar microscopic procedures on ECD measurement
accuracy has beenwell demonstratedwith comparisons
to an image analysis reading center for standardized
image analysis procedures.2,3
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Nevertheless, eye-bank–determined ECD accuracy
when compared to an image analysis reading center
has significantly improved with training and a similar
image analysis method.4 Tissue warming implementa-
tion prior to imaging has improved image quality,5,6
and wider field eye bank specular microscopy (Konan
CellChek D; Konan Medical, Irvine, CA)7 has enabled
the the analysis of more endothelial cells (ECs) from
multiple areas within the image field. These improve-
ments, however, may come at the expense of longer
image analysis time and greater technician training.
The EBAA has also recently established a standard-
ized specular microscopic image capture technique to
maximize image quality.8 Whether the central ECD
is determined by the eye bank or an image analysis
reading center, the number of ECs analyzed remains
limited to usually no more than 100 to 150 cells using
a manual method of counting, principally the center
method.7 The accuracy of this approach can be influ-
enced by cell selection, poor focusing, deficient image
quality, improper application of the center method,
Desçemet folds, and confounding image opacities (e.g.,
blood, debris, guttae).7 Furthermore, Huang et al.9
reported that the Konan CellChek fully automated
analysis overestimated ECDs in central EC images with
polymegethism and glaucomatous eyes.

Currently, a fully automated, commercially avail-
able donor cornea endothelial image analysis system is
not on the market. Given the challenges of technician
training, turnover, and work demands; image quality
issues; and image analysis errors, an efficient, accurate,
and automated analysis of donor EC images would
be ideal. With the plentiful quantity of donor specu-
lar microscopic EC images routinely obtained as part
of the standard operating procedure for eye banks,
this is a promising opportunity for machine learning
modeling.

Our group recently reported the application of deep
learning segmentation to post-keratoplasty images and
identified machine learning classifiers predicting rejec-
tions 1 to 24 months prior to a clinically appar-
ent rejection.10 With lessons learned from our in
vivo clinical machine learning image analysis work,
we have directed efforts toward the more challeng-
ing machine learning image analysis of donor ex vivo
endothelial images with higher ECDswith smaller cells,
lower magnification, and optical interference from the
plastic viewing storage chamber, confounded by other
imaging issues outlined above. Our objective with this
study was to develop a deep learning model that can
accurately, rapidly, and objectively determine the ECD
of the donor cornea endothelium to facilitate a more
efficient determination of this key element in tissue
suitability.

Methods

Unlabeled Data Cohort

Eversight (Ann Arbor, MI) and VisionGift
(Portland, OR) eye banks provided central donor
corneal EC specular microscopic images obtained at
screenings between 2010 and 2023. A subset of only
those donors that went on to keratoplasty with a
valid manual ECD measurement or who were deemed
keratoplasty ineligible based on slit-lamp findings were
included. Utilizing the Konan CellChek D specular
microscope, Eversight provided one analyzed image
each with a single selected cell area from 13,942 donor
corneas, and VisionGift provided one analyzed image
with up to three selected cell areas from 1196 donor
corneas.

Both eye banks participated during this period
in the National Eye Institute–supported Specular
Microscopy Ancillary Study (SMAS)3,11 and Cornea
Preservation Time Study (CPTS),12 as well as the
Diabetes Endothelial Keratoplasty Study (DEKS)13
involving defined donor specular microscopy proce-
dures. Technician training at both eye banks has been
previously described.4 Donor data obtained included
donor age and sex, cause of death, diabetes status,
lens type, death to preservation time, death to imaging
time, tissue suitability evaluations, and the keratoplasty
type the donor was used for. Both eye banks analyzed
a minimum of 40 ECs per image and ideally more
than 100 ECs, and they provided their final ECDs to
our biostatistician (RCO) for inclusion in the statistical
analyses.

Labeled Data Cohort

A second subset of 174 images (81 Eversight, 93
VisionGift) selected from the same dataset reported
by Huang et al.4 was utilized for supervised training
of the deep learning algorithm. The selection crite-
rion for this subset was analyzability as determined by
an expert reader analyst (BMB). These images under-
went automatic cell border segmentation as previously
described.14 Following postprocessing, the predictions
were manually edited using an in-house centroid-
selection algorithm.15 The centroid-selection algorithm
started with identifying cellular connected components
and their centroid locations. These were visualized
by plotting the centroids as red circles and overlay-
ing the binarized segmentation prediction in green
on the original EC image displayed in the software
viewing window. From here, the image analyst clicked
on visible centroids to exclude them from the final
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Figure 1. Training workflow for deep learning–based endothelial cell segmentation. Self-supervised training was performed using 12,114
images through a ViT to learn feature representations without labeled data. Learned weights were then used to initialize a UNETR for super-
vised cell border segmentation training with 174 images and labels. Final output after postprocessing was a single-pixel-width cell border
segmentation fromwhich ECDwas automatically calculated. The illustrations of the ViT and UNETR are based onwork by Dosovitskiy et al.16

and Hatamizadeh et al.,17 respectively.

segmentation if the corresponding cell borders were
incorrectly annotated. The final ground-truth labels
were binary segmentations with single-pixel-width
white borders (pixel value 1) and black cells and
background (pixel value 0). To enhance the deep learn-
ing training performance, the borders were dilated with
a 3 × 3 square kernel for one iteration.

Deep Learning Networks

In this study, training was conducted in two stages
and employed two network architectures (Fig. 1). A
self-supervised learning technique was implemented
in the first stage using the Vision Transformer (ViT)
architecture.16 The second stage involved using super-
vised learning to train a U-Net Transformer (UNETR)
model.17 Self-supervised learning enables the model
to learn important imaging features by masking areas
of the training images and evaluating the attempt of
the model to recreate these masked areas via compar-
ison with the ground-truth input images. Super-
vised learning requires labeled datasets to train deep
learning algorithms to perform a desired task—in
this study, cell-border segmentation. The benefit of

combining these deep learning techniques is that the
model can achieve high segmentation accuracy perfor-
mance despite a limited labeled dataset by utilizing
thousands of unlabeled images to learn pre-existing
features.

The ViT and UNETR architectures first decon-
structed an image into a sequence of patches imitat-
ing natural language processing (NLP) transformer
models that interpret sentences as a sequence of
words. Each patch of the input image was 16 × 16
pixels. The ViT is composed of a transformer encoder
with two convolutional transpose layers to output
a reconstructed image of the same size as the input
image.16 Because the ViT architecture is the backbone
of the UNETR, the weights learned during the ViT
training initialized the UNETR encoder weights.
The UNETR decoder weights remained randomly
initialized, refined thereafter during supervised
learning.

Data augmentations, network parameters, and
training parameters (i.e., loss functions, validation
metrics, and learning rates) described by Tang et al.18
were utilized and are described briefly. Prior to ViT self-
supervised training, input images were scaled to [0, 1]
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and randomly cropped into 10 samples of 128 × 128
pixels before an additional copy of the cropped image
was generated. From here, random patches no larger
than 64× 64 pixels were either dropped out or mutated
from both image copies independently. The ViT was
trained with two loss functions: contrastive loss19 and
mean absolute error. The contrastive loss maximized
agreement between the reconstructed image patches of
the original input and the reconstructed image patches
of the copied input. The mean absolute error loss was
used to minimize the absolute pixel value difference
between the reconstructed original input image patch
and the ground-truth input image patch. The data
augmentations of the supervised learning task with
UNETR shared intensity scaling and random cropping
of input images into 10 samples of 128 × 128 pixels.
Thereafter, images were randomly flipped, rotated, or
underwent a 10% shift in intensity values. TheUNETR
model was trained using a combined Dice and cross-
entropy loss.

Deep Learning Experiments

The 15,138 unlabeled donor EC images from 8169
donors were rescaled from 1296 × 972 to 1004 × 1338
pixels to maintain a 0.8-μm resolution shared with
the 174 EC images of the labeled dataset. For self-
supervised learning, a type of unsupervised learning
where the model predicts parts of its input data from
other features of the same data, 9085 randomly selected
EC images (8327 from Eversight, 758 from VisionGift)
were used to train our ViT model, and the remain-
ing 3029 EC images (2807 from Eversight, 222 from
VisionGift) were used for validation. The ViT model
was trained for 300 epochs with batch size of 48 and
1e-4 learning rate.

For supervised learning, the best ViT model weights
were loaded onto a UNETR model before fine-tuning
on 174 labeled donor EC images (139 for train-
ing and 35 for validation) for 215 epochs, equiv-
alently 30,000 iterations, with a batch size of 1.
Finally, 3024 unlabeled donor EC images (2808 from
Eversight, 216 from VisionGift) were used as the held-
out testing dataset for the final UNETR model to
conduct inference. The final model binarized each
segmentation prediction by determining which class
(border or cell/background) received the higher proba-
bility. The deep learning trainingworkflow is illustrated
in Figure 1.

Post-Processing

Predicted segmentations contained thick cell
borders and stray “branches,” a consequence of

fine-tuning with labels that contained 3-pixel-wide cell
borders and varying image quality and physiological
artifacts in donor EC images. Thus, a postprocessing
step was implemented (see Supplementary Fig. S1).
The prediction segmentations were first skeletonized
to single-pixel width, after which stray borders were
opened and subsequently closed with a 3 × 3 square
kernel to remove smaller disconnected segments and fill
small cell border gaps, respectively. Finally, all external,
stray “branches” or borders were removed by exploit-
ing an eight-way connected component function from
Bolelli et al.20 to find endothelial cells fully enclosed by
a segmented border.

Clinical Morphometrics

ECD was determined for the whole image and a
cropped image. To calculate the ECD for the whole
image, the predictions underwent a filling operation to
convert each fully enclosed cell from black pixels to
white. This area of white borders and enclosed cells was
deemed as the cellular area. The total number of pixels
in the cellular areawasmultiplied by the pixel area (e.g.,
0.8 μm × 0.8 μm) to obtain the physical cell area. The
number of enclosed cells, determined by a connected
components function, was divided by the physical cell
area to obtain the ECD for the segmentation. ECD
was calculated for the cropped image by using a circu-
lar region to encompass the manually annotated cells
after postprocessing for the whole image analysis was
complete.

Statistical Analyses

Statistical analyses were performed using R 4.3.2
(R Foundation for Statistical Computing, Vienna,
Austria) with the SimplyAgree, boot, boot.pval, and
tidyverse packages.21–25 Agreement between manual
and automated determinations of ECD was evaluated
with Bland–Altman analysis and Lin’s concordance
correlation coefficient (rc).26,27 Associations among
donor age, diabetes, death to preservation time, and
ECD (average of manual and automated measure-
ments) and differences in ECD between automated
and manual methods were explored via linear regres-
sion models. Analysis was restricted to the test EC
images with at least 100 cells counted by both methods
to ensure reliable results.2 Cluster bootstrap resam-
pling to account for clustering of cornea EC images
from the same donor was used to assess the statisti-
cal significance of differences between the automated
and manual methods. P values were obtained via confi-
dence interval inversion, and a two-sided P < 0.05 was
considered statistically significant.



Determination of ECD From Donor Cornea EC Images TVST | August 2024 | Vol. 13 | No. 8 | Article 40 | 5

Computational Resources

All image processing and deep learning algorithm
development were conducted using Python 3.9 libraries
such as MONAI, PyTorch (version 1.13.1), numpy,
opencv, scikit-learn, and PyQt. ViT and UNETR
were trained using four 48-GB NVIDIA A600 GPUs
(Nvidia Corporation, Santa Clara, CA). The overall
architecture required approximately 87.1 million learn-
ing parameters and approximately 520 GFLOPs per
image. Self-training took approximately 3 hours, and
fine-tuning using one NVIDIA GPU took approxi-
mately 2 hours for training. The inference pipeline
of segmentation, postprocessing, and ECD calculation
required less than 2 seconds.

Results

Of the 3024 EC test images, there were 1939 (66%)
with at least 100 ECs counted by both methods
(see Supplementary Fig. S2). Within this cohort, the
proposed automated approach identified between 100
and 1263 ECs per image, whereas the manual approach

identified between 100 and 371 ECs per image. This
difference in cell identification is illustrated in Figure 2,
where example images from Eversight and VisionGift
have undergone both automated and manual analyses.
Furthermore, it is evident that the automated analy-
sis is not limited to the brightest region of the image,
nor a contiguous region of cells. In fact, the automated
approach identified many cells in the darker regions of
the Eversight image.

TheECDmeasurements from the twomethodswere
in excellent agreement with rc of 0.77 (95% confidence
interval [CI], 0.75–0.79; P < 0.001) and bias (mean
difference) of 123 cells/mm2 (95% CI, 114–131; P <

0.001). Eighty-one percent of the automated ECDs
were within 10% of the manual ECDs.When the analy-
sis was further restricted to the cropped image, the rc
was 0.88 (95% CI, 0.87–0.89; P < 0.001), bias was 46
cells/mm2 (95% CI, 39–53; P < 0.001), and 93% of
the automated ECDs were within 10% of the manual
ECDs (Table). The Bland–Altman plots with limits
of agreement for the whole and cropped images are
displayed in Figures 3A and 3B, respectively.

In the univariable and multivariable linear models
predicting differences in ECD between manual and

Figure 2. Example of donor cornea endothelial cell images and comparative display of corresponding manual and automatic annota-
tions overlay. Top row: (1a) and (2a) are specular microscopic images from donor cornea endothelium provided by Eversight and VisionGift,
respectively. Bottom row: (1b) and (2b) depict automated cell border annotations (green) and manual cell centroid annotations (red, blue,
and purple).
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Table. Comparison of Whole and Cropped Image ECD for Test Images by Manual and Automated Methods
(N = 1939 EC Images)

ECD (cells/mm2)
Manual Test,

Mean ± SD [Min, Max]
Automated Test,

Mean ± SD [Min, Max] Bias (95% CI)a rc (95% CI)

Whole image 2730 ± 349) 2607 ± 272) 123 (114–131)* 0.77 (0.75–0.79)*

[1393, 4132] [1612, 3607]
Cropped image 2730 ± 349) 2683 ± 277) 46 (39–53)* 0.88 (0.87–0.89)*

[1393, 4132] [1655, 3765]
aCluster bootstrap percentile confidence intervals are based on 100,000 bootstrap samples.
*P < 0.001.

Figure 3. (A) Bland–Altman plot of whole image manual versus automated ECD (N = 1939). Bland–Altman plot of whole image ECDs
(cells/mm2) determined by study eye banks versus the ECDs determined by the deep learning model. The difference in ECDs is plotted
against their average value. The Bland–Altman plot shows a small, estimated bias (mean difference) of 123 (95% CI, 114–131), with a lower
limit of agreement (LoA) of −234 (95% CI, −248 to −220) and an upper limit of agreement of 479 (95% CI, 462–497). Auto, automated.
(B) Bland–Altman plot of cropped images of manual versus automated ECDs (N = 1939). Bland–Altman plot of cropped image ECDs
(cells/mm2) was determined by study eye banks versus the ECDs determined by the deep learning model. The difference in ECDs is plotted
against their average value. The Bland–Altman plot shows a small, estimated bias (mean difference) of 46 (95% CI, 39–53), with a lower limit
of agreement of −243 (95% CI, −258 to −228) and an upper limit of agreement of 335 (95% CI, 319–352).

automated methods, only donor age was statistically
significant (P < 0.001) but not clinically significant.
The estimated coefficient for donor age in the multi-
variable model was −25 cells/mm2 (95% CI, −33
to −17) per decade. For the cropped image, the
estimated coefficient for donor age in the multivari-
able model was −20 cells/mm2 (95% CI, −27 to −14)

per decade (see Supplementary Table S1). Differences
in ECDs between the manual and automated methods
monotonically increased with increasing ECD (P <

0.001); the estimated increase from the linear model
was 134 cells/mm2 (95%CI, 122–147) per 500 cells/mm2

for whole images and 120 cells/mm2 (95% CI, 110–
131) per 500 cells/mm2 for cropped images (see Supple-
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mentary Table S2). This “proportional bias” results in
limits of agreement that tend to be too wide for donor
corneas with lower ECDs and too narrow for corneas
with higher ECD values.28

Discussion

We have shown that the donor cornea ECD deter-
mined by our automated, deep learning algorithm
compares favorably to the real-world eye-bank–
determined ECDs from two major U.S. eye banks.
The two methods only differed by a mean of 123
cells/mm2, and 81% of the automated ECDs were
within 10% of the eye-bank–determined ECD; the
agreement was even tighter when the analysis was
conducted within the comparable cropped area of cells
that the eye bank had analyzed. Only a mean differ-
ence of 46 cells/mm2 and 93% of the automated ECDs
were within 10% of the eye-bank–determined ECD.
Although these differences were statistically significant,
from a medical director standpoint these differences
would not impact tissue suitability. Not surprisingly,
the difference between the automated-determined and
eye-bank–determined ECDs increased with increas-
ing ECD, whether with the whole or cropped image.
Similar findings have been reported comparing an
automated approach for cell segmentation of in vivo
EC images to a flex-center manual analysis.29 Other
authors, however, have reported a decrease in the differ-
ence between automated and manual ECD methods
as more cells in post-keratoplasty EC images were
identified.30

Notably, for the analysis of donor factors that could
affect the accuracy of automated analysis (specifically,
a more polymegethetic endothelial cell population with
increasing donor age7,31 and diabetes32), only donor
age was found to have a statistically but not clinically
significant difference (difference of −25 cells/mm2; 95%
CI,−33 to−17) per decade in themultivariablemodel).
This difference may be due to technician cell selec-
tion with greater polymegethism and pleomorphism
with increasing age.33,34 Conversely, the automated
approach is applicable across the entire spectrum of
donor conditions. With comparable ECDs between
the two ECD analysis methods, the advantages of the
automated analysis are its rapidity for ECD determi-
nation within seconds and technician training being
primarily limited to image acquisition.

Machine learning techniques to automate method-
ologies for determining endothelial characteristics and
morphometrics with in vivo corneal endothelial image
analysis have been more commonly described.9,30,35–43

These efforts have included U-Net–based convolu-
tional neural networks to automatically identify cell
edges within in vivo EC images42 and a sliding
window technique in similar network architectures
for cell border segmentation.37,39 ECD calculation
improvement was achieved with DenseUNets for cell
border segmentation of in vivo EC images and
watershed-based postprocessing to clean correspond-
ing deep learning predictions.41 Most recently, efforts
to reduce computational resources of deep learning
algorithms while maintaining high performance have
included parallel networks for cell border segmen-
tation and region of interest extraction followed
by a postprocessing pipeline.43 Our efforts build
on these works by using self-supervised learning
to train transformer network cell border segmenta-
tion of donor endothelial images. These images have
distinct tissue morphologies, imaging artifacts, and
pathologies in comparison to clinical in vivo EC
images.

The number of ECs that must be analyzed to be
reflective of the central ECD has been debated.33,44–50
Estimates have ranged from at least 30 cells per image33
to as many cells as possible,45 all influenced by the
practical limitations of technician time and analysis
method accuracy.7 Accurate automated ECD analysis
with or without manual intervention is commonly
performed clinically with images of good to excel-
lent image quality for a homogeneous cell population
with normal cell structure and in the absence of
endothelial pathology.9,51–55 However, unlike clini-
cal endothelial image analysis, a fully automated
analysis of donor endothelium for ECD has not
proven successful,56 whereas semi-automated analyti-
cal approaches currently employed in eye banking have
raised questions of automation error, human bias, and
technique.2,3,57 The EBAA Procedures Manual does
not specify the ideal number of endothelial cells to
be analyzed; it simply states that, to obtain the most
accurate analysis, a large field and/or multiple fields
should be captured, counted, and/or averaged.8 In
our study, we chose a minimum of 100 ECs minimum
to be analyzed by the eye bank, as is commonly
practiced in eye banking. Our proposed automated
approach for image analysis and donor central
ECD determination would more than satisfy EBAA
procedural standards, with efficiency and without
bias.8

Donor specular microscopy and central ECD analy-
sis have been crucial in determining a minimum ECD
of at least 2000 cells/mm2 as part of donor tissue
suitability over the past 30 years. The contribution
of the determination of donor central ECD toward
donor tissue suitability has paid off, as primary graft



Determination of ECD From Donor Cornea EC Images TVST | August 2024 | Vol. 13 | No. 8 | Article 40 | 8

failure is uncommon in the United States, with a
rate of 0.2% annually between 2019 and 2022 accord-
ing to the EBAA Online Adverse Reaction Report-
ing System (Jennifer DeMatteo, personal communica-
tion, 2024). Notably, long-term graft success (e.g., at
5 years for Fuchs dystrophy at a single site) follow-
ing primary penetrating keratoplasty, Desçemet strip-
ping automated endothelial keratoplasty (DSAEK),
and Desçemet membrane endothelial keratoplasty
(DMEK) has been excellent: 95%,58 93%,59 and 93%,59
respectively. However, for the use of deep learning–
determined donor central ECD as part of donor tissue
suitability to be accepted by the eye banking and
surgeon community, there will have to be data relat-
ing the deep learning–determined ECD to short-term
primary graft failures and long-term graft outcomes
(graft success, endothelial cell loss).

Other fields of ophthalmology with large quantities
of diagnostic images have already taken advantage of
machine learning modeling and their AI applications
toward management decisions.60–68 Initial diagnostic
AI models developed using in vivo clinical images
have been trained to predict corneal disease such as
microbial keratitis, keratoconus, dry eye syndrome, and
Fuchs dystrophy.36,69 One of themost expeditious ways
for graft outcomes to be related to deep learning–
determined donor ECDs is for single-site and multi-
center study groups with access to the donor images of
their recipients to compare automatically determined
ECDs to eye-bank–determined ECDs and the graft
outcomes of corresponding recipients.

Our study had several limitations. First, our two
eye banks differed in the number of areas analyzed for
each donor’s central endothelium, so their represen-
tation of the central endothelium may have differed;
however, the specular microscope utilized, technician
training, and image analysis techniques did not differ.
In this study, the cell border segmentations of the test
set donor cornea endothelial images were not manually
edited, as were the 174 donor cornea endothelial images
used for supervised deep learning training. Although
our study proposes an automatic approach for ECD
determination, a brief manual check of the image
segmentation would not be unprecedented. Further-
more, we are continuing our efforts to optimize and
prove the consistency, robustness, and generalizability
of our proposed deep learning segmentation algorithm
by investigating other transformer network architec-
tures and self-supervised learning approaches such as
generative adversarial learning (e.g., boundary atten-
tion learning). Also, the influence of polymegethism
and pleomorphism on the comparison between the
eye-bank–determined ECD and the deep learning–
determined ECD was not directly measured. As

McCarey et al.49 pointed out, due to the greater varia-
tion in cell area and cell shape, cell selection has a
greater effect on ECD determination; thus, cell selec-
tion and bias by the technician to analyze an image
area with possibly smaller cells resulting in a higher
ECD could have an influence on the central ECD
determined. This influence may have been present, as
we noted higher agreement between the eye-bank–
determined ECD and deep learning–determined ECD
when the deep learning analysis was cropped to approx-
imately the same area of cells that the eye bank
analyzed. Examining the coefficient of variation and
percentage of hexagonal cells could perhaps shed
further light on this finding but was beyond the scope
of our study.

In summary, an automated image analysis approach
involving deep learning techniques provided accurate
ECDs of donor images comparable to real-world eye-
bank–determined ECDs for donors suitable for kerato-
plasty and achieved a significantly reduced analysis
time. This analytical approach would also eliminate
cell selection bias and limit training requirements to
the best conditions and techniques for achieving excel-
lent donor endothelial image quality. It also offers
the potential for future studies that would go beyond
ECD as a tissue suitability marker with the discovery
of machine learning morphologic features, which, as
we have shown with postoperative image analysis and
graft rejection,10 may be even more predictive of graft
success.
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