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Pulmonary arterial hypertension (PAH) is a rare and life-threatening vascular disorder,
characterised by abnormal remodelling of the pulmonary vessels and elevated pulmonary
artery pressure, leading to right ventricular hypertrophy and right-sided heart failure. The
importance of bone morphogenetic protein (BMP) signalling in the pathogenesis of PAH
is demonstrated by human genetic studies. Many PAH risk genes are involved in the
BMP signalling pathway and are highly expressed or preferentially act on vascular endo-
thelial cells. Endothelial dysfunction is recognised as an initial trigger for PAH, and endo-
thelial BMP signalling plays a crucial role in the maintenance of endothelial integrity.
BMPR2 is the most prevalent PAH gene, found in over 80% of heritable cases. As
BMPRII protein is the major type Il receptor for a large family of BMP ligands and
expressed ubiquitously in many tissues, dysregulated BMP signalling in other cells may
also contribute to PAH pathobiology. Sotatercept, which contains the extracellular
domain of another transforming growth factor-p family type Il receptor ActRIIA fused to
immunoglobin Fc domain, was recently approved by the FDA as a treatment for PAH.
Neither its target cells nor its mechanism of action is fully understood. This review will
revisit BMPRII function and its extracellular regulation, summarise how dysregulated BMP
signalling in endothelial cells and smooth muscle cells may contribute to PAH pathogen-
esis, and discuss how novel therapeutics targeting the extracellular regulation of BMP
signalling, such as BMP9 and Sotatercept, can be related to restoring BMPRII function.

Pulmonary arterial hypertension and bone

morphogenetic protein signalling

Pulmonary arterial hypertension (PAH) is a rare but debilitating condition with a high mortality rate,
affecting 15-26 people per million of the population in western countries [1,2]. The pathology is char-
acterised by the abnormal muscularisation of pre-capillary pulmonary arteries, formation of concen-
tric and plexiform lesions and narrowing of the pulmonary vascular lumen, resulting in an increase in
pulmonary vascular resistance, elevated pulmonary artery pressure, right ventricle hypertrophy, and
progressive right heart failure [3]. The FDA approved PAH therapies prior to 2024 target three path-
ways that predominantly affect vascular tone: endothelin 1, nitric oxide and prostacyclin. Although
these therapies have improved exercise capacity and delayed clinical worsening time, they do not
provide a cure for most patients and survival at three years post-diagnosis remains unacceptably low
[4]. Therapies directly targeting the underlying disease pathophysiology are urgently needed.

Genetic studies suggest that PAH can be caused by pathogenic germline mutations. The most
prevalent disease gene is BMPR2 (bone morphogenetic protein (BMP) receptor 2) [5,6], encoding the
type II receptor for the large family of BMP ligands. BMPR2 mutations are found in over 80% of
familial cases and ~17% of idiopathic PAH (IPAH) patients [7-9]. Among the 12 validated PAH
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genes that have been recognised by the International Consortium for Genetic Studies in PAH [10], many are
related to BMP signalling. Apart from BMPR2, ACVRLI encodes BMP type I receptor activin receptor-like
kinase 1 (ALK1), ENG encodes co-receptor endoglin, GDF2 encodes ligand BMP9, and SMAD9 is a component
of BMP signalling machinery [6,11]. Of note, mutations in PAH genes are predisposing factors with incomplete
penetrance. BMPR2 variants penetrance is estimated to be 42% for heterozygous women and 14% for heterozy-
gous men [6,12].

Introduction to BMP signalling

BMPs are members of the transforming growth factor-f (TGF-p) superfamily. These ligands are mostly homo-
dimers, initiating cellular signalling by forming a complex with cell surface receptors comprising two copies of
a type I receptor and two copies of a type II receptor. Both types of receptors are serine/threonine kinases.
After formation of the signalling complex, the constitutively active type II receptor will phosphorylate and acti-
vate the type I receptor, which will in turn phosphorylate the receptor-regulated SMADs (R-SMADs, including
SMADI1, SMAD5, SMAD9, SMAD2 and SMAD3). The phosphorylated R-SMADs then form a complex with
the common mediator SMAD, SMAD4, and translocate to the nucleus to regulate gene expression. Typically,
BMP signals are mediated by SMAD1, SMAD5 and SMAD9, whereas signals from TGF-fs, Nodal, activins and
some growth and differentiation factors (GDFs) are mediated by SMAD2 and SMAD3. Signalling from the
TGF-B family ligands can also involve non-SMAD pathways such as p38, ERK1/2 and PI3K which impact on
cell proliferation, apoptosis and migration [13]. A more comprehensive review on TGF-p family signalling has
been published recently [14].

TGEF-B family ligands are encoded by a total of 33 genes in humans, yet there are only 7 type I and 5 type II
receptors mediating their signals, hence there is a high degree of promiscuity in ligand-receptor interactions.
One BMP ligand can signal via different type I and type II receptor pairs, and the same type I and type II
receptor pair can mediate signals from different ligands. In addition to ligand-receptor interaction, each ligand
is synthesised and secreted as a prodomain bound complex; the prodomain may modify ligand bioactivity or
localisation [15,16]. The extracellular regulation of BMP signalling also involves ligand traps (inhibitors) which
limit ligand availability to the receptors, and cell surface co-receptors (also called type III receptors) which can
modify ligand-receptor interactions [11]. Therefore, the overall signalling outcome is highly context dependent
and determined by local concentrations of different ligands, ligand traps, and cell surface receptors and
co-receptors [17] (Figure 1).

TGF-B and BMP signalling are also regulated at intracellular levels. Inhibitory SMADs, such as SMAD6 and
SMAD?7, are target genes of many ligands and can directly inhibit BMP and TGF-B signalling. Some BMPs also
regulate the expression of their own receptors and co-receptors, for example, BMP9 and BMP10 induce the
expression of BMPR2, ENG, SMAD9, and suppress SMADI expression in endothelial cells (Figure 1). Such
intracellular regulation provides feedback loops, ensuring a highly dynamic yet tightly controlled BMP signal-
ling outcome.

With such complex regulation mechanisms, it is essential to establish how mutations in different genes lead
to the dysregulated BMP signalling and contribute to the pathobiology of PAH. In addition, it is essential to
understand how BMPR2 mutations might affect signals from different TGF- family ligands and in different
cell types, which could contribute to the initiation or exacerbation of PAH.

Dysregulated endothelial BMP signalling in the
pathogenesis of PAH

Genetic findings strongly support the crucial role of dysregulated endothelial BMP signalling in the initiation of
PAH. Several genes that are mutated in PAH encode proteins that are part of BMP signalling complex and
highly expressed in vascular endothelial cells, such as BMPR2, ACVRLI and ENG. Importantly, ACVRLI is
almost exclusively expressed in endothelial cells, mediating signals from two specific ligands, BMP9 and
BMP10. Mutations in both GDF2 (encoding BMP9) and BMPI0 have been identified in PAH patients. The
clinical phenotypes of PAH patients with GDF2 and BMP10 mutations have been characterised in a recent
report [18].

Endothelial dysfunction, which includes endothelial cell apoptosis, compromised barrier function, and altered
vasoactive mediator release, etc, plays a central role in the initiation of PAH [19]. Reduced or loss of endothelial
BMPR?2 expression leads to endothelial dysfunction. In vitro, a reduction or loss of BMPR2 in human pulmonary
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Figure 1. Introduction to the highly dynamic TGF-g and BMP signalling.

TGF-B family signalling is regulated at multiple levels including: (1) TGF-p family ligands are synthesised and secreted as the
prodomain bound forms; (2) there are a large number of ligands signalling through a limited number of type | and type Il
receptor pairs with a high degree of promiscuity in ligand-receptor interaction; (3) extracellular ligand traps can bind ligands
and prevent them from binding to the receptors; (4) co-receptors can modify ligand-receptor interactions through direct
protein-protein interactions; (5) TGF-p and BMP signalling can regulate the gene expression of components on the signalling
pathways, such as SMAD9, BMPR2 and ENG, or inhibitors of the signalling pathways, such as SMAD6 and SMAD?7. Genes
(and encoded proteins) that are mutated in PAH are highlighted by *.

vascular endothelial cells induces mitochondrial dysfunction and promotes a pro-inflammatory and
pro-apoptotic state [20], causes endothelial-to-mesenchymal transition [21], and induces apoptosis [22,23] and
excess permeability [22,24]. BMPRII deficiency impairs apoptosis via the BMPRII-ALK1-BcIX (B-cell lymphoma
X)-mediated pathway and the Bcl-xL isoform could be a potential biomarker for PAH [25]. In vivo, loss of
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Bmpr2 causes increased lung vascular permeability [22]. Conditional deletion of Bmpr2 in the pulmonary endo-
thelium [26] or knocking-in human mutation R899X into Bmpr2 gene [22] predisposes mice to PAH.
Circulating BMP ligands, mostly BMP9 and BMP10, act constitutively and potently on vascular endothelial cells
[27,28], inducing BMPR2 expression [29] and have a plethora of endothelial protective functions, including anti-
apoptosis, anti-migration, anti-proliferation, and anti-angiogenesis [22]. Administration of BMP9 neutralising
antibody in adult mice leads to excess permeability in lung vasculature [30].

Crystal structures of the BMPRII signalling complex reveal
the highly dynamic interaction between BMP10 and BMPRII

Although BMPR2 mutations in PAH were first published in 2000, structural insights into how BMPRII inter-
acts with a BMP ligand were only reported in 2022 [31]. Crystal structures of BMPRII extracellular domain
(ECD) in complex with BMP10, and in complex with both BMP10 and ALK1 ECD, revealed an unprecedented
degree of plasticity in the BMPRII:BMP10 interaction [31]. This suggests that stabilising the interaction
between BMPRII and BMP10 requires high concentrations of BMPRII, and that under normal physiological
conditions, BMPRII-dependent signalling is most active in tissues with the highest BMPR2 expression. As lung
vascular endothelial cells have the highest expression of BMPR2, along with the high expression of BMP10 in
the right atrium, together they partly explain why BMPR2 mutations which cause haploinsufficiency will have
the most impact on lung vasculature [31].

BMPR2 mutations also cause dysregulated BMP signalling

in pulmonary smooth muscle cells

BMPRII is the type II receptor for all BMPs, and ubiquitously expressed in many cell types. Germline muta-
tions in BMPR2 also affect its expression in non-endothelial cells. In pulmonary artery smooth muscle cells
(PASMC:s) isolated from PAH patients harbouring BMPR2 mutations, BMP4-induced SMAD1 phosphorylation
and ID1 gene expression were reduced [32,33]. The growth suppressive response to BMP4 was lost in proximal
PASMCs harbouring BMPR2 mutations [32].

BMP6 and BMP7 also signal in PASMCs. In one study, it was shown that the induction of IDI and ID3
gene expression by BMP6 treatment was reduced in BMPR2 mutant PASMCs [33], In another report, the
result was more complicated [34]. In this latter study using mouse Bmpr2~"~ and Bmpr2"’~ PASMCs, it was
shown that while BMP7 signalling was reduced in Bmpr2"”~ PASMCs, there was a gain of BMP6 and BMP7
signalling in Bmpr2™~ PASMCs, even when BMP2 and BMP4 signalling remained reduced upon complete
knockout of Bmpr2. This suggests that after a threshold change of cell surface BMPRII to somewhere below
50%, BMP6 and BMP7 gain of signal appears. More interestingly, in these Bmpr2™'~ PASMCs, ActRIIA took
over to mediate BMP4 and BMP6 signalling, and the type I receptor preference changed. ActRIIA can pair up
with both ALK2 and ALK3 to mediate BMP4 signalling in Bmpr2~'~ cells, whereas BMP6 (or BMP7) employs
ALK2 only when BMPRII is absent [34]. Such gain of BMP6 signalling was also observed in PASMCs when
BMPRII was shed from cell surface and BMPR2 mRNA levels were reduced by more than 50% upon tumour
necrosis factor-o. (TNF-o) treatment [35].

Altered inflammatory response exacerbates loss of BMPRII
function and contributes to PAH pathogenesis

The penetrance of gene mutations causing PAH is low, and a second hit is often present in the pathogenesis of
PAH. Inflammation is widely accepted as a major second hit for PAH, and multiple studies have shown inflam-
mation further contributes to dysregulated BMP signalling in pulmonary vascular cells. BMPRII deficiency pro-
motes an exaggerated inflammatory response in human and mouse SMCs, producing higher levels of IL-6 and
IL-8 after LPS-stimulation compared with controls [36]. TNF-a causes reduced mRNA expression of BMPR2
in both human pulmonary artery endothelial cells (hPAECs) and PASMCs [35], thus exacerbating the loss of
BMPRII protein function in these vascular cells. BMPR2 deficiency in PASMCs conferred insensitivity to
TGEF-B induced growth inhibition, and this process is associated with enhanced IL-6 and IL-8 induction by
TGEF-B [37]. IL1-B drives an exaggerated inflammatory response when BMPR?2 is deficient in PASMCs [38]. On
the endothelial cell front, loss of BMPR2 leads to increased permeability in PAEC monolayers [24], and mice
with an endothelial-specific knockout of Bmpr2 showed increased leukocyte recruitment and reduced barrier
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function [39]. In humans, aberrant immune regulation is a key feature in a significant proportion of patients
with IPAH and associated with clinical outcomes, with a small subset of patients showing immunoglobin
reactivity to BMPRII [40].

Therapeutic strategies targeting BMP signalling in PAH

There are many ongoing efforts targeting BMP signalling for PAH treatment which have been reviewed recently
[41-44]. Some focus on directly enhancing the cell surface BMPRII expression and such efforts include: (1) ata-
luren/PTC124 which promotes the read-through of stop-gain BMPR2 mutations [45,46]; (2) small chemical
chaperons such as 4-phenylbutyrate (4BA) which promote the secretion of misfolded BMPRII mutant proteins
trapped in the endoplasmic reticulum [47]; (3) chloroquine and hydroxychloroquine which prevent lysosomal
degradation of wild type BMPRII proteins [48]. However, these approaches are not specific to BMPRII, and the
efficacy and potential side effects for treating PAH are yet to be seen in humans. Another approach employs
low-dose FK506 which enhanced BMP signalling and reversed PAH in rodent models [49]. FK506 binds to
FKBP12 and releases it from BMP type I receptors thereby enhancing BMP signalling. In a Phase Ila rando-
mised placebo-controlled trial, FK506 was shown to be safe, increased BMPR2 expression and improved 6-min
walk distance in a subset of patients, but the overall efficacy is yet to be evaluated in a larger, multicentre trial
[50]. Two approaches will be discussed further here: (1) targeting BMP9 signalling, and (2) Sotatercept, which
has been approved by the FDA in March 2024 for treating PAH. Both approaches target the extracellular regu-
lation of the TGF-B family signalling complex.

Targeting BMP9 signalling in PAH and controversies over
BMP9 signalling

Genetic and clinical evidence strongly supports that loss of BMP9 signalling contributes to the pathogenesis of
PAH. Rare heterozygous detrimental mutations in GDF2 (encoding BMP9) have been found in several large
cohort genomic studies [51-53]. Patients with pathogenic BMP9 mutations have lower plasma levels of BMP9
and BMP10 [52,54]. Several homozygous null mutations in GDF2 have also been identified in paediatric PAH
patients and circulating BMP9 is unmeasurable in these patients [54-57].

BMP9 is secreted from the liver and circulates at active concentrations, acting constitutively on vascular
endothelium as a vascular quiescence factor [27]. BMP9 and BMP10 are the only two known high affinity
ligands for ALK1. They form a signalling complex with ALK1 and BMPRII in endothelial cells and signal
potently with an ECsy below 0.1 ng/ml [30,58]. While BMPRII protein levels in endothelial cells reduce rapidly
after protein synthesis inhibition [59], BMP9 induces BMPR2 mRNA expression in endothelial cells [29], thus
forming a dynamic balance. Based on the hypothesis that the loss of endothelial BMPRII and circulating BMP9
could be rescued by supplementation of BMP9, it was reported in 2015 that administration of recombinant
BMP9 reversed PAH in three different rodent models: a genetic mouse knock-in model containing a human
BMPR2 mutation, the monocrotaline (MCT) — induced rat model, and a rat model induced by Sugen along-
side chronic hypoxia (Sugen-Hypoxia) [22]. Here, BMP9 was also shown to confer protection against endothe-
lial dysfunction. For example, in vitro, treatment of hPAECs with BMP9 offered protection against apoptosis
induced by TNF-o. and cycloheximide co-treatment, and BMP9 prevented excessive permeability in PAEC
monolayer induced by TNF-a. or LPS [22]. Of note, a potential beneficial role of BMP9 has also been reported
in sepsis. Human patients with sepsis have lower BMP9 concentrations at admission, and lower BMP9 concen-
trations are associated with higher risk of death. BMP9 treatment improved the outcome in mice with experi-
mental sepsis [60].

However, Tu et al. [61] reported in 2019 that BMP9 knockout mice, or mice administrated with a neutralis-
ing anti-BMP9 antibody, were significantly protected against chronic hypoxia-induced pulmonary hyperten-
sion. Furthermore, they showed that ALKI-Fc treatment rescued rat PAH models induced either by MCT or
Sugen-Hypoxia. Such results are intriguing as they are different from hypotheses derived from human genetics.
Further studies using BMP9 and BMP10 double knockout mice revealed even more complex picture where the
double knockout mice developed high-output heart failure [62]. Here they also showed that BMP9 contributed
to the hypoxia-induced pulmonary vascular remodelling, whereas BMP10 played a role in hypoxia-induced
cardiac remodelling. In a separate study, BMP9 and BMP10 were shown to directly act on vascular smooth
muscle cells and affect the contractility state of the SMCs [63]. Table 1 summarises in vivo studies supporting
BMP9 agonist or antagonist approaches in the context of PAH.
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Table 1. Summary of in vivo studies related to BMP9 agonist and antagonist approaches in PAH preclinical models

PMID

Journal, year

Title of paper, reference number

Key findings related to BMP9
agonist or antagonist approaches in
PAH models

26076038

30636542

30312106

33334130

34086873

Nat. Med., 2015

Circ. Res., 2019

Am. J. Respir. Crit.
Care Med., 2019

Circulation, 2021

Cardiovasc. Res.,
2022

Selective enhancement of endothelial
BMPR-Il with BMP9 reverses
pulmonary arterial hypertension [22]

Selective BMP-9 inhibition partially
protects against experimental
pulmonary hypertension [61]

Bone morphogenetic protein 9 is a
mechanistic biomarker of
portopulmonary hypertension [64]

BMP9 and BMP10 act directly on
vascular smooth muscle cells for
generation and maintenance of the
contractile state [63]

Different cardiovascular and pulmonary
phenotypes for single- and
double-knock-out mice deficient in
BMP9 and BMP10 [62]

Administration of recombinant BMP9
reversed established PAH in Bmpr2
R899X knock-in mice, as well as in rat
PAH models induced by monocrotaline
or Sugen-Hypoxia.

* Bmp9~~ mice and its inhibition in
C57BL/6 mice using neutralising
anti-BMP9 antibodies substantially
prevent against chronic
hypoxia-induced pulmonary
hypertension.

The BMP9/BMP10 ligand trap ALK1
ECD administered in monocrotaline or
Sugen/Hypoxia (SuHx) rats
substantially attenuates proliferation of
pulmonary vascular cells,
inflammatory cell infiltration, and
regresses established pulmonary
hypertension in rats.

Administration of BMP9 ligand trap
ALK1-Fc exacerbated pulmonary
hypertension and pulmonary vascular
remodelling in mice treated with
hypoxia.

BMP9 KO/BMP10 iKO in right atrium:
dramatic changes in vascular tone
and diminution of the VSMC layer with
attenuated contractility and decreased
systemic as well as right ventricular
systolic pressure.

Deletion of Acvri1 (encoding Alk1) in
VSMCs recapitulated the Bmp9/10
phenotype in pulmonary but not in
aortic and coronary arteries.

BMPQ contributes to chronic
hypoxia-induced pulmonary vascular
remodelling, whereas BMP10 plays a
role in hypoxia-induced cardiac
remodelling in mice.

Combined deficiency in Bmp9 and
Bmp10 led to vascular defects
resulting in a decrease in peripheral
vascular resistance and blood
pressure and the progressive
development of high-output heart
failure and pulmonary hemosiderosis.

The controversial observations on BMP9 extend to in vitro cell biological studies. A recent report suggests
that loss of endothelial BMPR2 expression reverses the endothelial response to BMP9, causing enhanced prolif-
eration [65]. It is difficult to compare this study with previous published data as it uses very different treatment
conditions, i.e. 1 ng/ml of BMP9 treatment which is well above the concentrations measured in human plasma
[54], and the experiments were performed in full growth media which already contain high concentrations of
BMP9. Of note, most of the reports use serum-restricted conditions when evaluating BMP9 signalling. Altered
BMP9 response in endothelial cells derived from PAH patients was also observed in another study. Here BMP9

1520

© 2024 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).


https://creativecommons.org/licenses/by/4.0/

Biochemical Society Transactions (2024) 52 1515-1528 ° PORTLAND
https://doi.org/10.1042/BST20231547 ... PRESS

induced unfavourable endothelial-to-mesenchymal transition only in endothelial cells isolated from PAH
patients but not healthy controls [66].

With the current understanding of BMP9 and BMP10 signalling [67,68], it is difficult to reconcile these con-
troversial observations. The functions of BMP9 and BMP10 may have more complexity than hitherto recog-
nised, i.e. more cell types might be involved when investigating BMP9 and BMP10 effects in vivo. One might
interpret such controversial findings as BMP9 exerts different roles at different stages of PAH; a beneficial role
during the initial stage of PAH (where genetic studies are very powerful in identifying the underlying cause of
the disease) and a more complicated role during the late stage of the disease which can often be demonstrated
in cells isolated from patients who are at advanced stages of PAH. Such a scenario was seen for TGF-B, where
it could act as either a tumour suppressor or a tumour promotor depending on different stages of the tumour
development [69].

Sotatercept and ActRIlIA-mediated signalling

Sotatercept, a fusion protein comprising the extracellular ligand binding domain of ActRIIA fused to the
Immunoglobin Fc domain, is approved by the FDA for treating Group 1 PAH and is the first PAH therapy tar-
geting the TGF-P superfamily. In a Phase III clinical trial for PAH [70], Sotatercept improved the 6-min walk
distance primary endpoint as well as in eight out of nine secondary efficacy endpoints compared with placebo
controls, including time to death and clinical worsening [70,71]. Adverse events include epistaxis, telangiectasia,
increased haemoglobin levels, thrombocytopenia and increased blood pressure, some of which may be related
to the known affinity of ActRII-A with BMP and GDF ligands.

The mechanism of action of Sotatercept is still not fully understood. An early study suggests that it restores
the balance between SMAD1/5/9 and SMAD2/3 signalling in PAH [72]. Here the authors showed that treat-
ment with ActRIIA-Fc reversed elevated phospho-SMAD2/3 in a rat MCT model, but no restoration of
reduced phospho-SMAD1/5/9 was observed in either rat MCT or rat Sugen-Hypoxia models [72]. Of note,
Sotatercept is a ligand trap for activins and potentially also BMP9 and BMP10, so increased phospho-SMAD1/
5/9 is not a direct outcome expected from Sotatercept treatment. Another study showed that treatment of
ActRITA-Fc in a Sugen-Hypoxia rat model normalised inflammatory response in the lungs, and importantly,
the treatment suppressed the elevation of Inhba (encoding activin A, or ActA) and Inhbb (encoding ActB)
expression in the right ventricle of Sugen-Hypoxia rats [73]. However, Sotatercept is an extracellular ligand trap
and SMAD proteins are the intracellular mediators of signalling; these data still do not reveal the mode of
action of Sotatercept at direct protein-protein interaction levels. We still do not know which target ligand or
ligands are trapped by Sotatercept for its efficacy in PAH, nor do we know the major cell type that is respon-
sible for the efficacy of Sotatercept.

Ligands with high affinities for ActRIIA are more likely to be bound and inhibited by Sotatercept. ActRIIA
and ActRIIB are the major type II receptors for Activins, and ActRIIA has been shown to mediate signals from
multiple BMP ligands using siRNA approaches [29,34,74]. In Biacore direct binding assays, ActRIIA-Fc has
been shown to bind multiple TGF-f family ligands with high affinities (Table 2). For activin ligands, ActA and
ActB bind to ActRIIA-Fc with the highest affinity [77,79], whereas ActC only binds to ActRIIA transiently and
no reported data on ActE. ActRIIA-Fc binds tightly to several GDF and BMP ligands, with Kp, in the sub-
nanomolar range for GDF11 and BMP10, and in the nanomolar range for GDF8, BMP7, BMP4, BMP9 and
BMP6 (Table 2, Figure 2). Interestingly, many of these ligands also bind BMPRII with high affinity (Table 3,
Figure 2); for example, ActB binds to BMPRII-Fc with comparable affinity to BMP10 and stronger than many
other BMP ligands [77,79]. ActA also binds BMPRII-Fc with very high affinity, but weaker than ActB or
BMP10. Serum levels of both ActA and ActB are significantly elevated in PAH patients [84]. INHBA (encoding
ActA) is highly expressed in lung microvascular endothelial cells [85]. PAECs isolated from the lungs of
patients with IPAH synthesised more INHBA mRNA and released more ActA protein into the culture medium
[85]. ActA has been shown to be capable of inhibiting BMP9 but not BMP2 and BMP4 signalling in two mul-
tiple myeloma cell lines [86], but such inhibition was not observed in endothelial cells [87]. Interestingly, it was
suggested that BMPRII inhibits activin signalling via ALK2 because knocking down BMPR2 by siRNA lead to
enhanced ActA-phospho-SMAD1/5 signalling via ALK2 in multiple myeloma cells [88]. This observation
agrees with another report that ActA forms a non-signalling complex with ALK2 and type II Activin/BMP
receptors [89]. Taken together, these reports could potentially point to a hypothesis that elevated ActA and
ActB contribute to the disease progression of PAH, partly by competitive binding to BMPRII thereby further
reducing the availability of BMPRII for BMP signalling and exacerbating BMPRII loss. Another potential
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Table 2. Affinities of different ligands for ActRIIA measured by surface
plasmon resonance (Biacore)

Ligands Dissociation constant (Kp) and reference paper
ActA 22 pM [75], 23 pM [76], 43 pM [77]3, 59 pM [78]°, 90 pM [79]*
ActB 9.5 pM [75], 61 pM [77]%, 53 pM [79]*

ActC Transient binding [75]

ActE No report

GDF8 3.77nM [77]7

GDF11 573 pM [77]7, 52 pM [79]?

BMP2 38nM [78]°, 20.6 M [80]°, ~68 nM [81]°

BMP4 ~3nM [82], 3.51 nM [77]?, 11.9 nM [80]°

BMP6 10.5nM [77]2

BMP7 1.59 M [77]3, 1.2 nM [78]°, No binding [79]7

BMP9 6.43 nM [83]° (25°C)

BMP10 88.6 pM [83] (25°C), 381 pM [77], 1 nM [79]*

Data were obtained using human ActRIIA-Fc immobilised on the Biacore chip and
titrating a range of ligand concentrations apart from those specified in the footnotes
below. Data using immobilised ligands are not included here. Although it is difficult to
directly compare the exact K, values from different studies, the reported values are in
general agreement, and the values obtained from the same study under the same
conditions are directly comparable.?From single injection on Biacore.

PUsed mouse ActRIIA, and not Fc fusion.

°By Steady-state analysis.

mechanism suggested by a recent report is that binding of ActA to BMPRII leads to endocytosis of BMPRII
protein, hence further reducing the cell surface BMPRII [85]. However, increased BMPRII levels or
BMPRII-mediated signalling after ActRIIA-Fc or Sotatercept treatment has not been reported in either preclin-
ical or clinical data. Nevertheless, both hypotheses predict that Sotatercept should have a beneficial effect in
PAH by directly sequestering the elevated ActA and ActB. Of interest, treatment of PAECs with either BMP9
or BMP10, both in the physiologically relevant prodomain-bound forms and at physiologically relevant

(A)
High (9.5 pM) Low (38 nM)
ActB ¢  GDF11 . GDF8,BMP7  :  pgmp2
ActA ! BMP10 i BMP4,BMP9 |
: - BMP6
(B)
s
2%
c Qo
£ S
<= High (60 pM) Low (53 nM)
BMP10 : BMP9 ; BMP4, BMP7
ActB ! ActA : BMP2, BMP6
' GDF11

Figure 2. Summary of different ligand binding affinities for ActRIIA and BMPRII.
Ligands with high to low affinities for ActRIIA-Fc (A) and BMPRII-Fc (B), based on the binding data in Table 2 and Table 3.
Kp values for the high and low affinities are taken from Table 2 and Table 3.
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Table 3. Affinities of different ligands for BMPRII measured by
surface plasmon resonance (Biacore)

Ligands

Dissociation constant (Kp) and reference paper

ActA
ActB
GDF11
BMP2
BMP4
BMP6
BMP7
BMP9
BMP10

9.0nM [773, 9.6 nM [79

0.7 1M [79], 0.6 NM [77], 2.3 nM [793, 0.7 nM [79)]

53.3nM [77]°

41.4 [80]°

7.4 nM [82], 26.3 "M [80]°
44.5nM [77]

39nM [77]%, 13 nM [79]
7.4nM [77], 0.6 nM [83]

2.4nM [79], 2.1 nM [79F7, 0.2 nM [77]%, 0.06 nM [83]

Data were obtained using human BMPRII-Fc immobilised on the Biacore chip
and titrating a range of ligand concentrations apart from those specified in the
footnotes below. Data using immobilised ligands are not included here.
Although it is difficult to directly compare the exact K values from different
studies, the reported values are in general agreement, and the values
obtained from the same study under the same conditions are directly
comparable.?From single injection on Biacore.
PBy Steady-state analysis.

concentrations, can supress the expression of the INHBB gene which encodes ActB (Figure 3) [90], in agree-

ment with a beneficial effect of a BMP9 agonist approach for treating PAH.

Summary and future directions
Human genetics and pre-clinical studies both support a fundamental role of BMP signalling in the pathogenesis
of PAH. BMP and activin signalling complexes are intertwined at multiple levels, involving the competitive
binding of all three BMP type II receptors, BMPRII, ActRIIA and ActRIIB. The positive outcome from the

PBS vs. pro:BMP9

2
sle s . e
INHBB ¢ * e SMADT e
- .« K BMPRZ& . _
S 15 e ™ :'gn ENG o\ L., 3
g b Y g 1.2
(o} (o}
- SMADG =
el
8 ! 8 08
o o
> >
3
= 05 3 04
0 0

-2 -1 0

Log2 fold change

INHBB

PBS vs. pro:BMP10

SMAD1

~«—SMAD9
<—SMAD6

-1 0 1 2

Log?2 fold change

Figure 3. BMP9 and BMP10 suppress ActB expression in human pulmonary artery endothelial cells (hPAECS).
Serum-starved hPAECs were treated with PBS, prodomain-bound BMP9 (pro:BMP9), or pro:BMP10 at concentrations
equivalent to 0.4 ng/ml growth factor domain alone. After 5 hours, cells were harvested, and RNA was extracted for microarray
analysis. Volcano plots showing the differential gene expression. Hits with adjusted P values less than 0.05 are shown in red.
INHBB, which encoding ActB, is highlighted. Also highlighted are the components of BMP signalling (Figure 1) that are
regulated by BMP9 and BMP10. Data for PBS vs pro:BMP9 has been published previously [30].
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Sotatercept Phase III trial strongly suggests that dysregulated BMP signalling in PAH also involves activin sig-
nalling. A more in-depth investigation of the effect of ActA and ActB in PAH models and patient samples is
warranted. Another area of BMP signalling in PAH that is not covered in this review is the shared mutations of
endothelial BMP signalling components in PAH and hereditary haemorrhagic telangiectasia, which will be
another important and intriguing topic to review.

Perspectives

e The importance of the field: pathogenic mutations in multiple components of BMP signalling
pathways have been identified in human genetic studies on PAH, supporting a crucial role of
dysregulated BMP signalling in the pathogenesis of PAH. Sotatercept is the first
FDA-approved therapeutic modality that directly targets extracellular regulation of TGF-3/BMP
signalling.

e Summary of the current thinking: compromised endothelial BMP signalling involving ALK1 and
BMPRII is likely an initial trigger for PAH. Aberrant BMP signalling in other cell types and other
TGF-B family ligands and receptors may also contribute to the pathogenesis of PAH.

e future directions: a deeper mechanistic insight into the extracellular regulation of signalling
from BMPs, activins and GDFs may provide novel therapeutic opportunities. This could be
achieved by in vitro cell signalling assays in a physiologically relevant context, such as using
human primary cells, patient cells and co-culture models, and coupled with biochemical and
structural studies to address the direct protein—protein interactions amongst ligands and
receptors.
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