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ABSTRACT
The cortical epigenetic clock was developed in brain tissue as a biomarker of brain aging. As one 
way to identify mechanisms underlying aging, we conducted a GWAS of cortical age. We 
leveraged postmortem cortex tissue and genotyping array data from 694 participants of the 
Rush Memory and Aging Project and Religious Orders Study (ROSMAP; 11000,000 SNPs), and 
meta-analysed ROSMAP with 522 participants of Brains for Dementia Research (5,000,000 over
lapping SNPs). We confirmed results using eQTL (cortical bulk and single nucleus gene expres
sion), cortical protein levels (ROSMAP), and phenome-wide association studies (clinical/ 
neuropathologic phenotypes, ROSMAP). In the meta-analysis, the strongest association was 
rs4244620 (p = 1.29 × 10−7), which also exhibited FDR-significant cis-eQTL effects for CD46 in 
bulk and single nucleus (microglia, astrocyte, oligodendrocyte, neuron) cortical gene expression. 
Additionally, rs4244620 was nominally associated with lower cognition, faster slopes of cognitive 
decline, and greater Parkinsonian signs (n ~ 1700 ROSMAP with SNP/phenotypic data; all p ≤ 0.04). 
In ROSMAP alone, the top SNP was rs4721030 (p = 8.64 × 10−8) annotated to TMEM106B and 
THSD7A. Further, in ROSMAP (n = 849), TMEM106B and THSD7A protein levels in cortex were 
related to many phenotypes, including greater AD pathology and lower cognition (all p ≤ 0.0007). 
Overall, we identified converging evidence of CD46 and possibly TMEM106B/THSD7A for potential 
roles in cortical epigenetic clock age.
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Introduction

Biomarkers of aging are critical tools for develop
ing and testing interventions to delay aging- 
associated declines in health, as well as for asses
sing mechanisms underlying aging processes. 
Given the high prevalence and burden of dementia 
in older populations, biomarkers of brain aging 
have public health relevance [1].

Epigenetic clocks are among the most successful 
biomarkers of aging to date; these clocks use DNA 
methylation (DNAm) states across the genome to 
yield a ‘signature’ of aging, trained against 

chronological age or other proxies for health status 
[2]. Recently, a cortical epigenetic clock was devel
oped, specifically using DNAm states in brain tissue 
[3]. This clock integrates 347 CpG sites into an ‘aging 
score’ and performs particularly well in distinguishing 
neurodegenerative phenotypes compared to clocks 
designed in blood or other tissues [3]. Identifying 
genes regulating cortical clock age is one pathway to 
discovering novel mechanisms underlying brain 
aging (although other factors which may be related 
to epigenetic age, such as environmental exposures, 
will be important to examine as well).
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In our previous research, we calculated cortical 
clock age in postmortem prefrontal cortex speci
mens from deceased participants of the Religious 
Orders Study and Rush Memory and Aging 
Project, all of whom had been followed during 
life with annual clinical exams [4,5]. We observed 
strong associations of cortical clock age with mul
tiple clinical and pathologic dementia-related phe
notypes, as well as other aging-related phenotypes. 
Thus, to begin to understand the genetic architec
ture of cortical clock – which is one approach to 
potentially identify mechanisms at the intersection 
of aging and neurodegeneration – we conducted 
a genome-wide association study (GWAS) of cor
tical clock age in three large cohorts of aging, all 
with cortical brain specimens, available DNA 
methylation array data, and genome-wide array 
data.

Methods

Study Populations

Since epigenetic clock aging appears to differ in 
older than in younger persons [3,6], we focused 
our work here in three cohorts which primarily 
include older participants: Religious Orders Study 
(ROS), Rush Memory and Aging Project (MAP), 
and Brains for Dementia Research (BDR). The 
Religious Orders Study was initiated in 1994 [7] 
and includes older priests, nuns, and brothers 
from across the US, free of known dementia at 
the time of enrolment. Participants agreed to 
annual neurological exams, neuropsychological 
testing, and blood draw. Over 1,500 participants 
completed a baseline evaluation as of 
November 2023. The follow-up rate and autopsies 
exceed 90%. The Rush Memory and Aging Project 
was established in 1997 [7], with virtually identical 
design and data collection, and includes older men 
and women from across the Chicago metropolitan 
area, without known dementia at enrolment; over 
2,300 participants completed a baseline evaluation 
as of November 2023. The follow-up rate exceeds 
90% and the autopsy rate exceeds 80%. Both stu
dies were approved by an Institutional Review 
Board of Rush University Medical Center. All par
ticipants signed an informed consent and 
Anatomical Gift Act for organ donation. More 

than 2000 autopsies have been obtained to date. 
The Brains for Dementia Research brain bank was 
established in 2008 in the United Kingdom, as 
a research tissue bank across six dementia research 
centres, with uniform procedures [8]. Participants 
were recruited from the community and provided 
informed consent for regular assessment and their 
consent to donate their brain for research upon 
death. At the time, these analyses were initiated, 
over 600 postmortem brains were available for 
research. The study was approved by the 
National Research Ethics Service.

Assessment of DNA methylation states and 
Epigenetic Clock Age

In ROSMAP brain specimens, DNA methylation 
was measured in tissue from the dorsolateral pre
frontal cortex (DLPFC). Briefly, 100 mg frozen 
sections were thawed on ice, with the grey matter 
dissected from the white matter, as previously 
described in detail [9]. The Qiagen QIAamp 
DNA mini protocol was used for DNA isolation. 
DNA methylation profiles were generated using 
the Illumina Infinium HumanMethylation450 
platform. In more recent work with these speci
mens, processing methods were updated com
pared to our previous publications [9]. The raw 
signal intensities were imported into the 
R statistical environment with functions from the 
methylumi package and further processed with the 
wateRmelon [10] package. Initial quality control 
assessment was performed using functions in the 
methylumi package to exclude samples with ineffi
cient bisulfite conversion (<90%) as well as outliers. 
Further preprocessing was conducted using the 
wateRmelon package by applying a p-filter. Probes 
having more than 1% of samples with a detection 
p-value greater than 0.05 and a beadcount lower 
than 3 in more than 5% of samples were excluded. 
Finally, the filtered data were normalized with 
‘dasen.’ Non-CpG SNP (single nucleotide poly
morphism) probes, probes that had been reported 
to contain common (MAF > 5%) SNPs in the CG 
or single base extension position or probes that 
were non-specific or mismapped, were flagged and 
disregarded in the evaluation of our results. The 
resulting dataset for analysis here consisted of 730 
samples with 423,841 probes each. At each probe, 
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DNAm level was represented as a beta value, that is, 
the ratio of the methylated probe intensity to the 
sum of methylated and unmethylated probe inten
sities. The values ranged from 0 to 1, where a larger 
value indicates higher methylation.

In BDR, DNA was isolated from prefrontal cor
tex samples using the Qiagen AllPrep DNA/RNA 
96 kit [3]. Genome-wide DNA methylation was 
profiled using the Illumina EPIC DNAm array, 
which interrogates >850,000 DNA methylation 
sites. All work was done in the R statistical envir
onment, and processing used either wateRmelon 
or bigmelon packages. Briefly, the quality control 
pipeline included (i) checking signal intensities 
and excluding poorly performing samples, (ii) cal
culating a bisulphite conversion statistic for each 
sample, excluding those with a conversion rate  
<80%, (iii) using p-filter function to exclude sam
ples with >1% of probes with a detection p-value 
>0.05 and probes with >1% of samples with detec
tion p-value >0.05, and (iv) removing cross- 
hybridizing and SNP probes. The filtered data 
were normalized with ‘dasen.’ This resulted in 
800,916 DNA methylation sites in 610 prefrontal 
cortex specimens.

The cortical clock was calculated using publicly 
available code (https://github.com/gemmashireby/ 
CorticalCloc). Briefly, the original cortical clock 
was trained in cortex tissue, specifically including 
large samples of older participants, to focus on 
brain aging. The clock was trained only using 
383,547 CpG sites that were common across the 
Illumina 450K and EPIC arrays. The cortical clock 
was trained against chronological age, and inte
grates 347 CpG sites into a brain age score.

Assessment of genome-wide array Data.

For the ROSMAP participants, genotyping was 
performed on either the Affymetrix GeneChip 6.0 
platform (1,878 participants, 909,600 SNPs) or the 
Illumina OmniQuad Express platform (456 parti
cipants, 730,525 SNPs). DNA was extracted from 
whole blood, lymphocytes, or frozen brain tissue, 
as previously described [11]. To minimize popula
tion admixture, only self-declared non-Latino 
individuals of European ancestry were genotyped. 
Then, genotyping data from both platforms were 
processed using PLINK software, version 1.08p 

[12], with standard quality control (QC) metrics 
such as genotype success rate > 0.95, Hardy- 
Weinberg equilibrium p >0.001, and mishap test 
< 1 × 10 − 9, as previously described [11,13]. 
EIGENSTRAT was used with default settings to 
remove population outliers and to generate 
a genotype covariance matrix [14], and closely 
related participants were removed. After these 
QC steps, 1,709 individuals and 750,173 autosomal 
markers from the Affymetrix GeneChip 6.0 plat
form, and 382 individuals and 627,742 autosomal 
markers from the Illumina OmniQuad Express 
platform were used for imputation. Dosages for 
SNPs (>35 million) were imputed on the haplo
type reference consortium (HRC) panel. Analyses 
filtered SNPs based on minor allele frequency 
(MAF) > 0.01 and imputation INFO score > 0.3. 
This yielded 11,507,242 SNPs for analysis.

For BDR participants, DNA was extracted from 
brain tissue, and the NeuroChip was used, a custom 
Illumina genotyping array with an extensive gen
ome-wide backbone (n = 306,670 variants) and 
a custom content covering 179,467 variants specific 
to neurological diseases [15]. The quality control of 
the NeuroChip was completed in GenomeStudio 
(version 2.0, Illumina) and PLINK v1.9 [12]. 
Manual curation of SNP clustering performed by 
Genome Studio algorithms was conducted on all 
SNPs. SNPs with ambiguous clustering of the three 
genotypes were removed. Likewise, individual sam
ple signals which lie ambiguously between genotype 
clusters were also removed. Average GenTrain score, 
cluster separation and SNP call frequency were 0.83, 
0.85 and 0.996, respectively, in the exported PLINK 
compatible files. Genotype data was aligned to the 
GRCh37/hg19 reference genome. SNPs with a minor 
allele frequency of less than 1%, had genotype calls of 
less than 95% and had control samples that signifi
cantly deviated from Hardy-Weinberg Equilibrium 
(p < 0.0001) were removed. Imputation was done 
using the 1000 Genomes Project reference panel 
and yielded 6,607,832 SNPs for analysis here.

Across the ROSMAP and BDR datasets, there 
were 5,091,857 SNPs in common.

Genome-wide association analyses

We performed GWAS on cortical clock age in 
DLPFC in ROSMAP, using linear regression 
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models with cortical clock age as the dependent 
variable and genotype as the independent vari
able; covariates included age at death, sex, 
GWAS chip, study, and the top three principal 
components derived from the genetic covariance 
matrix. Association testing was done using an 
additive model for dose. Due to our modest 
sample size, for statistical significance, we used 
a suggestive threshold of p < 10−5, as has been 
done previously [16]. We also removed SNPs if 
the beta estimate was greater than 30, as has 
been done in previous GWAS of epigenetic 
clocks [17], since such extreme values are not 
highly plausible.

We conducted a similar GWAS in the BDR data 
and meta-analysed results from ROSMAP and 
BDR, limited to the common SNPs across these 
cohorts; then, we used METAL to conduct fixed- 
effect meta-analysis combining results across the 
cohorts [18]. The larger sample size in this meta- 
analysis has important advantages in terms of the 
stability of findings. For all GWAS, we calculated 
lambda values and created Q–Q plots of the -log10 
p-values.

In sensitivity analyses, since cell proportions 
in bulk tissue can be related to aging and 
DNAm, we also considered potential confound
ing by neuron proportion. We estimated the 
neuron proportion using the CETS algorithm 
[19], which utilizes DNAm states from the 
Illumina array. We added neuron proportion as 
a covariate to our models of SNPs and cortical 
clock age. In additional sensitivity analyses, we 
controlled for seven cell-type proportions (i.e., 
inhibitory neurons, excitatory neurons, astro
cytes, endothelial cells, oligodendrocytes, oligo
dendrocyte precursor cells, microglia), using 
single-cell methylation sequencing as the refer
ence with the Houseman deconvolution algo
rithm [20]. These were sensitivity analyses 
because we have consistently found in our pre
vious DNAm research in brain tissue that con
trol for cell-type proportion does not 
meaningfully change findings [4,5,9].

Clumping analysis

To assess the independent loci associated with 
clock age, we used PLINK to clump SNPs within 

the suggestive loci (250 kb), setting the linkage 
disequilibrium (LD) r2 >0.5 as a threshold [12]. 
The SNP with the most significant relation to 
clock age within each independent locus was 
selected as the leading SNP for that locus.

Functional annotation

We used FUMA (Functional Mapping and 
Annotation of Genome-wide Association Studies) 
[21] to examine the genetic foundations of cortical 
clock age. Specifically, we utilized the FUMA 
SNP2GENE function to annotate SNPs and map 
them to their respective genes, focusing on their 
biological functions. Our approach included posi
tional mapping with a maximum distance of 10 kb 
from each SNP. We set the P-value threshold for 
lead SNPs at 10−5. Apart from these specific set
tings, we adhered to the standard configurations in 
SNP2GENE, such as an r2 threshold of 0.6 for 
identifying independent significant SNPs.

Expression quantitative trait loci (eQTL) and 
colocalization analyses

We queried eQTL data from BrainMeta [22]. This 
included eQTL mapping using RNA-seq data 
comprising 2,865 brain cortex samples obtained 
from 2,443 unrelated individuals of European 
ancestry with genome-wide SNP data. These RNA- 
seq data were sourced from seven cohorts, includ
ing ROSMAP.

In addition to considering eQTL in BrainMeta, we 
also conducted colocalization analyses to test if lead 
SNPs from either the ROSMAP GWAS or the 
ROSMAP/BDR meta-analysis could be linked to 
epigenetic age by dysregulation of gene expression. 
Specifically, we considered our GWAS hits in the 
context of the bulk RNA-Seq from cortex along 
with publicly available eQTL and splicing QTL 
(sQTL) from the Myeloid Cells in Neurodegene- 
rative Diseases (MyND) [23] and Microglia 
Genomic Atlas (MiGA) [24] datasets of gene expres
sion. For colocalization analyses, we used the 
COLOC package from Giambartolomei et al. [25], 
with default parameters. Our criteria for considering 
a signal as colocalized was posterior probability of 
0.8 or higher.
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In further analyses, we also used single nucleus 
RNA-Seq profiling available in 424 of the 
ROSMAP DLPFC specimens as a way to better 
understand possible biologic pathways [24]; this 
included eQTLs from seven cell types (astrocytes, 
endothelial cells, excitatory neurons, inhibitory 
neurons, microglia, oligodendrocytes, and oligo
dendrocyte precursor cells [OPC]). Briefly, grey 
matter was processed in batches, and 5000 nuclei 
from each batch were pooled, prepared, and 
sequenced using either Illumina HiSeqX at the 
Broad Institute’s Genomics Platform or Illumina 
NovaSeq 6000 at the New York Genome Center, 
with a target coverage of 1 million reads per chan
nel [26,27]. The data were first processed using the 
CellRanger software (v6.0.0; 10× Genomics) and 
quality controlled. Each nucleus was assigned back 
to its participants based on its genotypes. Cell 
types of nuclei were determined, and pseudo- 
bulk matrices were created by summing counts 
per individual. Within each cell type, genes with 
CPM > 1 in 80% of samples were retained and 
normalized using tmm.voom.

Finally, we also considered colocalization across 
the GWAS results for lead SNPs with seven cell 
types from the ROSMAP snRNA-Seq to identify 
common causal variants for cortical clock age and 
cell-type gene expression.

Functional enrichment analyses

We used the platform snpXplorer to conduct func
tional analyses [28]. This included GO enrichment 
of biological processes and KEGG pathways, as well 
as an examination of any overlap of the SNPs and 
genes identified in our GWAS with previous asso
ciations reported in the GWAS catalog. We con
ducted two separate sets of functional analyses, one 
for the results of the ROSMAP GWAS and one for 
the meta-analysis of ROSMAP and BDR.

Analyses of aging phenotypes

As an additional approach to understand how 
SNPs of interest was related to function, we also 
examined the lead SNPs in relation to aging phe
notypes available in ROSMAP. We first considered 
common postmortem neuropathologies, available 
in 1723 participants who also had SNP array data. 

Due to the broad range of SNP frequencies, 
including some with fairly low prevalence, we 
focused on the most common neuropathologies. 
This included AD pathologies (global Alzheimer’s 
disease pathology burden, amyloid-β load, PHFtau 
tangle density) and cerebrovascular pathologies 
(atherosclerosis and arteriolosclerosis, the two 
most common cerebrovascular pathologies in the 
ROSMAP cohorts); these neuropathologies are 
described in detail elsewhere [5,29]. In addition 
to neuropathologies, we also examined lead SNPs 
in relation to key clinical phenotypes, available in 
1885 participants from annual clinical assessments 
prior to death; this included two cognitive pheno
types and two motor phenotypes, described in 
detail elsewhere [5]. Specifically, we examined the 
following: (i) global cognitive function at cohort 
baseline (the average of 17 cognitive tasks, such 
that higher scores represent better function), and 
slopes of cognitive decline from baseline to death; 
(ii) diagnosis of dementia as of death; (iii) motor 
function at baseline and over time (a combined 
score across 10 tests, such as grip strength and 
timed walking, such that higher scores represent 
better function); and (iv) Parkinsonian signs (the 
average of four domains of the 26-item modified 
United Parkinson’s Disease Rating Scale: bradyki
nesia, gait, rigidity, tremor, such that higher scores 
represent worse function).

Finally, we also had data available on proteins in 
DLPFC among 849 participants. Thus, as a further 
way to confirm functionality, we examined rela
tions of relevant proteins to these same aging 
phenotypes (using similar methods as described 
above). Specifically, based on the gene annotation 
described above, we identified corresponding pro
teins for the leading SNPs, when available. The 
proteins were measured using a multiplex mass 
spectrometry-based proteomics approach with 
tandem mass tag (TMTs) to analyse frozen tissue 
samples in the DLPFC. Briefly, 100 mg frozen sec
tions were thawed on ice, with the grey matter 
dissected from the white matter, as previously 
described in detail [30]. Details of the mass spec
trometry – based proteomics, database searches, 
and quality control have been previously described 
[30]. To summarize, the samples were homoge
nized, and the protein concentration was deter
mined. After protein digestion, isobaric TMT 
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peptide labelling and high pH fractionation were 
performed. Fractions were then analysed by liquid 
chromatography-mass spectrometry. The resulting 
mass spectrometry spectra were searched against 
the UniProt human protein database, with indivi
dual protein abundance checked against the global 
internal standard. An additional data process 
included regressing out technical confounders. 
A total of 8425 proteins passed the final quality 
control.

In all these analyses of aging phenotypes, for 
continuous phenotypes measured at death (e.g., 
global AD pathology), we used linear regression 
models; for continuous phenotypes measured 
repeatedly over time (e.g., global cognition), we 
used generalized linear mixed models. For cate
gorical phenotypes (e.g., atherosclerosis severity, 
dementia diagnosis as of death), we used logistic 
regression models. All models controlled for age 
at death, sex, education, and cohort.

A flow chart summarizing our overall analytic 
approach is presented in Figure 1.

Data availability

ROSMAP resources can be requested at https:// 
www.radc.rush.edu and www.synapse.org.

The BDR DNA methylation data have been depos
ited in the Dementias Platform UK (DPUK) data 
portal (https://portal.dementiasplatform.uk/ 
CohortDirectory/Item?fingerPrintID=BDR) and the 
Gene Expression Omnibus (GEO) at accession num
ber GSE197305.

Results

The 694 ROSMAP participants included in our 
GWAS had a mean age at death of 88 y; the mean 
cortical clock age was 86.5 (SD 6.7) y, slightly 
younger than the chronological age (Table 1). 

Figure 1. Flowchart of study design.
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Approximately one-third of the ROSMAP sample 
was male, and participants were split fairly evenly 
across the ROS and MAP cohorts. Mean education 
was 16 y. Approximately 50% had pathologic AD, 
while 60% had clinical diagnosis of dementia as of 
death. The BDR cohort (n = 522) had a mean age at 
death of 83 (SD 9.0) y, and the mean cortical clock 
age was 84 y. Approximately half of the cohort was 
male, and mean education was approximately 13 y. 
Nearly half of the participants had pathologic AD, 
and about 60% had clinical dementia.

GWAS of cortical clock age

In our primary analyses, we used fixed-effect 
meta-analysis to combine the ROSMAP and BDR 
GWAS results, limited to the 5 million SNPs 
which were common after imputation to the 
Affymetrix GeneChip 6.0 and Illumina 
OmniQuad Express chip (from ROSMAP) as well 
as the NeuroChip custom array from BDR. We 
found 110 SNPs which met our suggestive criteria 
for statistical significance of p < 10−5 (Figure 2 and 
eTable 1). We found no evidence of genomic infla
tion for this meta-analysis (eFigure 1). After 
excluding SNPs based on the frequency of effect 
allele, there were 13 independent loci; Table 2 lists 
the 13 leading SNPs. The strongest association was 
for rs4244620 (p = 1.29 × 10−7) on chromosome 1, 
which was annotated with the gene CD46. CD46 
gene encodes a type 1 membrane protein, which 
protects host cells from injury by complement and 
modulates T-cell activation [31].

In secondary analyses of our GWAS of cortical 
clock age in ROSMAP specimens, with a larger 

number of SNPs than available for the meta- 
analysis, we identified 304 SNPs meeting our pre
defined criteria for suggestive statistical significance 
(p < 10−5) (Figure 2 and eTable 2). We found no 
evidence of genomic inflation (eFigure 1). After 
excluding SNPs with effect allele frequency less 
than 5%, we identified ‘leading’ SNPs from 24 
independent loci. Table 3 shows the 24 lead SNPs 
with the highest statistical significance for each 
independent loci. The top SNP was rs4721030, 
which was close to genome-wide significant (p =  
8.64 × 10−8). This SNP was annotated with two 
nearby genes, TMEM106B (transmembrane protein 
106B) and THSD7A (thrombospondin type 1 
domain containing 7A) on chromosome 7. 
TMEM106B gene appears to be a key regulator of 
aging, including influences on microglial prolifera
tion and survival and involvement in myelination 
and lysosomal pathways [32]. TMEM106B has been 
previously associated with Alzheimer’s dementia 
and other neurodegenerative phenotypes in multi
ple studies (i.e., TDP-43 proteinopathy, brain 
inflammation, and amyloid deposition in the 
brain) [30,32–37]; further, our own previous 
research in ROSMAP has found links of 
TMEM106B with LATE-NC and worse cognitive 
resilience to neuropathology [16,38].

Most importantly, several SNPs were identified 
both in ROSMAP and in the meta-analysis of 
ROSMAP/BDR, suggesting consistent findings 
across the cohorts. In particular, rs4244620, was 
a leading SNP in both, including the strongest asso
ciation in the meta-analysis. In addition, both sets of 
analyses pointed to rs34403329 on chromosome 8 
(p = 2.48 × 10−6), which was annotated with two 

Table 1. Characteristics of study cohorts.

Characteristic

Religious Orders Study/Rush Memory  
and Aging Project (n = 694) 

Mean (SD) or %

Brains for Dementia Research  
(n = 522) 

Mean (SD) or %

Mean age at death 88.1 (6.7) 83.4 (9.0)
Mean cortical clock age 86.5 (6.0) 84.0 (7.2)
Male 37% 53%
Mean years education 16.4 (3.6) 12.5 (3.5)*
Memory and Aging Project 46% n/a
Religious Orders Study 54% n/a
Pathologic Alzheimer’s disease 62% 43%
Clinical dementia 58% 59%*

*Educational attainment was reported by 369 participants in the Brains for Dementia Research cohort, and clinical dementia status was 
known in 443 participants. 
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nearby genes, NAT1 (N-acetyltransferase 1) and 
ASAH1 (N-acylsphingosine amidohydrolase 1), and 
rs1318000 on chromosome 5 (p = 1.66 × 10−6), 
which was annotated to the gene PARP8 (poly 
[ADP ribose] polymerase family member 8). (Note: 

The SNP with the strongest p-value from the GWAS 
of ROSMAP, rs4721030, was not in the BDR data 
and thus was not be tested in the meta-analysis.)

In sensitivity analyses, in models controlling for 
neuron proportion, we did not find any 

Figure 2. Manhattan plot: GWAS of cortical clock age for ROSMAP and Meta-analysis of ROSMAP/BDR.
* In the top panel, Manhattan plot shows the Cortical Epigenetic Clock GWAS results for ROSMAP. The bottom panel shows the 
GWAS results for the meta-analysis combining ROSMAP and BDR. Dashed red line represents a suggestive threshold of p = 10−5. The 
solid-line represents the genome-wide significance level of p = 5 × 10−8. Labels show the closest genes to GWAS lead SNPs with 
MAF >5%. 
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meaningful differences in the relations of leading 
SNPs to cortical clock age (eTable 3). Results were 
also largely consistent with analyses controlled for 
seven different cell-type proportions (eTable 4), 
which were estimated using single-cell methylation 
sequencing as the reference.

Expression quantitative trait loci (eQTL)

Next, we leveraged expression QTLs derived from 
bulk RNA-Seq data in 2,865 cortex specimens from 
BrainMeta, to examine the leading SNPs in meta- 
analysis and in ROSMAP GWAS (Figure 3a). In the 
13 lead SNPs from the ROSMAP/BDR meta-analysis, 
we found that five SNPs (rs4844620, rs17187637, 
rs4979892, rs4253425, rs836815) exhibited an FDR- 
significant cis-eQTL effect (Figure 3a) in 8 transcripts 
in the ROSMAP bulk transcriptomic data. From the 
leading SNPs in ROSMAP, we found that five SNPs 
(rs4844620, rs6752755, rs7032313, rs12386903, 
rs3788369) exhibited an FDR-significant cis-eQTL 
effect in five transcripts (CD46, OLA1, PAX5, ASAH, 
ADORA2A) (Figure 3a). Overall, transcripts included 

genes involved in a range of pathways, including 
inflammation and immune response (CD46, [31] 
PAX5, [39] ADORA2A [40], energetics (OLA1 [41]), 
signal transduction (DLG5 [42]), clotting (F11 [43]) 
and DNA repair (MSH3 [44]).

We also examined eQTLs in seven cell types from 
the single nucleus RNA-Seq in ROSMAP cortex 
(Figure 3b and eTable 5). Most interestingly, we 
found that rs4844620 exhibited significant eQTL effects 
for CD46 gene expression in six cell types, such that 
each additional effect allele was associated with lower 
CD46 expression (Figure 3b). The strongest associa
tions were observed in oligodendrocyte precursor cells 
(p = 4.95 × 10−33) and in oligodendrocytes (p = 3.32 × 
10−46). For the SNPs from the ROSMAP/BDR meta- 
analysis, there were no further significant single nucleus 
eQTLs beyond those for rs4844620.

Colocalization across clock age and quantitative 
trait loci

To better evaluate whether lead SNPs may be 
associated with both clock age as well as gene 

Table 2. Leading SNPs from GWAS of cortical clock: meta-analysis of ROSMAP and BDR.

Chr:pos
Effect 
allele

Non- 
effect EAF beta p-value

Gene 
annotation

Rs4844620 1:207980901 A G 0.12 0.886 1.29E-07 CD46 Membrane cofactor 9, protects injury by complement, 
modulates T cell activation. inflammatory disorders, 
cancers

rs17187636 2:166309615 A G 0.08 1.266 1.17E-06 CSRNP3, 
GALNT3, 

FIGN

CSRNP3: DNA-binding transcription factor, apoptotic 
processes and transcriptional activity, related to 
education, bone density 

GALNT3: oligosaccharide biosynthesis, phosphate 
homeostasis 
FIGN: microtubule organization, locomotion, neuropathy

rs17743504 17:10080837 A T 0.12 1.008 1.47E-06 GAS7 In purkinje neurons, intraocular pressure, glaucoma
Rs34403329 8:18029698 A G 0.35 −0.826 2.48E-06 NAT1 Folate catabolism, bladder cancer, urate, depression, blood 

pressure
Rs13180000 5:50132506 A T 0.22 −0.825 1.66E-06 PARP8 Protein ADP-ribosylase activity, diabetes, complement 

component C6
rs9557340 13:100580750 A G 0.32 0.713 2.97E-06 CLYBL Mitochondrial enzyme, regulation of cobalamin metabolic 

process, vitamin B12 levels
rs2593685 11:22391419 T C 0.41 0.671 3.65E-06 SLC17A6 Neurotransmitter transporter, synaptic activity
rs4979892 10:79341734 T C 0.46 −0.626 6.39E-06 KCNMA1 

DLG5
KCNMA1: potassium channel, smooth muscle contraction, 

neurotransmitter release, neuron excitability, epilepsy 
DLG5: cell scaffolding, cell proliferation, dendritic spine 

formation, synaptogenesis
rs4253425 4:187205929 A C 0.10 0.959 6.56E-06 F11 

CYP4V2 
KLKB1

F11: coagulation factor XI, clotting, VTE, TPA levels

rs836815 5:79995116 A G 0.30 −0.679 7.52E-06 MSH3 DNA repair, cortical thickness, huntington disease, 
endometrial cancer

rs13105396 4:17047358 T C 0.06 1.445 7.79E-06 CPB2 Hydrolyze c-terminal peptide bonds, downregulates 
fibrinolysis, complement cascade, thrombosis

rs79932664 21:43779709 T C 0.09 1.038 7.87E-06 TFF1 Secretory protein
rs17111206 1:94646439 A G 0.06 1.321 9.39E-06 ARHGAP29 Rho GTPase signaling, cleft palate
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expression, we examined colocalization for the 
lead SNPs and five different QTL datasets 
(Figure 3c), with a focus on immune systems: 
eQTL from our ROSMAP DLPFC and eQTL and 
sQTL from MyND (sorted monocytes) and MiGA 
(microglia). We found that rs4844620 (posterior 
probability > 0.8) colocalized across clock age, 
CD46 eQTL in ROSMAP brain tissue as well as 
CD46 sQTL in both monocytes and microglia. 
This suggests that rs4844620 is a common causal 
variant of clock age as well as the three different 
QTLs, providing support for a role of the CD46 
gene and immune pathways in DNA methylation 
aging in brain.

We also conducted colocalization analyses 
across our lead SNPs and the seven cell types in 
the ROSMAP single-nucleus eQTL (Figure 3c). 

We found that observed associations with cortical 
clock age and with CD46 expression in oligoden
drocytes appeared to be due to the single coloca
lizing variant rs4844620 (PP > 0.8). Thus, the 
CD46 gene with respect to oligodendrocyte biol
ogy may have particular relevance.

Functional analysis

When we used snpXplorer to examine biologic pro
cesses that may underlie cortical clock age, in the 
lead SNPs, there were no significant findings after 
correction for multiple comparisons. Nonetheless, 
two pathways were nominally significant 
(eTable 6): drug metabolism (p = 0.009) and pyrimi
dine nucleoside catabolic processes (p = 0.04).

Table 3. Leading SNPs from GWAS of cortical clock: ROSMAP.

Chr:pos
Effect 
allele

Non- 
effect EAF Beta p-value

Gene 
annotation

rs4721030 7:12137067 G T 0.09 8.728 8.64E-08 THSD7A, 
TMEM106B

THSD7A: membrane-associated N-glycoprotein, 
neurovasculature, education 

TMEM106B: microglial survival/proliferation, myelination, 
lysosomal pathwyas, neurodegeneration

rs13180000 5:50132506 A T 0.22 −0.993 8.44E-07 PARP8 See above
Rs3788369 22:24892973 G A 0.05 2.863 1.36E-06 UPB1 Pyrimidine degradation pathway
Rs11998660 8:16546686 G A 0.14 8.594 1.37E-06 FGF20 Fibroblast growth factor, mitogenesis, cell survival, 

neurotrophic factor, CNS development and function
Rs12386903 8:18000966 C G 0.35 −1.770 1.47E-06 NAT1, ASAH1 ASAH1: acid ceramidase family, innate immune system, 

sphingolipid metabolism, cell signaling, seizures
Rs4943525 13:38206239 T C 0.57 0.791 1.57E-06 TRPC4 Cation channels, endothelial permeability, vasodilation, 

neurotransmitter release, epilepsy
rs6925799 6:132467591 G A 0.27 4.489 1.60E-06 MOXD1 Dopamine catabolic process, endoplasmic reticulum 

membrane protein,
rs7032313 9:36927081 T C 0.52 −0.763 2.13E-06 PAX5 Transcription factor, B lymphocytes
rs73133134 12:76420006 T C 0.12 −1.112 2.38E-06 PHLDA1 Apoptosis, neural development, IGF-1
rs10761557 10:62523410 G A 0.29 0.800 2.49E-06 CDK1 Protein kinase complex, M phase promoting factor
rs4844620 1:207980901 A G 0.12 0.916 2.86E-06 CD46 See above
rs1343559 13:87264407 G C 0.88 −0.925 2.96E-06 SLITRK5 Membrane protein, homologous with neurotrophin 

receptors
rs77221864 7:152650529 G A 0.06 1.508 3.09E-06 ACTR3B Actin-related proteins, cytoskeleton, cell motility, 

neuropathy
rs34403329 8:18029698 A G 0.15 −0.955 3.13E-06 NAT1 See above
rs7731137 5:154005654 G T 0.57 −0.885 3.50E-06 LARP1 RNA binding protein, mTORC1 complex, growth signals, 

nutrient availability
rs11250535 10:1504987 G C 0.21 −0.858 3.61E-06 ADARB2 RNA editing enzyme, diabetes, NFT, ALS
rs9315498 13:38099921 A C 0.39 −0.736 4.27E-06 POSTN Extracellular matrix protein, tissue development and 

regeneration, asthma
rs114109920 12:50159398 A G 0.07 7.0979 4.51E-06 TMBIM6 Negative regulation of RNA metabolic processes and of 

intrinsic apoptotic signaling pathway
rs77378270 19:56229834 C T 0.07 −1.296 5.46E-06 NLRP9 Innate immune system, inflammation
rs116430246 2:158855781 T C 0.08 1.881 5.47E-06 UPP2 Cleavage of uridine and deoxyuridine to uracil and ribose
rs1596489 6:92915192 T G 0.16 −0.951 5.95E-06 EPHA7 Protein tyrosine kinase family, axon guidance, brain 

development, cancers
rs6752755 2:175093901 G C 0.15 0.882 7.42E-06 OLA1 GTPase protein family, Cancer (breast and ovarian)
rs55639005 8:74628306 C T 0.12 −0.920 8.12E-06 STAU2 dsDNA binding protein, transport of neuronal RNA from 

cell body to dendrite
rs10812360 9:26190219 C T 0.55 −0.737 8.56E-06 LOC100506422
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Figure 3. Expression quantitative trait Loci** in panel a, Heatmap show the GWAS lead SNPs that are FDR significant eQTL in bulk 
brain RNAseq (BrainMeta), and sn-RNAseq cell specific eQTL. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. The strongest relation of SNP to 
expression level was identified for rs4844620 with CD46. In panel b, we show CD46 expression levels across genotypes of rs4844620 
in 7 cell types from ROSMAP single nucleus RNAseq. This was the strongest finding for the snRnaseq results. In panel c, 
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With snpXplorer, we also identified SNPs and 
genes that overlapped with previous GWAS asso
ciation studies. We found that rs4844620 was 
reported in previous GWAS of age-related macular 
degeneration. In addition, several genes from our 
GWAS were previously related to type 2 diabetes 
and to waist circumference, as well as to depres
sion and cognitive function. These results may 
suggest that metabolism or metabolic dysregula
tion underlie DNA methylation age in brain.

Aging phenotypes

In our last steps, to help identify clinical relevance, 
we examined if each leading SNP was associated 
with aging phenotypes measured in the ROSMAP 
cohorts, after controlling for age at death, sex, 
education, and cohort (eTable 7). It is difficult to 
determine appropriate correction for multiple 
comparisons, since many of these aging outcomes 
are correlated with each other; we considered 
nominally significant findings for any phenotype 
(Figure 4a) and focus here on the strongest results. 
Perhaps most interesting, rs4844620 (which was 
identified in the ROSMAP GWAS, the ROSMAP/ 
BDR meta-analysis, and exhibited cis-eQTL effects 
for CD46 in the bulk RNA-Seq and snRNA-Seq, as 
described above), was associated with lower level 
of baseline cognition (β=-0.10, p = 0.030), faster 
slopes of cognitive decline (β=-0.01, p = 0.007), 
and with greater level of Parkinsonian signs at 
baseline (β = 0.11, p = 0.04), indicating pleiotropic 
relations with cognitive and motor phenotypes. 
Among additional leading SNPs, rs9557340 was 
related to multiple neuropathologies and to cogni
tion. Specifically, this SNP was associated with 
higher global AD pathologic burden (β = 0.04, 
p = 0.0047), greater β-amyloid load (β = 0.007, 
p = 0.014), greater tau tangle density (β = 0.11, 
p = 0.0022), higher odds of dementia (odds ratio  
= 1.17, p = 0.016), and to faster slopes of cognitive 
decline (β=-0.10, p = 0.014).

Finally, using available proteomics data in over 800 
ROSMAP participants, we were able to select 14 proteins 
measured in DLPFC (ACTR3B, ASAH1, CD46, 
EPHA7, LARP1, MOXD1, OLA1, NAT1, SLITRK5, 
POSTN, STAU2, TMEM106B, THSD7A, TMBIM6), 
which corresponded to annotated genes or eQTLs for 
lead SNPs in our GWAS. We examined the relation of 
these 14 proteins with neuropathologies, cognitive, and 
motor phenotypes, after controlling for age at death, sex, 
education, and cohort (eTable 8). Again, we considered 
any nominally significant relation of protein level to 
phenotypes, and focus here on the strongest findings 
(Figure 4B). Notably, our GWAS SNP rs4721030 on 
chromosome 7 was annotated with two genes, 
TMEM106B and THSD7A; we found broad relations 
of both proteins to most of the aging phenotypes we 
examined. In particular, TMEM106B protein levels 
were strongly related to odds of dementia (p =  
0.0004) and lower level of cognitive function at base
line (p = 0.007), as well as to worse motor function 
(motor function at baseline, p = 0.001; slopes of 
decline, p < 10−5) and more Parkinsonian signs 
(baseline, p = 0.01; slopes, p < 10−5). THSD7A pro
tein levels were strongly to greater global AD pathol
ogy, to greater amyloid-β load and PHFtau tangle 
density (all p < 10−5), as well as to lower level of 
cognitive function at baseline (p = 0.007) and faster 
slopes of cognitive decline (p = 0.001).

Discussion

We conducted a GWAS of cortical epigenetic 
clock age calculated in brain tissue, among 1,340 
older, deceased participants from three cohorts; we 
further leveraged transcriptomic, proteomic, and 
phenotypic data from participants, as well as pub
licly available data, to identify converging evidence 
of genes underlying cortical epigenetic clock age. 
In particular, our results supported several genes, 
especially CD46, as candidates of interest with 
potentially broad roles in cortical clock age.

Several previous studies have also conducted 
GWAS of epigenetic clocks in both peripheral 

colocalization analyses demonstrate the likelihood that a SNP is causal for both cortical clock age and for expression levels. The value 
to the right of each point is the posterior probability (PP) that the SNP is related to clock age and to the QTL; PP > 0.8 is standardly 
considered as high likelihood the SNP is causal for both traits. ROSMAP eQTL are from frontal cortex; MiGA are from primary 
monocytes; MyND are primary microglia; single cell eQTL are from ROSMAP frontal cortex.
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blood and brain tissue [45–48]. Consistent with 
our findings, the largest GWAS of five clocks, 
calculated in blood samples (n = 40,000),45 prior
itized CD46 as a possible determinant of epigenetic 

age from the Horvath clock. Additionally, CLYBL 
(Citramalyl-CoA Lyase) was prioritized as 
a predictor of the PhenoAge clock; we found that 
a loci (rs9557340) in the CLYBL gene was related 

Figure 4. Relations of SNPs and cortical proteins to aging Phenotypes**, panel a: we show relations of leading SNPs to aging 
phenotypes, for SNPs with nominally significant relations with phenotypes. For continuous outcomes, we show mean differences 
from linear or linear mixed effects models; for categorical outcomes, we show odds ratios from logistic regression models. All models 
controlled for age at death, sex, and education. Of particular interest here, rs4844620 was related to lower baseline cognition 
(p = 0.031), steeper slopes of cognitive decline over time (p = 0.007), higher baseline levels of Parkinsonian signs (p = 0.046). 
Additionally, rs9557340 was related to more global AD neuropathology (p = 0.0047), more amyloid-β load (p = 0.014), greater 
PHFtau tangle density (p = 0.0022), lower baseline cognition (p = 0.014) and higher odds of dementia (p = 0.0038). panel b: we were 
able to examine protein levels in frontal cortex, based on annotated genes in our GWAS (14 genes of interest had corresponding 
protein levels in our proteomics data). We show here results for proteins which reached nominal significance for phenotypes. Of 
particular interest here, higher levels of the protein THSD7A in prefrontal cortex were related to more global AD pathology 
(p < 10−5), more amyloid-β load (p < 10−5), greater PHFtau tangle density (p < 10−5), lower baseline cognition (p = 0.007), steeper 
slopes of cognitive decline (p = 0.001) and higher odds of dementia (p = 0.046). Higher levels of TMEM106B protein were related to 
greater PHFtau tangle density (p = 0.03), more parkinsonism at baseline (p = 0.01) and steeper slopes over time (p = 0.0001), lower 
motor function at baseline (p = 0.001) and steeper slopes (p < 10−5), lower baseline cognition (p = 0.007), steeper slopes of cognitive 
decline (p = 0.04) and higher odds of dementia (p = 0.0004). Solid colors indicate significant association.
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to cortical clock age and was strongly related 
to AD neuropathologies and to cognition – sug
gesting clinical relevance of CLYBL gene to brain 
aging. However, in a GWAS (n = 1100) of the 
Horvath clock in brain tissue (which included 
some of our ROSMAP participants) [47], there 
was no overlap of their primary findings in pre
frontal cortex with ours for the cortical clock; 
these samples spanned a much wider age range 
than ours, and there may be differences in genetic 
correlates of aging at different ages. Nonetheless, 
overall, there is some evidence that specific genes 
may have systemic effects on biologic aging.

In terms of our own findings, CD46 gene 
encodes the membrane cofactor protein, an ubi
quitously expressed complement regulatory pro
tein. CD46 protects host cells from injury by 
complement and appears to link innate and adap
tive immune responses. The complement system 
regulates central nervous system function, and 
complement-mediated neuroinflammation may 
be involved in a range of aging-related neurode
generative disorders, from cognitive impairment 
to age-related macular degeneration [49]. Other 
genes in the complement system are strongly 
related to dementia, including CR1, C1S, CD33, 
and TREM2; interestingly, CR1, a well-established 
genetic risk factor for dementia, is a receptor for 
complement C3b and C4b proteins, and CD46 
mediates inactivation of C3b and C4b, pointing 
to potential mechanistic pathways [50]. Further, 
in our results, rs4844620 appeared to be 
a common causal SNP across epigenetic age and 
eQTLs for CD46 in cortex tissue, as well as in 
primary monocytes and microglial samples, sup
porting the role of CD46 in immune response in 
the brain. In addition, our single nucleus data 
from DLPFC further identified eQTL effects for 
CD46 in oligodendrocytes, and colocalization of 
this SNP with epigenetic age and CD46 expression 
in oligodendrocytes. This may support recent data 
that oligodendrocytes could have immunomodu
latory properties [51]. Overall, there is compelling 
evidence, from our study and others, to support 
CD46 as a target for further research.

In additional results from the GWAS of 
ROSMAP alone, the strongest loci in relation to 
clock age in our GWAS was rs4721030 on chro
mosome 7, which was associated with older 

epigenetic age, and nearly reached genome-wide 
significance. We note that the beta value we found 
for this SNP in relation to clock age was 8.7, which 
is much larger than many of our other findings, 
indicating more caution is warranted in interpret
ing this result. For context, the mean beta value in 
our 304 SNPs of interest in ROSMAP was 2.6 (SD 
2.5); that is, the beta for rs4721030 was 2.4 stan
dard deviations greater than the mean beta in our 
research here, which is large although not an 
extreme outlier. Further, we could not examine 
this SNP in the meta-analysis, since it was not 
present in the BDR data, even after imputation, 
likely due to the highly specialized array used by 
BDR. For these reasons, this finding should be 
carefully considered and interpreted cautiously. 
Nonetheless, the SNP was annotated with two 
genes, TMEM106B and THSD7A. Previous work 
has implicated the TMEM106B gene in neurode
generative phenotypes, especially TDP-43 pathol
ogy [38]. THSD7A is a soluble form of membrane- 
associated N-glycoprotein, produced by cells of 
endothelial and neuronal origin. In zebrafish, 
THSD7A may have a role in the neurovasculature 
[52], and THSD7A has been related to educational 
attainment [53]; in recent research using GWAS 
summary statistics, TMEM106B/THSD7A were 
reported as pleiotropically related to dementia 
and major depression disorder [54]. Interestingly, 
we found associations of higher THSD7A/ 
TMEM106B protein levels in ROSMAP DLPFC 
with a wide array of aging phenotypes, from AD 
pathologies to lower cognitive function to worse 
motor function. Thus, our findings in GWAS as 
well as in cortical protein levels, together with the 
existing literature, may suggest that TMEM106B 
and THSD7A have relevance to brain aging.

There are substantial strengths to our work here. 
We assembled a sample of older individuals for this 
GWAS of cortical clock age; the uniform older ages 
of participants may be particularly important for 
evaluating the genetic architecture of cortical clock 
age, as there is substantial evidence that epigenetic 
clocks function differently at older than at younger 
ages [3,6]. We also had available a wide array of 
genomic and phenotypic data; this enabled us to 
validate and prioritize genes of interest despite the 
absence of a replication dataset. Limitations of our 
study should also be considered. Most importantly, 
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our sample size was small for detecting genome-wide 
significant findings. However, many SNPs achieved 
a predetermined, ‘suggestive’ threshold of 10−5, 
which we [16] and others [55] have previously 
used. Further, to prioritize candidate loci, we were 
able to validate results with a range of additional 
information, from gene expression (both bulk and 
single-cell expression) to protein levels in brain tis
sue and evaluation of neuropathologic and clinical 
aging phenotypes. Thus, we were able to confirm 
findings via multiple lines of converging evidence. 
Nonetheless, we likely missed important SNPs which 
did not meet even our suggestive threshold. Second, 
the DNAm states as well as the transcriptomic and 
proteomic data were all derived from cortex. Thus, 
we may have missed genes that are primarily relevant 
in other brain regions. However, we focus on DLPFC 
given its critical role in a wide range of higher order 
human behaviour; additionally, evidence suggests 
a good correlation of epigenetic age across brain 
regions [4,47]. Finally, another limitation is our pri
marily non-Latino white participants, across all three 
cohorts. Evidence indicates that neurodegenerative 
diseases of aging, such as dementia, differ across 
diverse groups; for example, older African 
Americans appear to have higher risk of dementia, 
and Latinx individuals appear to develop dementia at 
younger ages, than non-Hispanic whites. [56,57]. 
Thus, future research is clearly needed in minori
tized older participants to better understand brain 
aging in groups who often have worse health.
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