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A B S T R A C T

Background and objectives: After a concussion diagnosis, the most important issue for patients and loved ones is
how long it will take them to recover. The main objective of this study is to develop a prognostic model of
concussion recovery. This model would benefit many patients worldwide, allowing for early treatment
intervention.
Methods: The Concussion Assessment, Research and Education (CARE) consortium study enrolled collegiate
athletes from 30 sites (NCAA athletic departments and US Department of Defense service academies), 4 of which
participated in the Advanced Research Core, which included diffusion-weighted MRI (dMRI) data collection. We
analyzed the dMRI data of 51 injuries of concussed athletes scanned within 48 h of injury. All athletes were
cleared to return-to-play by the local medical staff following a standardized, graduated protocol. The primary
outcome measure is days to clearance of unrestricted return-to-play. Injuries were divided into early (return-to-
play < 28 days) and late (return-to-play >= 28 days) recovery based on the return-to-play clinical records. The
late recovery group meets the standard definition of Persisting Post-Concussion Symptoms (PPCS). Data were
processed using automated, state-of-the-art, rigorous methods for reproducible data processing using brainlife.io.
All processed data derivatives are made available at https://brainlife.io/project/63b2ecb0daffe2c2407ee3c5/dat
aset. The microstructural properties of 47 major white matter tracts, 5 callosal, 15 subcortical, and 148 cortical
structures were mapped. Fractional Anisotropy (FA) and Mean Diffusivity (MD) were estimated for each tract and
structure. Correlation analysis and Receiver Operator Characteristic (ROC) analysis were then performed to
assess the association between the microstructural properties and return-to-play. Finally, a Logistic Regression
binary classifier (LR-BC) was used to classify the injuries between the two recovery groups.
Results: The mean FA across all white matter volume was negatively correlated with return-to-play (r = − 0.38, p
= 0.00001). No significant association between mean MD and return-to-play was found, neither for FA nor MD
for any other structure. The mean FA of 47 white matter tracts was negatively correlated with return-to-play (rμ
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= − 0.27; rσ = 0.08; rmin = − 0.1; rmax = − 0.43). Across all tracts, a large mean ROC Area Under the Curve
(AUCFA) of 0.71 ± 0.09 SD was found. The top classification performance of the LR-BC was AUC = 0.90 obtained
using the 16 statistically significant white matter tracts.
Discussion: Utilizing a free, open-source, and automated cloud-based neuroimaging pipeline and app (https://bra
inlife.io/docs/tutorial/using-clairvoy/), a prognostic model has been developed, which predicts athletes at risk
for slow recovery (PPCS) with an AUC=0.90, balanced accuracy = 0.89, sensitivity = 1.0, and specificity = 0.79.
The small number of participants in this study (51 injuries) is a significant limitation and supports the need for
future large concussion dMRI studies and focused on recovery.

1. Introduction

After a concussion diagnosis, the most important issue for patients
and loved ones is how long it will take them to recover. In collegiate and
adolescent athletes, the median recovery is 12 and 19.5 days, respec-
tively (Broglio et al., 2022; Purcell et al., 2016), but approximately 15 %
and 31 % (respectively) have still not recovered by 1 month (28 days)
(Broglio et al., 2022; Zemek et al., 2016). These athletes unfortunately
meet the 28-day definition of slow recovery, commonly referred to as
either Persistent Post Concussion Symptoms (PPCS) or Post-Concussion
Syndrome. In non-sports-medicine environments, the prevalence of
PPCS is even higher, with PPCS of 23–59 % among civilians visiting the
emergency department (Tator et al., 2016; Wäljas et al., 2015), and a
staggering 75 % at 6 months post-injury in active duty warfighters with
blast-related mild Traumatic Brain Injury (mTBI) (Walker et al., 2017).
Recovering slowly from a concussion is detrimental for all these pop-
ulations, and a clinical tool that could accurately predict PPCS would be
revolutionary in both concussion management and concussion science.

1.1. Related work

Creating a model to predict concussion recovery has been a far-
reaching goal within the field of concussion research and medicine for
over a decade. The literature can be broken down into two categories: 1)
sports-related concussion (SRC) models where the outcome measure is
return-to-play clearance, and 2) civilian emergency department (ED)
managed mTBI where the outcome measure is symptom resolution
(using the Rivermead Post-concussion Questionnaire (RPQ) or the
Glasgow Outcome Score Extended (GOSE)) at 6–12 months. The liter-
ature can be further subdivided into prognostic models limited to clin-
ical exam variables, or those that use advanced experimental
biomarkers, such as neuroimaging.

In the SRC literature, in which patients are generally young
(adolescent and young adult) and healthy (few comorbidities), recovery
is relatively fast. Broglio and colleagues (Broglio et al., 2022) report a
median of 12.8 days, with 85% of athletes cleared at 28 days. To the best
of our knowledge, there are 2 published prognostic models of SRC.
Morgan and colleagues (Morgan et al., 2015) studied SRCs in adoles-
cents at a regional concussion clinic. Using clinical variables only, their
Logistic Regression (LR) model predicting PPCS had a sensitivity of 55 %
and a specificity of 93 %. They did not publish the AUC score. The
stronger predictors in the model were history of mood disorder and
presence of delayed symptoms. Chu and colleagues (Chu et al., 2022)
applied a CatBoost model to over 600 child and adolescent concussed
athletes and were able to predict PPCS (defined as 21 days) with an
average AUC of 0.81. A companion paper to this manuscript (under
review) by Rooks and colleagues utilized the large clinical core of the
Concussion Assessment, Research and Education (CARE) dataset. They
performed a standard LR model with stepwise variable selection and
reported an AUC of 0.72, with a specificity of 11 % and sensitivity of 98
%.

In the more substantially injured civilian ED mTBI literature, where
the prevalence of PPSC at 6 months is nearly 50 % (Mikolić et al., 2021),
there has been a concerted effort to build and validate prognostic models
of recovery (Mikolić et al., 2021; Lingsma et al., 2015; Cnossen et al.,

2018). In 2015, Silverberg and colleagues (Silverberg et al., 2015)
published a systematic review outlining the lack of multiple clinical
variable prognostic models for predicting PPCS. Among the deficiencies
was the absence of validation against separate datasets. In response,
Mikolic and colleagues (Mikolić et al., 2021) identified 3 prognostic
models using 3 different datasets that predict PPCS in mTBI ED patients:
Stulemeijer and colleagues (Nijmegen) (Stulemeijer et al., 2008),
Cnossen and colleagues (TRACK-TBI Pilot) (Cnossen et al., 2017), and
Cnossen & colleagues (UPFRONT) (Cnossen et al., 2018), Mikolic and
colleagues (Mikolić et al., 2021) then tested the three models against the
CENTER-TBI dataset. They found the best prognostic PPCS models uti-
lized 2-week, post-injury symptom scores and had an AUC=0.75–0.76.
Additional machine learning studies of ED mTBI have focused on the
GOSE at 1 month, with a prevalence of not recovered (GOSE<8) of ~ 60
%. Both Falk and colleagues (Falk et al., 2021) and Bittencourt and
colleagues (Bittencourt et al., 2021) report AUCs of (0.79–0.80). Bab-
cock and colleagues (Babcock et al., 2013) followed 406 children and
adolescents who were evaluated for an mTBI/concussion in the emer-
gency department setting. In a logistic regression model, several clinical
variables were associated with PPCS (e.g. headache, age, and admission
to the hospital), but the total model had poor predictive ability
(AUC=0.66).

In summary, in both the SRC literature and the more severe mTBI ED
literature (e.g., LOC~50 %, positive CT findings ~ 20 %), clinical var-
iable models have poor prognostic capabilities (AUC=0.66–0.81). Thus,
building models using tractography and diffusion MRI metrics appears
more promising.

1.2. Current study

The National Collegiate Athletic Association and United States
Department of Defense Concussion Assessment, Research, and Educa-
tion (NCAA/DOD CARE) consortium has produced a set of unique
neuroimaging and phenotype datasets, publicly available for research
purposes. Clinical measures have been collected for thousands of in-
dividuals from diverse backgrounds and with a history of concussion,
and MRI data has been collected for hundreds. These datasets represent
the first opportunity of its kind to investigate critical questions about the
pathophysiology and etiology of sports-related concussion. In particular,
diffusion tensor analysis has recently started to be used to evaluate
microstructural changes after a concussion (Mustafi et al., 2018; Wu
et al., 2020; Palacios et al., 2022). This is especially the case as a recent
report (Wu et al., 2020) demonstrated an association between diffusion
MRI metrics and recovery time (return-to-play).

Using a CARE cohort of 51 injuries diagnosed with sports-related
concussion and for whom anatomical (T1w), diffusion-weighted MRI
(dMRI) and return to play (RTP) data were collected within 24–48 h post
injury, the main aim of this study was to build a prognostic model of
concussion recovery by leveraging microstructural properties of the
brain. To achieve this, data were processed and analyzed using brainlife.
io, the BRAIN Initiative free and secure cloud computing platform for
scientific transparency and rigor (Hayashi et al., 2024). Microstructural
properties were then extracted from the major brain structures,
including subcortical structures, deep white matter tracts, and cortical
areas to evaluate whether they were associated with the athletes’
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recovery time. Finally, white matter tract features were used to classify
individuals at risk for slow recovery (PPCS).

2. Materials and Methods

2.1. Study Participants, data source and data preprocessing

All participants provided informed consent approved by the Medical
College of Wisconsin and Human Research Protection Office.

2.1.1. Study participants
This study began with 106 injuries which were acquired within 48 h

and contained both a T1 and dMRI scan (see consort Fig. 1). Thirty three
injury scans originated from a GE scanner but were not used in the an-
alyses because the intensity values of derivative data were a factor of 2
smaller than intensity values coming from a Siemens scanner, making
them not comparable. Seventy three injury scans originated on Siemens
scanners and were used for further analysis. The 73 injuries belonged to
64 unique athletes (7 with 2 injuries and 2 with 3 injuries), of whom 10
were female and the mean age was 18.85 (±0.85 years). Return-to-play,
defined as the time interval between the injury and unrestricted return
to play, was the primary outcome measure. Twenty-six injuries had
missing return-to-play values, hence the correlation analysis was limited
to 47 injuries (of whom 8 were female). Missing return to play time
points occurs for many reasons, including athletic season ends, athlete
transfers, athlete quitting the team, season ending, additional injury (e.
g. concussion and torn anterior cruciate ligament), other reasons (e.g.
the player is lost to follow-up). Injuries were divided into two groups
based on their return-to-play: Early recovery: return-to-play < 28 days,
and Late recovery: return-to-play >= 28 days. Given this definition, the
number of late recovery injuries was 5. However, since 4 injuries with
missing return-to-play had a time to asymptomatic >= 28 days, they
were added to the Late recovery group, increasing it to 9. See eTable 1 for

the demographics table.

2.1.2. Data source
The CARE dataset, sponsored by the National Collegiate Athletic

Association (NCAA) and U.S. Department of Defense (DoD), is the
largest concussion database of its kind, comprising data from cadets and
NCAA student-athletes. The portion of the CARE dataset used in this
study is the first release (CARE 1.0), collected between 2014 and 2018
(Broglio et al., 2017). Participants with diffusion MRI data were
recruited from three Advanced Research Core (ARC) sites: Virginia Tech
(VT), University of North Carolina (UNC), and University of California
Los Angeles (UCLA).

A cutting edge Magnetic Resonance Imaging (MRI) protocol was
applied with the goal of identifying advanced biomarkers of concussion.
Imaging standardization and quality-control procedures were ensured to
enable study and comparison of diverse types of concussion and mTBI
(Broglio et al., 2017). T1- weighted images were acquired on a 3 T
Siemens using a 3D Magnetization Prepared Rapid Gradient Echo (3D
MP-RAGE) acquisition, with isotropic resolution of 1 mm. The diffusion
scans were acquired on Siemens MAGNETOM 3 T Prisma (UNC and
UCLA) or 3 T Tim Trio (VT, UNC, and UCLA) scanners across the three
ARC sites. 30 directions at b-value of 1000 s/mm2 and 8 b0 (b-value =

0 s/mm2) were acquired (one b0 volumewith a reversed phase-encoding
direction). Other MRI parameters were echo time/repetition time = 98/
7900 ms, field of view = 243 mm, matrix size = 90 ⋅ 90, whole-brain
coverage = 60 slices, slice thickness = 2.7 mm, and isotropic resolu-
tion = 2.7 mm. No obvious outliers that require advanced data
harmonization approaches were observed (Mustafi et al., 2018). Further
details about quality assurance procedures are available in previous
works (Broglio et al., 2017; Nencka et al., 2018). The T1 images were
rigorously examined for lesions and abnormalities by our group. No
abnormalities were found.

Fig. 1. Consort diagram of injury selection.

G. Bertò et al.
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2.1.3. Data preprocessing
A fully reproducible neuroimaging sequence of data preprocessing

via cloud services (Apps) was implemented on brainlife.io. Table 1.
Reports the individual Apps components of the pipeline. Quality check
was performed automatically, semi-automatically, or manually after
each step.

2.1.3.1. Neuroimaging data preprocessing. An initial data preprocessing
was performed by the ARC neuroimaging team to ensure best practices
for quality assurance and image data analysis. For a detailed description
of the initial preprocessing procedure, please refer to (Broglio et al.,
2017).

From our side, preprocessing was performed using QSIPrep 0.15.3
(Cieslak et al., 2021), which is based on Nipype 1.7.0 (Gorgolewski et al.,
2011); (Gorgolewski et al., 2018); RRID:SCR_002502). The brainlife.io
App “QSIPrep – preprocessing workflow” was used for this step (brain-
life.app.246). A comprehensive description of the anatomical and
diffusion data preprocessing, as automatically generated by the QSIPrep
software to promote reproducibility, is described in sections Anatomical
data preprocessing and Diffusion data preprocessing of the eMethods.

HTML reports as automatically generated by QSIPrep were examined
for each participant. No errors were reported. Additionally, after every
step of the pipeline, the results were checked manually.

2.1.3.2. Tractography generation. For each subject, probabilistic
Anatomically-Constrained Tractography (ACT) (Smith et al., 2012) was
performed with MRtrix3 (Tournier et al., 2012) using the brainlife.io
App “mrtrix3 – WMC Anatomically Constrained Tractography (ACT)”
(brainlife.app.319) (Mcpherson, 2018). First, fiber orientation distri-
butions (FOD) were reconstructed using the Constraint Spherical
Deconvolution (CSD) model (Tournier et al., 2007; Jeurissen et al.,
2014). Then, a whole brain tractogram was obtained through probabi-
listic tracking using the second-order Integration over Fiber Orientation
Distributions (iFOD2) algorithm (Lmax = 6, maximum curvature = 35
deg, 3 M streamlines, min length = 25 mm, max length = 250 mm)

(Tournier and Calamante, 2010).

2.1.3.3. Summary statistics of diffusion measures from freesurfer
parcellation. A set of white and gray matter parcels was obtained from
the T1w image using the software FreeSurfer (Fischl, 2012), imple-
mented in the brainlife.io App “FreeSurfer 7.1.1” (brainlife.app.462).

Mean FA and MD were computed for each parcel of the Freesurfer
parcellation (Destrieux Atlas, aparc.a2009s (Destrieux et al., 2010)
using the brainlife.io App “Compute summary statistics of diffusion
measures from Freesurfer Parcellation (volume)” (brainlife.app.554).

2.1.3.4. White matter tract segmentation. A set of 61 major white matter
tracts were extracted from each whole brain tractogram using the
connectivity-based automatic procedure described in (Bullock et al.,
2019) and available through the brainlife.io App “White Matter Anat-
omy Segmentation” (brainlife.app.188). This technique, similar to the
White Matter Query Language (WMQL) approach (Wassermann et al.,
2013; Wassermann et al., 2016) uses multiple cortical (and sub-cortical)
Regions of Interest (ROIs) per tract to derive the segmentation. These
ROIs were computed with FreeSurfer (Fischl, 2012).

Spurious streamlines were pruned following the procedure described
in (Yeatman et al., 2012), implemented in the brainlife.io App “Remove
Tract Outliers” (brainlife.app.195). Specifically, streamlines with a dis-
tance of more than 4sd from the tract centroid or with a length of more
than 4sd from the streamline mean length were removed.

A final visual quality check was performed tract-by-tract by
inspecting the images obtained from the brainlife.io App “Generate
figures of white matter tracts overlaid on anatomical image” (brainlife.
app.607). Sagittal, coronal, and axial projections of each tract overlaid
on its corresponding T1w image were inspected and tract outliers were
removed from the consequent analysis. In particular, since in several
cases the segmented Cerebellar tracts had a non-plausible anatomical
shape, they were removed from the dataset. After this pruning, the
number of remaining white matter tracts was 47.

2.1.3.5. Tract profiles analysis. Tract profiles can be described as a
summary of certain white matter properties along the length of white
matter tracts. Tract profile analysis has been widely used to compare
groups or populations (Yeatman et al., 2012; Yeatman et al., 2012;
Chandio et al., 2020; Kruper et al., 2021; Vinci-Booher et al., 2022) and
it could potentially become a powerful and intuitive diagnostic tool
(Yeatman et al., 2012). In this study, we compared FA profiles and MD
profiles of the two recovery groups to evaluate whether a change in the
microstructural properties of the major human white matter tracts at the
time of injury is associated with a late recovery.

For each tract of interest, which is composed of N fibers, tract profiles
are computed as follows: 1) each fiber is resampled into 100 equidistant
nodes; 2) the tract’s core is computed by averaging the coordinates (x, y,
z) of each fiber at each node (colored tube in Fig. 3a top); 3) micro-
structural measurements (FA or MD) are calculated for each node of
each fiber; 4) the tract profile is finally computed by taking the weighted
average of the microstructural measurements of each individual fibers at
each node (see Fig. 3a bottom). Fibers are weighted by their distance
from the tract’s core: the higher the distance, the lower the probability
that the fiber belongs to the tract, and thus the lower its weight. Tract
profiles were computed with the brainlife.io App “Tract Analysis Pro-
files” (brainlife.app.361), which implements the method in (Yeatman
et al., 2012).

Individual mean. For each tract profile, we also computed its mean by
averaging the microstructural measurements along the tract. In this
case, to minimize partial volume effects, only nodes from 10 to 90 are
taken into account, disregarding the extremities of the tracts, which
have a higher probability of containing different populations of neurons.

Group mean. To compare the two recovery groups, the mean and
standard deviation (sd) within each group and each tract were computed

Table 1
The brainlife.io processing pipeline used to process the data and extract the
features of interest.

App name App purpose App DOI

QSIPrep – preprocessing
workflow

Preprocess dMRI data brainlife.
app.246 (
Cieslak et al.,
2021)

MRTrix3 – WMC
Anatomically Constrained
Tractography (ACT)

Build an anatomically-
constrained, whole brain
tractography

brainlife.
app.319 (Smith
et al., 2012)

FreeSurfer 7.1.1 Create brain parcellations brainlife.
app.462 (
Fischl, 2012)

Compute summary statistics
of diffusion measures from
Freesurfer Parcellation
(volume)

Compute statistics from
diffusion measures inside a
parcellation generated by
Freesurfer

brainlife.
app.554

White Matter Anatomy
Segmentation

Segment the tractogram into 61
white matter tracts

brainlife.
app.188 (
Bullock et al.,
2019)

Remove Tract Outliers Remove spurious fibers from
the tracts

brainlife.
app.195 (
Yeatman et al.,
2012)

Generate figures of white
matter tracts overlaid on
anatomical image

Check white matter tract
quality

brainlife.
app.607

Tract Analysis Profiles Create tract profiles of
microstructural white matter
properties

brainlife.
app.361 (
Yeatman et al.,
2012)
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(see Fig. 3b).

2.2. Statistical analyses

Correlation analysis, effect sizes analysis, and ROC AUC analysis
were performed to assess whether differences in the microstructural
properties were associated with return-to-play. The Pearson correlation
coefficient (r) was computed between microstructural measurements
(mean fractional anisotropy [FA] and mean diffusivity [MD]) and the
continuous variable return-to-play in multiple brain regions. For each
test, a p-value was estimated using Wald Test with a null-hypothesis r =
0 and an alternative hypothesis of r < 0 when comparing the FA values.
An alternative hypothesis of r> 0 was used when comparing MD values.
p-values were corrected for multiple comparisons using False Discovery
Rate (FDR; (Benjamini and Hochberg, 1995; Genovese et al., 2002). To
ensure that a correlation was still present even without outliers, the
analysis was repeated after having discarded participants with a return-
to-play outside the range mean ± 3sd. All analyses were completed in a
Jupyter Notebook served by brainlife.io, Python 3.8 and scipy 1.7.1
(Virtanen et al., 2020), and are available at: https://brainlife.io/project/
63b2ecb0daffe2c2407ee3c5/groupanalysis and (https://github.com/Ni
cholas-Port/Predicting-Persistent-Post-Concussion-Symptoms).

2.2.1. Correlation analysis: Deep white matter, subcortical nuclei, and
cortex

In particular, the goal was to understand whether a similar effect was
detectable in both white matter and cortical regions. The brain regions
considered as a whole were: (i) deep white matter (all white matter
voxels), (ii) subcortical nuclei, i.e. Cerebellum-Cortex, Thalamus-
Proper, Caudate, Putamen, Pallidum, Hippocampus, and Amygdala, and
(iii) 148 cortical regions (all from a single FreeSurfer parcellation tool
(Fischl, 2012), Destrieux Atlas (Destrieux et al., 2010). In all three re-
gions, mean FA and MD were computed for the left and right hemi-
spheres separately.

2.2.2. Correlation analysis: Corpus callosum and white matter tracts
A second step was to focus only on FA and individual white matter

regions, and specifically on the corpus callosum and white matter tracts.
The correlation coefficient was computed between mean FA and return-
to-play for each of the 5 regions of the corpus callosum (the anterior and
posterior horn, and two mid-anterior, mid-posterior regions, and the
central callosal regions) and for each of the 47 white matter tracts. For
each white matter tract, mean FA (FAtract) was estimated through pro-
filometry (Yeatman et al., 2012).

2.2.3. Effect size analysis
A common measure used in clinical studies to discriminate between

two subject groups is Cohen’s d coefficient. For each white matter tract,
the mean (μ) and the standard deviation (σ) of the FA tract profiles were
computed for the early and late recovery groups. Cohen’s d was
computed for each of the 47 tracts individually:

dFA = (μearly − μlate)/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σ2early + σ2 late)/2

√

A d < 0.40 is considered poor, 0.40 < d < 0.80 moderate, and d >

0.80 large (Bakker et al., 2019; Ferris et al., 2022). Mean d coefficients
were estimated via bootstrap (resampling with replacement, 10,000 it-
erations) (Pestilli et al., 2011)

2.2.4. Receiver Operating Characteristic (ROC) curve analysis
An ROC curve analysis was performed to determine the predictive

utility of the group FA means for each of the individual 47 white matter
tracts (Southall et al., 2000). ROC Area Under the Curve (AUCFA) scores
were estimated using the scikit-learn package version 1.0 (Pedregosa
et al., 2012). An AUCFA score > 0.80 indicates that, given two samples
belonging to two different classes, there is an 80 % chance that the
model can distinguish them correctly, and thus is usually considered

clinically useful (Ferris et al., 2022; Mandrekar, 2010). Mean AUCFA
were estimated via bootstrap (resampling with replacement, 10,000 it-
erations) (Pestilli et al., 2011). The statistical significance of the AUCFA
of each one of the 47 tracts was tested using bootstrapping and FDR-
corrected.

2.3. Logistic Regression classification

A Logistic Regression Binary Classifier (LR-BC) was used over indi-
vidual mean FA tract profiles to discriminate between the two recovery
classes. The dataset was split into a training set (2/3 of the samples) and a
test set (1/3 of the samples) using stratified random splits to preserve the
proportion between the two classes. First, the LR-BC was trained using
the mean FA of all tracts as features. Hyperparameter tuning and a 5-fold
Stratified Cross Validation (CV) strategy were implemented in scikit-
learn 1.0 (Pedregosa et al., 2012) to select the best model. Then, using
the same procedure, the LR-BC was trained also using the mean FA of
only the statistically significant tracts identified by the Receiver Oper-
ating Characteristic (ROC) curve analysis (see paragraph 2.2.4). Finally,
the performances of the two classifiers were evaluated on the held-out
test set using the recommended metrics when dealing with unbal-
anced datasets, namely Area Under the Curve (AUC), balanced accuracy,
sensitivity, and specificity. In addition, for visualization purposes, the
model was trained also using only the top two statistically-significant
white matter tracts identified by the ROC curve analysis. A standard
linear regression predicting return-to-play in days was also performed.

2.4. Data Sharing, scientific transparency, and rigor

The original dataset can be accessed at https://fitbir.nih.gov/. The
ezBIDS tool (Levitas et al., 2024) was used to convert DICOM data to
NIFTI and to upload data to brainlife.io using the Brain Imaging Data
Structure (BIDS) standard. The set of features extracted from the original
dataset and used for this study, as well as the data processing pipeline
used to extract the features and the Jupyter Notebooks used for the
statistical analysis, are accessible on brainlife.io at https://brainlife.
io/project/63b2ecb0daffe2c2407ee3c5/pipeline.

3. Results

3.1. Correlation analysis

For the correlation analysis, the dataset consisted of 47 injuries of 42
student athletes (8 female), with a mean age of 18.77 (SD=0.84). The
association between the microstructural properties of the whole white
matter within the entire brain volume of individual study participants
was investigated. FA was estimated using the Diffusion Tensor Model
(Basser et al., 1994; Pierpaoli et al., 1996) in each white matter voxel,
identified using a multi-tissue segmentation (Fischl, 2012). On average,
486,613 (±48,790 sd) white matter voxels were measured for each
participant. Mean FA was estimated across all voxels in the brain and
correlated with each individual’s return-to-play. A moderate but sta-
tistically significant correlation was found (r = − 0.38, p = 0.0001; one-
sided Wald test; Fig. 2a), with a stronger correlation in the left (r =

− 0.42, p = 0.0013) than in the right (r = − 0.34, p = 0.0092) hemi-
spheres. To ensure that a correlation was still present even without
outliers, the analysis was repeated without them (only one participant
did not meet the criterion, i.e. only the two data points for which return-
to-play = 87.7 days were excluded). A smaller but still statistically sig-
nificant correlation was found (r = − 0.25, p = 0.0094). Finally, the
analysis was repeated using MD, but no significant correlation was
found for return-to-play with (r = 0.02, p = 0.4352) or without (r =
− 0.07, p = 0.7315) the outlier. A qualitative inspection of possible
confounding variables of site, sex, number of injuries, and sport type are
plotted in eFigure 1.

To understand whether the association reported in the previous
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section is significant only for the deep white matter, the correlation
between FA (and MD) and return-to-play either within the volume of
seven non-white matter subcortical nuclei (e.g., Thalamus, Hippocam-
pus, Amygdala, etc) or across the cortical volume was investigated. No
correlation was found between subcortical FA and return-to-play (r =
− 0.03, p = 0.3694; one-sided Wald test; Fig. 2b) or between subcortical
MD and return-to-play (r = − 0.12, p = 0.8652).

No correlation was found between cortical FA and return-to-play (r
= − 0.06, p = 0.2799; one-sided Wald test; Fig. 2c) or between MD and
return-to-play (r = − 0.17, p = 0.9480). As these results suggested that
deep white matter FA is uniquely associated with return-to-play, all
subsequent analyses focussed on white matter and FA.

Previous reports indicate that white matter tissue within the corpus
callosum is different between concussed and control individuals (Wu
et al., 2020). The association between FA and return-to-play was esti-
mated by subdividing the callosum into 5 regions: the anterior and
posterior horn, and the mid-anterior, mid-posterior, and central callosal
regions. The strongest correlation was estimated for the mid-posterior
corpus callosum (r = − 0.37, p = 0.00108, corrected for false discov-
ery rate, FDR), followed by the anterior horn (r = − 0.29, p = 0.00983,
FDR), the mid-anterior segment (r = − 0.28, p = 0.01573, FDR), and the
central segment (r= − 0.20, p= 0.06732, FDR). The weakest correlation
was estimated in the posterior horn (r = − 0.11, p = 0.22370).

3.2. Tract profiles: Correlation

To further understand the components of the whole white matter
associated with return-to-play, 47 white matter tracts were segmented
using an anatomically-informedmethod (Bullock et al., 2019) (see Fig. 4
for a comprehensive list of tract names). FA was estimated using pro-
filometry (Yeatman et al., 2012) (see Fig. 3) for each white matter tract
individually. The mean FA for each tract (FAtract) was used to estimate
47 correlation values with return-to-play. FA was negatively correlated
with return-to-play (rμ = − 0.27; rσ = 0.08; rmin = − 0.1; rmax = − 0.43).
The strongest correlation was estimated for the cross-callosum tract
connecting the left and right parietal lobes (r = − 0.43, p = 0.00003,
FDR), and the weakest was for the right-hemisphere Temporal Thalamic
Connection (r = − 0.1, p = 0.25232, FDR). See eTable 2 for all correla-
tion values. The correlations between cortical areas and return-to-play is
listed in eTable 4.

3.3. Tract profiles: Effect sizes

Injuries were subdivided into the Early (return-to-play < 28 days)
and Late (return-to-play >= 28 days) recovery groups.

In the following sections, the dataset consisted of 51 injuries of 45
student athletes (8 female), with a mean age of 18.75 (SD=0.82) and a
mean days to scan from injury of 2.07 days (SD=1.6).

Tract profiles: Cohen’s d. For each tract, the mean FA profile was
computed for each subject in the early and late groups. Cohen’s d was
computed using the FA values for each of the 47 tracts:

dFA = (μearly − μlate)/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(σ2early + σ2 late)/2

√

Across all the tracts, the mean dFA was 0.80 ± 0.35 SD. The left
Inferior Fronto-Occipital Fasciculus had a very high dFA (IFOF; dFA=1.52
± 0.31, bootstrap with replacement). See eTable 3 for all Cohen’s

(caption on next column)

Fig. 2. Correlation between brain microstructure and time to return-to-play
(return-to-play). a. Deep white matter. Distribution of mean Fractional
Anisotropy (FA) across the deep white matter voxels versus return-to-play. b.
Subcortical nuclei. Distribution of mean FA across 14 subcortical nuclei versus
return-to-play. c. Cortex. Distribution of mean FA across 148 cortical parcels
versus return-to-play. Left and right hemisphere structures are plotted sepa-
rately, resulting in two data points per injury. Blue is early recovery and orange
is late recovery. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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d values.

3.4. Tract profiles: ROC analysis

Themost commonmeasure used to evaluate a predictive model is the
Area Under a Receiver Operator Characteristic Curve (AUC (Southall
et al., 2000); see Methods). The AUCwas computed to measure howwell
the FA of each tract predicted athletes in the early vs. late recovery
group. Across all tracts, a large mean AUCFA of 0.71 ± 0.09 SD was
found. For the left IFOF, a very large mean AUCFA of 0.89± 0.05 SD was
found. The statistical significance of the AUCFA of each one of the 47
tracts was tested using bootstrapping and a False Discovery Rate (FDR).
Results show that the AUCFA of 16 tracts was statistically different from
0.5 at p < 0.001 after FDR correction (see Fig. 4). See eTable 3 for all
ROC AUC values.

3.5. Tract profiles: Logistic regression

Finally, the ability to use white matter tract mean FA to predict re-
covery groups was evaluated using an LR-BC with a 5-fold Stratified CV
strategy. The performance of the LR-BC was evaluated using ROC AUC
scores.

First, we trained the model using all 47 white matter tracts. This
experiment returned an AUC score of 0.86 on the held-out test set, with
balanced accuracy = 0.89, sensitivity = 1.0, and specificity = 0.79.
Second, the model was trained using only the 16 statistically-significant
white matter tracts identified using the Receiver Operating Character-
istic (ROC) curve analysis (i.e. the red-colored tracts in Section 3.4 and
Fig. 4). With this model, a higher AUC score was obtained on the held-
out test set, specifically an AUC score of 0.90, with balanced accuracy =

0.89, sensitivity = 1.0, and specificity = 0.79.
For visualization purposes, the model was trained also using only the

top two statistically-significant white matter tracts identified from
Fig. 4, i.e. the left IFOF and the right Angular MDLF. The 2D classifi-
cation plot is shown in Fig. 5. All three classifiers (trained on 47, 16, and
2 tracts), well classify the positive (late recovery) class, with no false
negatives (see Fig. 5 and sensitivity = 1.0). On the other hand, a few
false positives are present, i.e. a few negative samples (early recovery)

were misclassified as positive (late recovery).
A standard linear regression predicting return-to-play in days can be

found in eTable 5.

4. Discussion

A data analysis approach was developed using established pipelines
and diffusion tensor parameters of the human white matter tracts to
predict early versus late (PPCS) return-to-play of young adult athletes
from the CARE dataset. Best practices in both white matter tractography
and machine learning resulted in a prognostic model of PPCS that, uti-
lizing just the mean FA of 16 white matter tracts, demonstrates an AUC
of 0.90 (balanced accuracy = 0.89, sensitivity = 1.0, specificity = 0.79).
The LR model is capturing the underlying relationship between return-
to-play and the white matter tracts’ metric FA (r = − 0.38, p = 0.0001).

A non-significant correlation was found instead between MD and
return-to-play in the white matter. This is in contrast with two previous
studies that examined the association between microstructural metrics
with return-to-play (Wu et al., 2020) and with the GOSE outcome
measure (Palacios et al., 2022). Wu and colleagues (Wu et al., 2020)
reported that higher MD values were associated with a longer time to
return-to-play. Palacios and colleagues (Palacios et al., 2022) showed
that MD in specific white matter tracts was associated with six-month
incomplete recovery (GOSE<8). However, the discrepancies in the re-
sults between the different studies could be due to different sample sizes,
patient populations, acquisition protocols, and/or data preprocessing
pipelines (Wu et al., 2020). Specifically, Wu and colleagues (Wu et al.,
2020) did not have in their sample any participants with time to return-
to-play > 28 days. Palacios and colleagues (Palacios et al., 2022)
analyzed a civilian ED mTBI dataset (TRACK-TBI). Moreover, both
studies used the tract-based spatial statistical (TBSS) approach to test for
group differences, whereas in this study a more personalized tract pro-
file analysis was adopted.

Compared to previous prognostic models developed in the SRC
literature using clinical data, our microstructural-based model over-
comes their prognostic capabilities (AUC<0.81 vs AUC>0.90). To the
best of our knowledge, only a recently published machine learning
model obtained predictive performance above 0.80 (Chu and colleagues

Fig. 3. White matter tract profilometry. a. The core tract is computed for each tract (inner tube). An example is provided for the left IFOF in the top panel. The
corresponding Fractional Anisotropy (FA) profile is extracted by taking a weighted average of the FA measurements of each individual fiber (see bottom panel). b.
Visualization of the anatomy of some of the white matter tracts of interest. From left to right: the left inferior fronto-occipital fasciculus (left IFOF), the Cross-callosal
tract (anterior Frontal CC), the right corticospinal tract (right CST), and the right vertical occipital fasciculus (right VOF). c. FA profile analysis. FA profile mean ± sd
are plotted for each tract and for the early vs. late recovery groups (blue and orange, respectively). To minimize partial volume effects when computing the mean by
averaging the FA measurements along the tract, only nodes from 10 to 90 were taken into account, disregarding the extremities of the tracts. The two tracts on the left
have a high effect size (d > 1), while the two tracts on the right have a poor effect size (d < 1). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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(Chu et al., 2022), average AUC=0.81). However, their dataset was
composed only of children and adolescents, and their cut-off point for
PPCS was 21 days instead of 28 days. Despite differences in the datasets,
this is an indication that the use of state-of-the-art machine learning
techniques combined with diffusion tensor analysis can boost the per-
formance of a prognostic model of PPCS. Our results, with an AUC of
0.90, indicate white matter integrity may be a clinically useful tool. The
choice of the 16 tracts used in the prognostic model are data driven,
future research with much larger data will hopefully yield explanations
to why these tracts are prognostic.

A key aspect of this study is the use of a free, open science platform
for data analysis, namely brainlife.io (Avesani et al., 2019; Hayashi
et al., 2024). Open science analysis platforms were created to allow for
well-governed, compliant management of extremely large datasets with
100 % transparency and complete reproducibility in the computation-
ally intensive field of neuroimaging. The use of brainlife.io has the
additional future advantage of being able to host and offer a free
brainlife.io portal that clinicians could use as an experimental tool for
predicting – and advising patients regarding – their likely recovery
times.

4.1. Limitations

Although our model makes a relatively strong prognostic prediction,
there are some limitations. The significant limitation of this study is its
sample size. The number of injuries from the Siemens scanner was 73,
unfortunately 26 of them were missing the return-to-play outcome
measure, which led to a reduced sample suitable for our analysis. PPCS
generally occurs in 15–20 % of athletes (Broglio et al., 2022), thus our
PPCS sample size (n = 9) was expected. Because the useable dataset of
51 subjects is small, our results must be interpreted carefully and be
considered preliminary. A larger open dataset is needed to validate these
results and make these results clinically useful. A second limitation is
that our neuroimaging pipeline described in Table 1 was validated only
with scans acquired from a Siemens scanner. For this reason, the portion
of data acquired from a GE scanner of the CARE dataset was not included
in the analysis. Tailored scanner harmonization techniques should be
applied to address this issue.

5. Conclusions

Overall, this study demonstrates the possibility of using the micro-
structural properties of white matter tracts to develop a prognostic
model for PPCS, which outperforms current predictive models based on
clinical data. This result highlights the importance of neuroimaging

Fig. 4. Receiver-Operating Characteristics (ROC) Area Under the Curve (AUC)
for each of the 47 white matter tracts. Mean ± SD ROC AUC scores estimated to
discriminate between the early- and late-recovery groups. AUC scores for each
of the 47 tracts were ranked and plotted in decreasing order. Red: Statistically
significant tracts at p < 0.001 (FDR). Gray: non significant tracts. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. Classification of late and early recovery using a Logistic Regression
classifier. A representative classification plot reporting the Fractional Anisot-
ropy (FA) of the two top-performing white matter tracts (from Fig. 4). Each
symbol indicates a study participant. Individual symbols are color-coded by
indicating whether a participant was part of the late- or early-recovery group.
The decision boundary (black dotted line) divides the plane into the two classes.
There are no false negatives, at the expenses of a few false positives.
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analysis for concussion research and serves as a first step toward iden-
tifying a PPCS neuroimaging biomarker. A clinical tool that could
accurately predict PPCS would be revolutionary in both concussion
management and concussion science. Moreover, sharing processing
pipelines and data derivatives would accelerate scientific discovery in
this field.
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