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TO THE EDITOR:
The recently approved BCR::ABL1 tyrosine kinase inhibitor (TKI)
asciminib has demonstrated considerable activity and tolerability
in newly diagnosed chronic phase chronic myeloid leukemia
(CML) patients [1]. In contrast to previously approved BCR::ABL1
TKIs that target the ATP-binding (“orthosteric”) site, asciminib is a
first-in-class allosteric TKI that targets the myristoyl-binding pocket
in the C-lobe of ABL1 kinase (SRC homology-1; SH1). Asciminib
binding induces a closed, inactive kinase conformation that
recapitulates physiologic autoinhibition of ABL1 kinase, whereby
the SH3 and SH2 domains bind to the kinase domain [2] (Fig. 1A).
In addition to point mutations surrounding the myristoyl-binding
pocket in the kinase C-lobe that confer clinical resistance to
asciminib [3, 4], we recently demonstrated that mutations near the
top of the kinase N-lobe unexpectedly confer clinical and/or
in vitro asciminib resistance. BCR::ABL1/M244V retains the ability
to bind asciminib, implicating disruption of the allosteric
mechanism of action as the basis for its resistance to asciminib [5].
BCR::ABL1 variants lacking ABL1 exon 2 occur in a minority of

CML patients as a consequence of the chromosome 9 breakpoint
occurring 3’ of this exon [6–9], and are referred to as BCR::ABL1/
b2a3 or BCR::ABL1/b3a3 depending upon the presence or absence
of BCR exon 14. Recent clinical trials with BCR::ABL1 TKIs have
largely employed molecular endpoints. However, BCR::ABL1
transcript levels are only standardized for full-length BCR::ABL1
isoforms that contain ABL1 exon 2 (“b2a2”, “b3a2”). CML patients
with BCR::ABL1/b2a3 or BCR::ABL1/b3a3 variants have been
excluded from these studies, although post-marketing experience
has demonstrated excellent outcomes with orthosteric TKIs
[10–12]. Given the allosteric mechanism of action of asciminib,
we sought to formally assess the roles of the SH3 and SH2
domains for the activity of asciminib in vitro, as well as sequences

encoded by ABL1 exon 2, which include the N-cap region and
proximal third of the SH3 domain.
We designed a series of BCR::ABL1 retroviral constructs that

delete SH3 (“ΔSH3”), SH2 (“ΔSH2”) domains, or both (“ΔSH3/
ΔSH2”). We also created constructs encoding BCR::ABL1/b3a3, and
BCR::ABL1/b3a2 (hereafter termed “BCR::ABL1”) that served as a
control. All isoforms readily transformed transduced Ba/F3 cells to
growth factor independence, suggesting no substantial deleter-
ious impact upon kinase activity. As expected, all isoforms
displayed equivalent sensitivity to orthosteric TKIs imatinib and
dasatinib. However, relative to BCR::ABL1, the four isoforms
harboring various deletions conferred substantial resistance to
asciminib, with BCR::ABL1 ΔSH3 and BCR::ABL1/b3a3 conferring
the highest degrees of resistance (EC50 > 10 uM) (Fig. 1B). Western
immunoblot analysis confirmed that the asciminib resistance of
BCR::ABL1/b3a3 occurs at the biochemical level (Fig. 1C). In
alignment with these in vitro results, a CML patient with
BCR::ABL1/b2a3 who had a modest molecular response with
imatinib displayed rapid loss of response upon switching to
asciminib. Response was recaptured upon reinstitution of imatinib
(Fig. 1D). Kinase domain sequencing revealed no mutations.
To formally test whether impaired asciminib binding may

contribute to resistance associated with BCR::ABL1/b3a3, NanoBRET
tracer compounds (asc-tracer or das-tracer) were used to measure
binding of asciminib and dasatinib to BCR::ABL1 and BCR::ABL
1/b3a3 NLuc fusion proteins. The affinities of asciminib and
dasatinib were comparable between the two constructs when
queried using the analogous tracer compound matched for each
drug. Notably, BCR::ABL1/b3a3 has similar affinity for asciminib
relative to BCR::ABL1. While asciminib binding reduced the on-
target occupancy of the das-tracer with low nanomolar potency in
BCR::ABL1, asciminib was unable to reduce the on-target occupancy
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Fig. 1 Deletion of SH3, SH2, SH3/SH2 and ABL1 exon2 (resulting in the BCR::ABL1/b3a3 isoform) in BCR::ABL1 confers asciminib
resistance. A (Left) Schematic depiction of ABL1-SH3 (gold), SH2 (maroon) and SH1 (kinase; blue) domains in an active, disassembled
conformation and in an assembled autoinhibited conformation upon binding of asciminib (red). (Right) Schematic depiction of sequences
encoded by exon 2 [pink; (“b3a3”)] in the SH3 domain and hypothesized resultant disruption of autoinhibited conformation despite asciminib
binding. B (Upper) Schematic representation of BCR::ABL1 deletions. Location of SH3 (“3”), SH2 (“2”) domains is depicted. (Lower) Proliferation
assays of pools of Ba/F3 cells transformed to IL-3 independence by BCR::ABL1 isoforms in varying concentrations of TKIs for 48 h and assessed
by CellTiter-Glo. Ba/F3 parental cells were grown in the presence of IL-3. Results were performed in technical and biological triplicate. Mean
values and standard errors are depicted. Table provides calculated EC50 values. C Western immunoblot analysis of lysates of Ba/F3 cells
transformed by BCR::ABL1 or BCR::ABL1/b3a3 and exposed to TKIs at the concentrations indicated for two hours. D Molecular response of a
CML patient with BCR::ABL1/b2a3 while on treatment with imatinib and asciminib.
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of the das-tracer in BCR::ABL1/b3a3 (Fig. 2A). Asciminib binding to
BCR::ABL1 induces the autoinhibited, assembled conformation
which is incompatible with dasatinib binding (Fig. 1A).
To evaluate the effect of ABL1 exon 2 (SH3 domain residues

E27-K84) deletion on the stability and dynamics of ABL1 closed

conformation, we generated structural models using AlphaFold2
for full-length ABL1 as well as ABL1 with exon 2 deleted (“ABL1-
Δexon2”). Comparison of full-length model to the structures
experimentally resolved for ABL1 kinase in the closed conforma-
tion in the presence of asciminib and an orthosteric inhibitor, SKI
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(PDB: 8SSN), or nilotinib (PDB: 5MO4) [2, 13] yielded root-mean-
square deviations (RMSDs) of 1.29 Å and 0.49 Å, respectively,
supporting the validity of the AlphaFold2 model. Both models
were subjected to energy minimization and molecular dynamics
(MD) simulations, which revealed significant alterations in the
conformational state of ABL1-Δexon2. We removed the CAP from
the full-length ABL1 to eliminate results due to the confounding
presence of the CAP. We conducted five independent MD runs of
100 ns each, for both ABL1 and ABL1-Δexon2. Figure 2B panels a,
b shows the time evolution of the RMSD from the original
conformation for the two models. The five trajectories for ABL1
(panel a) consistently converged to an RMSD of approximately 3 Å
within the first 20 ns, and the structure remained stable during the
rest of simulations. In contrast, a greater span of RMSDs was
observed in ABL1-Δexon2 (panel b). One of the MD runs (run 5)
exhibited up to 6 Å RMSD. The distribution of RMSDs,
plotted along the right ordinate, showed that two peaks centered
at 2.85 Å and 5.35 Å in ABL1-Δexon2, compared to a peak at 2.5 Å
in ABL1.
A closer look demonstrated that the ABL1-Δexon2 RMSD profile

essentially originated from the conformational disorder in the SH3
domain that lacks E27-K84 (see Fig. 2B panel c). This partially
truncated SH3 domain reached >10 Å RMSD within 40 ns in run 5
(violet curve); and occasionally exhibited up to 8–10 Å fluctuations
in runs 1, 2 and 3 (blue, orange, green, respectively), indicative of a
significant reduction in its conformational stability. The SH3 RMSD
at t= 100 ns varied between 5 Å and 10 Å in all runs (panel c).
Next, we set out to identify the specific contributions of

individual residues to the global reduced stability of ABL1-Δexon2.
Figure 2B panels d, e display the root-mean-square fluctuations
(RMSFs) of residues observed for ABL1 and ABL1-Δexon2,
respectively. As expected, SH3 domain residues (shaded in blue)
experienced the most elevated fluctuations upon the removal of
exon 2, followed by the SH2 domain. A closer look at the non-
exon2 portion of the SH3 domain (insets of Fig. 2B panels d, e)
revealed three regions distinguished by enhanced fluctuations:
G92-N96 (red) on the loop connecting the first two β-strands;
T104-Q108 (orange), between the second and third β-strands; and
I116-N120 (magenta) on the link connecting SH3 and SH2
domains. T104-Q108 underwent more than 4 Å displacements in
all runs conducted for ABL1-Δexon2. Three snapshots (Snaps 1, 2,
and 3) from run 5 at 0, 50, and 100 ns (Fig. 2B panel f) illustrate the
conformational changes originating from exon 2 deletion: the SH3
β-sheet (orange) changes its orientation from horizontal (snap1) to
vertical (snap2) in conjunction with the dissociation of the first
strand from the β-sheet. The first strand further departs and
adopts a direction perpendicular to the other two at 100 ns.
Notably, the SH2 domain (colored bordeaux) undergoes a global
rotation, which directly affects its interaction with the asciminib-

binding (myristoylation) site. Snap 1 displays bound asciminib (van
der Waals representation; cyan), to indicate the binding site of
asciminib; and the semi-transparent yellow circles on the three
snapshots highlight the structural changes occurring during the
course of simulations in the close vicinity of this binding site. The
observed change in the packing of SH2 against the kinase C-lobe
would interfere with the action of asciminib.
Overall, these simulations demonstrate that the stability of ABL1

is impacted by the loss of exon 2. Deletion of the segment E27-
K84 induces an enhanced mobility and loss of structure in the SH3
domain, and significantly, the SH2 domain itself undergoes an
overall reorientation accompanying the disorder and fluctuations
in the conformation of the SH3 domain. The enhanced fluctua-
tions of SH3 and SH2 residues, the gain of SH3 mobility and the
alterations in SH3 and SH2 conformations, all associated with the
deletion of exon 2, provide potential avenues to deviate from the
asciminib-bound closed conformation, and to interfere with the
allosteric effect of asciminib.
Here we demonstrate the critical importance of the SH3 and

SH2 domains for the kinase inhibitor activity of asciminib.
Moreover, sequences encoded by ABL1 exon 2 are similarly
essential for the ability of asciminib to induce a closed, inactive
kinase conformation. Computational studies suggest deletion of
the residues encoded by exon 2 in the SH3 domain not only
impacts the conformation of the SH3 domain, but also that of the
SH2 domain and thereby inter-domain interactions near the
asciminib-binding site. While clinical experience of asciminib in
CML patients with BCR::ABL1/b3a3 is extremely limited, based on
the data presented here and by others [14, 15], asciminib should
only be used with extreme caution under close molecular
monitoring in this patient population. Given the high degree of
asciminib resistance observed despite no significant impact upon
the ability of asciminib to bind to BCR::ABL1/b3a3, it appears
highly likely that emerging TKIs that target the myristoyl-binding
pocket will be similarly ineffective in patients with this variant. Our
findings further raise the possibility that acquired asciminib
resistance could arise through mutation of the ABL1-exon2 splice
acceptor site causing skipping. Translational studies of appropriate
samples will be necessary to test these hypotheses.
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