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Radiomic and deep learning 
analysis of dermoscopic images 
for skin lesion pattern decoding
Zheng Wang  1,5, Chong Wang 2,5, Li Peng 1, Kaibin Lin 1, Yang Xue 1, Xiao Chen 2, Linlin Bao 2, 
Chao Liu 3, Jianglin Zhang  2* & Yang Xie 4*

This study aims to explore the efficacy of a hybrid deep learning and radiomics approach, 
supplemented with patient metadata, in the noninvasive dermoscopic imaging-based diagnosis of 
skin lesions. We analyzed dermoscopic images from the International Skin Imaging Collaboration 
(ISIC) dataset, spanning 2016–2020, encompassing a variety of skin lesions. Our approach integrates 
deep learning with a comprehensive radiomics analysis, utilizing a vast array of quantitative image 
features to precisely quantify skin lesion patterns. The dataset includes cases of three, four, and eight 
different skin lesion types. Our methodology was benchmarked against seven classification methods 
from the ISIC 2020 challenge and prior research using a binary decision framework. The proposed 
hybrid model demonstrated superior performance in distinguishing benign from malignant lesions, 
achieving area under the receiver operating characteristic curve (AUROC) scores of 99%, 95%, and 
96%, and multiclass decoding AUROCs of 98.5%, 94.9%, and 96.4%, with sensitivities of 97.6%, 
93.9%, and 96.0% and specificities of 98.4%, 96.7%, and 96.9% in the internal ISIC 2018 challenge, 
as well as in the external Jinan and Longhua datasets, respectively. Our findings suggest that the 
integration of radiomics and deep learning, utilizing dermoscopic images, effectively captures the 
heterogeneity and pattern expression of skin lesions.

Keywords  International Skin Imaging Collaboration (ISIC), Area under the Receiver Operating 
Characteristic Curves (AUROC), Radiomics, Deep learning, Multimodal, Skin lesion

Dermoscopic imaging, a critical element in public health, has gained significant attention for its role in skin 
lesion analysis1,2. Dermoscopy, a pivotal imaging technique, is routinely employed in clinical settings to differ-
entiate melanomas from benign lesions3,4. This noninvasive micro-morphological imaging method enhances 
the diagnostic accuracy of skin lesion evaluation beyond traditional visual examination5. Automated analysis of 
dermatoscopic images promises to reduce unnecessary clinical visits and facilitate early detection of skin cancers.

Recent advancements in deep learning have demonstrated significant promise in computer-aided diagnosis6–14. 
Al-Masni et al.6 developed a deep learning-based system integrated with a skin lesion CAD framework, featur-
ing lesion boundary segmentation and disease recognition, thus supporting dermatologists in diagnosing skin 
cancers. Qin et al.9 designed GANs for skin lesion imaging, capable of generating high-quality images to enhance 
classification models. Xing et al.10 introduced a detection network employing a Zoom-in Attention mechanism 
and Metadata Embedding, incorporating pathological and demographic data. Dong et al.11 integrated dermo-
scopic images with clinical metadata for enhanced skin lesion segmentation and classification, highlighting the 
importance of multimodal data. Furthermore, Kaur et al.12, Hasan et al.13, and Alenezi et al.14 advanced skin 
lesion classification accuracy using innovative neural network approaches.

Despite these advancements, deep learning methods relying solely on image intensity often struggle to extract 
information related to lesion shape and site-specific disease characteristics, limiting their efficacy. In clinical 
practice, dermatologists combine imaging modalities with patient-level metadata (e.g., age, sex, disease site) 
for comprehensive lesion assessment. Yuan et al.15 revealed that age-standardized and site-specific tumor rates 
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have increased annually across all races and genders, with pronounced gender differences in incidence rates at 
younger ages, particularly in specific body regions. Sinnamon et al.16 found that younger age, among other clin-
icopathologic factors, is significantly associated with lymph node positivity, suggesting age should be considered 
in sentinel lymph node biopsy decisions.

Skin lesions present a complex array of features, including lesion intensity, intralesion texture, shape, and 
color variation. Radiomics can extract high-dimensional quantitative data reflecting imaging phenotypes17, 
encompassing first-order features that describe the intensity distribution of the region of interest, second-order 
features that capture spatial heterogeneity, and shape features that reflect morphological variation18,19. This com-
prehensive extraction and analysis of radiomic features enable a more detailed characterization of skin lesions, 
which is crucial for accurate diagnosis and treatment planning.

The objective of this research is to evaluate the efficacy of integrating dermatoscopic images, radiomic fea-
tures (intensity, texture, shape, and color variation), and macroscopic data within an automated hybrid system 
for distinguishing skin lesions. Radiomics analysis offers precise and comprehensive characterization of lesion 
shape and site-specific features, enabling the identification of potential biomarkers and the development of a 
diagnostic model for skin diseases using machine learning algorithms. The proposed system consists of two main 
components: (1) a deep learning model for automated skin lesion segmentation, and (2) an automated pattern 
recognition system for skin lesions, utilizing both dermatoscopic images and radiomic attributes in conjunction 
with patient-level metadata. This integrated approach aims to enhance diagnostic accuracy and generalizability, 
addressing the limitations of current deep learning methods.

Materials and methods
This study was conducted with the approval of the Shenzhen People’s Hospital Scientific Research Ethics Com-
mittee. Informed consent was obtained from the patients, ensuring the privacy and confidentiality of their 
information. All methods were carried out in accordance with relevant guidelines and regulations. To enhance 
the generalizability of the model20,21, we conducted evaluations using three different datasets, including two 
external test sets sourced from different institutions.

Data collection and processing
Our research utilized three datasets to evaluate the proposed skin lesion pattern decoding system, including two 
external test sets from distinct institutions. The primary dataset was the ISIC archive (2016–2020), a renowned 
public benchmark dermoscopic dataset. Data from the ISIC Archive Gallery (https://​chall​enge.​isic-​archi​ve.​
com/​data/34) included various skin lesion classes along with additional metadata. The patient selection criteria 
from the ISIC archive are delineated in Fig. 1. The exclusion criteria were as follows: (1) missing or unknown 
dermoscopic images (n = 10,916, 15%), (2) absence of demographic information such as age, sex, or lesion site 
(n = 8063, 10%), and/or (3) unconfirmed diagnoses, duplicates, or inadequate class representation (< 100 cases) 
(n = 26,614, 38.5%).

Consequently, a total of 42,492 patients were selected from the ISIC datasets, encompassing eight disease 
categories: nevus (NV), melanoma (MM), basal cell carcinoma (BCC), pigmented benign keratosis (BKL), actinic 
keratosis (AK), squamous cell carcinoma (SCC), dermatofibroma (DF), and vascular lesion (VASC). The dis-
tribution of these datasets is illustrated in Table 1. The ISIC dataset was organized into a development set and 
an internal test set based on the year of collection. Given the relatively balanced distribution of disease types 
in ISIC2018, the data from ISIC2018 (n = 10,108, 24%) were designated as the internal test set, while the data 
from other years were grouped into the development set (n = 32,384, 76%), stratified across the eight classes. The 
development set was further partitioned into a training set (n = 24,288, 75%) and a tuning set (n = 8096, 25%).

In order to validate the external applicability of our model, data from 336 consecutive patients (April 
2022–December 2022) were collected from the Department of Dermatology at Shenzhen People’s Hospital of 
Jinan University (referred to as the Jinan set). Additionally, 706 patients (April 2020–December 2022) from the 
Department of Dermatology at Longhua People’s Hospital of Southern Medical University (referred to as the 
Longhua set) were included, following identical selection criteria. Both datasets encompassed eight types of skin 
diseases, with dermoscopic images and class annotations provided by expert dermatologists. The distribution of 
data across training, validation, and testing sets is detailed in Fig. 1.

Model architecture
Our proposed system for diagnosing skin lesions integrates a skin lesion segmentation model with a classification 
model for disease pattern prediction, forming a fully automated pipeline (schematic presented in Fig. 2). We 
employed transfer learning to mitigate common issues like over-fitting, initializing the coefficients of pre-trained 
models. Initially, skin lesions are segmented using a pre-trained Mask R-CNN22, followed by classification using 
the renowned ResNet-5023. This classifier includes layers 1–4, each with residual blocks for effective pattern 
recognition. A late fusion strategy is adopted, combining image inputs with 1024-dimensional fully connected 
layers and an 8-channel softmax layer for quantitative inputs.

The segmentation model utilizes a modified Mask R-CNN22 architecture, adapted for dermatoscopic images 
of dimensions 512 × 512 × 3, to achieve precise lesion segmentation. The classification model processes inputs 
including dermatoscopic images and resized lesion masks (128 × 128) to extract comprehensive 2D information 
from each lesion, treating images as individual samples during both development and testing phases. The model 
considers 12 attributes, determined by a univariate t-test on the development set, which encompass age, gender, 
site-specific information, and radiomic features. To enhance model performance, an early fusion technique is 
applied, integrating patient metadata—such as age, gender, and site-specific information—with the radiomic 
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features before inputting them into the model. This approach ensures that the metadata is effectively utilized, 
facilitating a robust and accurate classification process.

The ResNet-50 model is initially trained with image inputs, then fine-tuned with combined layers using 
images, quantitative, and numeric inputs. Our hybrid system merges the segmentation and classification mod-
els, predicting skin lesion patterns through a fully automated process. The system is evaluated on one internal 
(ISIC 2018) and two external test sets (Jinan and Longhua), not exposed during model development. The Mask 
R-CNN first automatically segments the lesion test samples, which are then used for classification and radiomic 
feature extraction.

Evaluation metrics
Lesion segmentation performance was assessed using the Dice Similarity Coefficient (DSC), a measure that 
evaluates the spatial overlap between binary segmentation masks, with values ranging from 0 to 1. Higher DSC 
values indicate greater similarity between the predicted and ground truth masks. The capability of the system 
to decode lesion patterns was evaluated using sensitivity ( MSN ), specificity ( MSp ), and accuracy of correct clas-
sification ( MACC).

For malignancy probability calculation, a ’veto power’ concept was employed, setting a threshold at 0.3. 
Lesions with a malignancy probability equal to or greater than 0.3 were classified as cancerous, regardless of 
whether the top prediction indicated a benign condition. Model accuracy was determined using data from the 
ISIC-2018, Jinan, and Longhua datasets. The metrics used are defined as follows:

(1)MSN =

Number of true positive cases decoded

Total number of all positive cases decoded

(2)MSp =
Number of true negative cases decoded

Total number of all negative cases decoded

Figure 1.   Schematic representation of the ISIC archive data flow.
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Table 1.   Comprehensive distribution of skin lesions in the ISIC dataset.

Characteristics

Development set Test set

ISIC 2016 ISIC 2017 ISIC 2019 ISIC 2020 ISIC 2018 Jinan Longhua

n = 863 n = 1,861 n = 23,721 n = 5,939 n = 10,108 n = 336 n = 706

Patient demographics

 Age in years (mean ± SD) 47 ± 18 51 ± 18 55 ± 18 51 ± 13 52 ± 18 47 ± 19 40 ± 18

 Male (%) 50.1 49.7 53.0 56.3 53.8 31.8 36.7

Site-specific

 Head/neck 75 245 4772 258 1306 169 394

 Oral/genital – – 59 5 – 11 11

 Lower extremity 186 371 5196 1608 2754 86 79

 Palms/soles 4 8 398 7 15 3 38

 Torso 461 901 10,176 3342 4504 53 132

 Upper extremity 137 336 3120 719 1529 14 52

Diagnosis (number of images)

 Benign

  Nevus 633 1212 11,352 5147 5147 50 156

  Pigmented Benign Keratosis 40 222 2553 217 217 50 162

  Dermatofibroma – – 235 – – 50 59

  Vascular lesion – – 222 – – 50 134

 Malignant

  Actinic keratosis – – 845 – 6446 50 106

  Melanoma 189 427 4647 575 1128 28 29

  Basal cell carcinoma 1 – 3245 – 114 50 60

  Squamous cell carcinoma – – 655 – 111 8 –

Figure 2.   Framework for integrated diagnostic system in skin lesion analysis and classification. (a) Lesion 
segmentation model. (b) Automatic extraction of radiomic features. (c) Integration of patient-level metadat. 
(d) Classification model (e.g. nevus = NV, pigmented benign keratosis = BKL, dermatofibroma = DF, vascular 
lesion = VASC), malignant (M) (e.g. actinic keratosis = AK, melanoma = MM, basal cell carcinoma = BCC, 
squamous cell carcinoma = SCC).
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Additionally, the area under the receiver operating characteristic curve ( MAUROC ) was used to evaluate 
the diagnostic performance of the standard ResNet-50 model, considering inputs from dermatoscopic images, 
radiomic features, and patient metadata. The AUROC metric provides a comprehensive measure of the system’s 
ability to discriminate between different classes, assessing the accuracy of the multimodal learning system (the 
automated hybrid system) in decoding skin lesion patterns compared to single-modal approaches. This approach 
ensures a robust evaluation of the model’s diagnostic capabilities, reflecting its potential for clinical application.

In our study, we employed fivefold cross-validation to ensure robust evaluation and to mitigate any potential 
impact of class imbalance across the eight different classes of skin lesions. In k-fold cross-validation, the data is 
first partitioned into equal (or nearly equal) sized segments or folds. Furthermore, the k iterations of training and 
validation are carried out so that different data is used for the testing process in each iteration, while the remain-
ing k − 1 folds are used for the training process. For example, setting k = 5 results in fivefold cross-validation, 
where the dataset is randomly divided into five sets (e.g., d0, d1, to dn) ensuring that each set has the same or 
almost the same size. Each set of data is tested, followed by training on d1 and testing on d0 when k = n (the num-
ber of observations). The k-fold cross-validation method used here is similar to leave-one-out cross-validation.

Statistical analysis
To ensure the statistical significance of our results, we employed robust evaluation methods to assess the model’s 
performance. Specifically, we utilized the Intersection over Union (IoU) to evaluate the accuracy of the segmen-
tation model, providing a comprehensive measure of the overlap between predicted and actual lesion areas. 
Additionally, we conducted SHAP (SHapley Additive exPlanations24) analysis on the radiomic attributes to 
identify the most important features affecting lesion patterns.

We further evaluated classification performance using Precision-Recall Curve analysis, which highlights 
the trade-off between precision and recall across different thresholds. Confusion matrices were also utilized 
to provide detailed insights into classification accuracy, revealing correct and incorrect predictions across the 
eight skin lesion classes. The system’s performance metrics, including the Area Under the Receiver Operating 
Characteristic Curve (AUROC) score, sensitivity, and specificity, underscore its robustness and statistical valid-
ity. Collectively, these comprehensive evaluation methods demonstrate the robustness and effectiveness of our 
integrated approach in accurately diagnosing and characterizing skin lesions.

Experimental environment and complexity
The hardware platform used includes an Intel Xeon Silver 4310 CPU and an NVIDIA GeForce RTX 3090 GPU, 
with model training and development conducted in Python 3.7 and PyTorch 1.10.0. The model was trained for 
100 epochs with a learning rate of 0.002, a momentum factor of 0.9, a weight decay coefficient of 0.0001, and a 
batch size of 8. The modified Mask R-CNN for accurate lesion segmentation has approximately 44 million param-
eters, while the ResNet-50 classification model, which integrates dermoscopic images, resized lesion masks, and 
metadata, has about 23 million parameters. Training the segmentation model on our dataset takes approximately 
72 h, and the classification model requires around 48 h.

Results
The segmentation of skin lesion
To accurately segment skin lesions, we utilized a pre-trained Mask R-CNN model, originally trained on the 
Common Objects in Context (COCO) dataset25. This model is capable of pixel-level instance segmentation and 
has shown exceptional performance with natural images. An adapted version of Mask R-CNN26 was used, with 
minor modifications. Training involved the Adam optimizer, a learning rate of 1e−5, 8 image batches, and was 
conducted over 100 epochs with 200 steps each. The segmentation model achieved Intersection over Union (IoU) 
of 96.3% ± 0.04, 92.4% ± 0.01, and 95.5% ± 0.08 for the internal test (ISIC), Jinan, and Longhua sets, respectively, 
after 86 training epochs.

We compared the performance of skin lesion segmentation models pre-trained on two different datasets: 
COCO and ImageNet. The model pre-trained on the COCO dataset demonstrated faster convergence and supe-
rior performance, achieving lower loss values more quickly, as illustrated in Fig. 3a. This improved performance 
is attributed to the COCO model’s enhanced capability in segmenting a diverse range of object types beyond just 
bounding boxes, compared to the model pre-trained on the ImageNet dataset, as shown in Fig. 3b.

Build radiomic signature
To discern pattern disparities in skin lesions, we performed an integrated analysis of radiomic attributes. Image 
preprocessing and attribute extraction were executed using PyRadiomics (v3.0.0)27. We defined 102 quantitative 
image attributes, categorizing them into lesion intensity, shape, and texture (Fig. 4a). The heatmap provides a 
detailed visualization of the distribution of these radiomic features across a cohort of patients. Key observations 
include significant variability in texture features, characterized by pronounced regions of high and low values, 
indicating substantial inter-patient heterogeneity. In contrast, shape features display more consistent values with 
fewer extremes, suggesting relative uniformity in this category. Intensity features exhibit distinct patterns, with 
clear bands indicating groups of patients with consistently higher or lower intensity values. These observations 
reveal both intra-category and inter-category correlation patterns, suggesting correlations among radiomic fea-
tures within individual patients and across different feature categories.

(3)MACC =

Number of correctly decoded cases

Total number of all cases
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SHAP (SHapley Additive exPlanations) analysis was utilized to identify the most significant features influenc-
ing lesion patterns, with the contribution of each attribute depicted in Fig. 4b. The SHAP scores demonstrate the 
impact of each feature on the model’s prediction, starting from an initial value of 0.452 and reaching a final value 
of 0.722. Positive contributions from features such as original_firstorder_10Percentile (+ 0.01), original_first-
order_Mean (+ 0.01), and others incrementally increase the cumulative value. Notable contributions include 
original_shape2D_sphericity (+ 0.08) and original_firstorder_Median (+ 0.07), highlighting their substantial 
influence on the model’s prediction. This comprehensive analysis underscores the importance of specific radiomic 
attributes in understanding lesion patterns and their potential clinical implications.

Model performance
We trained the conventional ResNet-50 model with dermatoscopic images for 51 epochs. Out of the 102 radi-
omic attributes analyzed, 9 were identified as significantly distinct across different skin lesion types and were 
subsequently integrated as quantitative inputs into the classification model. Following this integration, the model 
underwent an additional 92 fine-tuning epochs using weights from the pre-trained ResNet-50.

Figure 5 illustrates the performance of our classification model using a Precision-Recall Curve and a con-
fusion matrix. The Fig. 5a demonstrates high diagnostic performance, with curves approaching the top right 
corner, indicative of excellent precision and recall. Figure 5b reveals high classification accuracy, with correct 
classification rates of 97% for Actinic Keratosis, 92% for Basal Cell Carcinoma, 87% for Pigmented Benign Kera-
tosis, 99% for Dermatofibroma, 94% for Melanoma, 96% for Nevus, 95% for Squamous Cell Carcinoma, and 
89% for Vascular Lesion. It also identifies specific misclassification rates, such as 3% of Actinic Keratosis cases 
being misclassified as Melanoma and 7% of Pigmented Benign Keratosis cases being misclassified as Melanoma, 
highlighting potential areas for model improvement.

The performance of the automated hybrid system across various test sets is summarized in Table 2 ( MAUROC 
depicts area under Receiver operating characteristic curves. The optimal thresholds that maximized the sum 
of the sensitivity and specificity). The system achieved impressive AUROC scores of 98.5%, 94.9%, and 96.4%, 
with sensitivities of 97.6%, 93.9%, and 96.0%, and specificities of 98.4%, 96.7%, and 96.9% in the internal ISIC 
2018 challenge, Jinan, and Longhua sets, respectively. These results underscore the robustness and effectiveness 
of our integrated approach in accurately diagnosing and characterizing skin lesions, demonstrating its potential 
for broad clinical application.

Differences in patient ethnicity and imaging conditions (e.g., lighting, background) likely contributed to 
the slight variations in performance across external sets.Fig. 6 shows eight dermoscopic images of various skin 
lesions with corresponding predicted probabilities for two possible diagnoses. In each image, the most likely 
diagnosis is highlighted with a green or red circle and its probability, while the second most likely diagnosis is 
shown with a black circle. For instance, the Nevus (NV) in Fig. 6a has a 99% probability (green), with Pigmented 
Benign Keratosis (BKL) at 0.3% (black). Similarly, Actinic Keratosis (AK) in Fig. 6e has a 99% probability (red), 

Figure 3.   Evaluation of Mask R-CNN performance in skin lesion segmentation pre-trained on two different 
datasets. (a) Loss curves comparing the Mask R-CNN model performance pre-trained on the COCO dataset 
(green line) and the ImageNet dataset (pink line). The COCO pre-trained model achieves lower loss values 
more rapidly, indicating faster convergence and better performance. (b) Example images showing segmentation 
results with ground truth masks (red) and predicted masks (green), along with Dice Similarity Coefficients 
(DSC) demonstrating high spatial overlap and segmentation accuracy.
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with BKL at 0.1% (black). These probabilities demonstrate the model’s confidence, indicating high accuracy for 
the primary diagnosis and potential areas for improvement for the secondary predictions.

Comparative analysis with leading models
We compared our method with existing state-of-the-art models using the same datasets7,8,11–14,28–31. Alfi et al.28 
reported a non-invasive interpretable diagnosis of melanoma skin cancer using deep learning and ensemble 
stacking of machine learning models. Tahir et al.29 classified four distinct types of skin cancer using deep learn-
ing and fuzzy k-means clustering. Nawaz et al.30 utilized hierarchy-aware contrastive learning with late fusion 
for skin lesion classification. Hsu et al.31 reported major-type skin cancer classification using deep learning and 
fuzzy k-means clustering. The proposed approach demonstrated increased accuracy, sensitivity, and specific-
ity by 0.7%, 11%, and 0.8%, respectively (depicted in Table 3). When tested on the ISIC dataset, our proposed 
hybrid system (Ours—internal) demonstrated superior performance, achieving an accuracy of 97.8%, sensitivity 
of 97.6%, specificity of 98.4%, and an AUROC of 98.5%. This surpasses other notable studies, such as those by 
Qin et al.9 with an accuracy of 95.2% and an AUROC of 92.3%, and Dong et al.11 who reported an accuracy of 
92.6% and an AUROC of 97.9%. Additionally, our system outperforms Tahir et al.29, who achieved an accuracy 
of 94.17% and an AUROC of 99.43%, by providing more balanced sensitivity and specificity scores.

Figure 4.   Analysis of key radiomic features in skin lesion diagnostics. (a) Heatmap of patient cluster analysis 
based on radiomic expression patterns. (b) Waterfall plots of aggregated shapley values for predictive modeling. 
(c) Explanation of label legend.
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Figure 5.   Performance Evaluation of Classification Model for Eight Skin Lesion Categories. (a) Precision-
Recall Curve plot showing high diagnostic performance, indicating excellent precision and recall. (b) Confusion 
matrix demonstrating high accuracy and highlighting areas for model improvement.

Table 2.   Evaluation of hybrid system efficacy in predicting skin lesion patterns.

Diagnosis MAUROC (%) MSN (%) MSP (%) Threshold

Test = ISIC 2018

 Nevus 98.8 ± 0.02 91.0 ± 3.4 98.2 ± 3.1 0.0378 ± 0.09

 Pigmented Benign Kerato 96.3 ± 0.07 96.5 ± 3.2 98.9 ± 3.7 0.0285 ± 0.01

 Dermatofibroma 96.8 ± 0.02 92.8 ± 6.2 99.7 ± 3.1 0.0095 ± 0.07

 Vascular lesion 99.1 ± 0.05 89.1 ± 2.7 99.1 ± 3.0 0.0283 ± 0.01

 Actinic keratosis 96.1 ± 0.01 87.5 ± 2.2 94.1 ± 2.3 0.0417 ± 0.02

 Melanoma 90.9 ± 0.03 71.5 ± 3.3 95.3 ± 1.8 0.0406 ± 0.06

 Basal cell carcinoma 95.8 ± 0.03 82.5 ± 4.5 92.2 ± 2.9 0.0425 ± 0.01

 Squamous cell carcinoma 96.1 ± 0.07 85.5 ± 1.7 96.6 ± 5.4 0.0355 ± 0.02

 Overall 98.5 ± 0.04 97.6 ± 3.4 98.4 ± 3.2 0.0344 ± 0.04

Test = Jinan test dataset

 Nevus 98.9 ± 0.02 93.1 ± 2.6 97.0 ± 3.1 0.0691 ± 0.01

 Pigmented Benign Kerato 98.2 ± 0.02 93.7 ± 1.5 99.0 ± 1.5 0.0296 ± 0.01

 Dermatofibroma 98.6 ± 0.01 82.8 ± 2.2 89.0 ± 1.6 0.0292 ± 0.08

 Vascular lesion 98.7 ± 0.09 88.6 ± 4.6 97.5 ± 2.7 0.0590 ± 0.02

 Actinic keratosis 97.9 ± 0.01 86.2 ± 1.7 93.5 ± 2.4 0.0543 ± 0.06

 Melanoma 86.0 ± 0.02 79.3 ± 2.4 94.5 ± 1.7 0.0477 ± 0.04

 Basal cell carcinoma 90.0 ± 0.09 82.7 ± 3.9 96.0 ± 5.8 0.0365 ± 0.01

 Squamous cell carcinoma 93.2 ± 0.03 93.1 ± 4.1 98.5 ± 4.3 0.0294 ± 0.01

 Overall 94.9 ± 0.03 93.9 ± 2.9 96.7 ± 2.2 0.0384 ± 0.02

Test = Longhua test dataset

 Nevus 98.8 ± 0.06 85.7 ± 1.3 88.7 ± 1.3 0.0422 ± 0.07

 Pigmented Benign Kerato 97.7 ± 0.02 81.7 ± 4.4 97.7 ± 4.3 0.0854 ± 0.08

 Dermatofibroma 99.5 ± 0.01 87.2 ± 0.0 82.8 ± 1.3 0.0453 ± 0.02

 Vascular lesion 99.5 ± 0.02 94.3 ± 1.5 98.2 ± 2.4 0.0537 ± 0.01

 Actinic keratosis 98.6 ± 0.02 91.8 ± 2.3 94.0 ± 4.3 0.0157 ± 0.06

 Melanoma 93.0 ± 0.01 75.0 ± 2.6 98.2 ± 3.2 0.0361 ± 0.04

 Basal cell carcinoma 99.1 ± 0.03 91.6 ± 1.4 94.6 ± 1.3 0.0384 ± 0.08

 Squamous cell carcinoma – – – –

 Overall 96.4 ± 0.02 96.0 ± 1.9 96.9 ± 2.6 0.0449 ± 0.05
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Figure 6.   Assessment of malignancy risk and pattern prediction. (a) Nevus (NV), (b) Pigmented Benign 
Keratosis (BKL), (c) Dermatofibroma (DF), (d) Vascular Lesion (VASC), (e) Actinic Keratosis (AK), (f) 
Melanoma (MM), (g) Basal Cell Carcinoma (BCC), (h) Squamous Cell Carcinoma (SCC), with corresponding 
model predictions and malignancy risk assessments. Green indicates the likelihood of a benign diagnosis, red 
represents the likelihood of a malignant diagnosis, and black signifies the likelihood of diagnoses other than the 
specific disease under consideration.

Table 3.   Comparative analysis of performance across studied diagnostic approaches.

References Patterns MACC (%) MSN (%) MSP (%) MAUROC (%)

Test = ISIC dataset

 Qin et al.9 7 95.2 83.2 74.3 x

 Xing et al.10 2 84.59 85.95 84.63 92.23

 Dong et al.11 8 92.6 x x 97.9

 Kaur et al.12 2 90.4 x 90.9 x

 Hasan et al.13 7 x x x 97

 Alenezi et al.14 7 96.9 x 97.6 x

 Alfi et al.28 1 91 x x 97

 Tahir et al.29 4 94.17 x x 99.43

 Nawaz et al.30 8 94.25 x x x

 Hsu et al.31 8 87.1 84.2 88.9 x

 Ours (internal) 8 97.8 97.6 98.4 98.5

Test = external dataset

 Nawaz et al.30 2 95.4 90 98.2 x

 Shimizu et al.32 4 x 84.05 x x

 Abuzaghleh et al.33 3 96.5 x x x

 Ours (external) 8 96.9 95.0 96.8 95.7
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In external dataset evaluations, our system (Ours—external) also demonstrated remarkable results, with 
an accuracy of 96.9%, sensitivity of 95%, specificity of 96.8%, and an AUROC of 96.8%. Notably, the proposed 
system showed robust performance in external datasets, outperforming other methods by margins of 1.5% in 
performance and 5% in sensitivity, indicating its generalizability and effectiveness across multiple institutions. 
These results are comparable to those of Nawaz et al.30, who reported an accuracy of 95.4% and specificity of 
98.2%, but without an AUROC score. Moreover, our system performs better than Shimizu et al.32, who achieved 
an accuracy of 84.05%, and Abuzaghleh et al.33, who reported an accuracy of 96.5%. The high performance of 
our hybrid system across both internal and external datasets underscores its robustness and effectiveness in 
accurately diagnosing and classifying skin lesions, showcasing its potential for widespread clinical application.

Ablation studies of the pattern decoding
Ablation studies were conducted to assess the contribution of each model component. Using the conventional 
ResNet-50 as a baseline, we evaluated three branches: dermatoscopic images only, patient-level metadata, and 
quantitative features from lesion masks. Figure 7 contains six ROC curves, illustrating the performance of differ-
ent models in distinguishing between benign and malignant skin lesions. Each subfigure represents different test 
sets and compares three models: one using both metadata and radiomic features, one using only metadata, and 
one without metadata and radiomic features. In the internal test sets (Fig. 7a,d), the models incorporating both 
metadata and radiomic features demonstrate the highest AUC values (0.985 and 0.99, respectively), indicating 
superior performance. The models using only metadata have lower AUC values (0.930 and 0.93), while those 
without metadata and radiomic features perform the worst (AUC of 0.803 and 0.80).

In the external test sets from Jinan (Fig. 7b,e) and Longhua (Fig. 7c,f), similar trends are observed. The com-
bined model consistently achieves the highest AUC values (0.949 and 0.95 for Jinan; 0.964 and 0.96 for Longhua), 
followed by the metadata-only models (AUC of 0.892 and 0.84 for Jinan; 0.885 and 0.89 for Longhua). The models 
without metadata and radiomic features show the lowest performance (AUC of 0.761 and 0.81 for Jinan; 0.743 
and 0.76 for Longhua). These results highlight that integrating metadata with radiomic features significantly 
enhances diagnostic accuracy and provides a robust and reliable assessment of skin lesions, with consistent high 
performance across internal and external validation sets, indicating good generalizability.

The multimodal system showed significant improvements in AUROC, particularly in melanoma diagnosis 
and benign-malignancy classification. For instance, integrating patient metadata and radiomic features with 
dermatoscopic images increased the AUROC from 0.81 to 0.95, demonstrating the efficacy of the combined 
approach in skin lesion classification. This approach leverages the strengths of each data modality, resulting in 
a more accurate and comprehensive diagnostic tool. The study underscores the importance of multimodal data 
integration in enhancing the performance and reliability of automated skin lesion analysis systems.

Discussion
In this study, we developed an innovative automated hybrid system that integrates dermatoscopic imaging, radi-
omics, and patient metadata for the pattern decoding of skin lesions. This deep learning-based system, devoid 
of operator-dependent processes, seamlessly combines quantitative image features (signal intensity, shape, and 
texture) with numeric patient information (age, gender, and site-specific data) in a fully automated pipeline. 
Employing the ISIC archive for model development, our hybrid approach demonstrated impressive performance, 
with area under the receiver operating characteristic curve (AUROC) scores ranging from 98.5 to 95.7% across 
the internal ISIC 2018 test set and two external test sets.

A notable aspect of our research involved the utilization of 102 radiomic attributes to quantify pattern dis-
parities in skin lesions. This comprehensive analysis of the ISIC archive’s extensive database revealed numerous 
radiomic attributes with significant predictive power, many of which were previously unexplored. The stability 
and reproducibility of the constructed radiomic signatures underscore their contribution and effectiveness.

Our hybrid system’s ability to extract high-dimensional, abstract quantitative, and numerical features goes 
beyond traditional image assessments. The results indicated that this method outperforms approaches relying 
solely on imaging. However, it was observed that the system’s performance varied across different test sets, 
achieving the highest accuracy with the internal test set, followed by the Longhu.

This research distinguishes itself in three key areas: (1) It systematically explores the contribution of diverse 
data modalities to multimodal deep learning in a clinical context, offering a broader and more complex input 
space than previously studied systems. (2) The approach leverages externally validated methods for attribute 
extraction, simplifying downstream modeling and facilitating updates with newer models without re-training 
existing components. 3) The use of multiple data sources and modalities exemplifies the potential for a more 
holistic understanding of patient data, advocating for the broader implementation of multimodal deep learning 
in healthcare.

Three limitations of our study warrant further discussion: (1) The absence of gold-standard pathology images 
in our non-invasive, cost-effective model design. (2) The reliance on whole lesion segmentation for quantitative 
attribute derivation, potentially overlooking nuanced differences in normal and abnormal skin areas, and the 
impact of variable lighting and backgrounds. (3) The segmentation and classification components of our model 
were trained independently and later combined, which, while fully integrable into a Python-based pipeline for 
automatic processing, does not represent a unified training approach.

Conclusions
Integrating multiple data modalities for skin lesion analysis is of great significance as it provides a comprehensive 
and holistic understanding of the lesions, thereby significantly enhancing diagnostic accuracy. By combining 
dermoscopic images with radiomic features, it is possible to extract high-dimensional quantitative data that 
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reflects various imaging phenotypes. These include first-order features that describe the intensity distribution 
within the lesion, second-order features that capture spatial heterogeneity, and shape features that reflect mor-
phological variations. Furthermore, incorporating macroscopic data such as patient-level metadata (e.g., age, 
sex, and disease site) enhances the contextual interpretation of these radiomic and dermoscopic features. For 
instance, certain radiomic features may exhibit different correlations with age or sex, and understanding these 
correlations can lead to more personalized and accurate diagnostic models.

In conclusion, this research presents a deep learning and radiomics-based model capable of accurately decod-
ing skin lesion patterns through a fully automated process. This multimodal approach integrates diverse informa-
tion sources to enhance the robustness and reliability of skin lesion assessments, leveraging each data modality’s 
strengths to provide accurate and comprehensive diagnoses, thereby making it a valuable tool for non-invasive 

Figure 7.   Ablated results for pattern decoding in multiclass and benign-malignant analyses. (a–c) Multiclass 
AUROC results across test sets, and (d–f) Benign-Malignant AUROC results, determining model predictions 
exceeding the threshold in each scenario. The red line represents only dermoscopic images as input. The yellow 
line obtained by incorporating both dermoscopic images and clinical data as input. The green line achieved by 
including dermoscopic images, clinical data, and radiomic features as input.
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skin lesion characterization, improving patient outcomes, and offering significant potential benefits in personal-
ized treatment planning through a highly reproducible and generalizable model.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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