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Abstract

Purpose: Lymphoma, the most predominant neoplastic disorder, is divided into Hodgkin and Non-
Hodgkin Lymphoma classifications. Immunotherapeutic modalities have emerged as essential 
methodologies in combating lymphoid malignancies. Chimeric Antigen Receptor (CAR) T cells exhibit 
promising responses in chemotherapy-resistant B-cell non-Hodgkin lymphoma cases.

Methods: This comprehensive review delineates the advancement of CAR-T cell therapy as an 
immunotherapeutic instrument, the selection of lymphoma antigens for CAR-T cell targeting, and 
the conceptualization, synthesis, and deployment of CAR-T cells. Furthermore, it encompasses the 
advantages and disadvantages of CAR-T cell therapy and the prospective horizons of CAR-T cells from 
a computational research perspective. In order to improve the design and functionality of artificial 
CARs, there is a need for TCR recognition investigation, followed by the implementation of a quality 
surveillance methodology.

Results: Various lymphoma antigens are amenable to CAR-T cell targeting, such as CD19, CD20, 
CD22, CD30, the kappa light chain, and ROR1. A notable merit of CAR-T cell therapy is the 
augmentation of the immune system’s capacity to generate tumoricidal activity in patients exhibiting 
chemotherapy-resistant lymphoma. Nevertheless, it also introduces manufacturing impediments that 
are laborious, technologically demanding, and financially burdensome. Physical, physicochemical, 
and physiological limitations further exacerbate the challenge of treating solid neoplasms with CAR-T 
cells.

Conclusion: While the efficacy and safety of CAR-T cell immunotherapy remain subjects of fervent 
investigation, the promise of this cutting-edge technology offers valuable insights for the future evolution 
of lymphoma treatment management approaches. Moreover, CAR-T cell therapies potentially benefit 
patients, motivating regulatory bodies to foster international collaboration.
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Introduction
Lymphomas, which represent a predominant class of 
lymphoid neoplasms, constitute a diverse group of 
malignancies resulting from the clonal expansion of 
lymphocytes.1,2 These cancers are classified into two 
primary types: Hodgkin’s lymphoma (HL) and non-
Hodgkin’s lymphoma (NHL). Hodgkin’s lymphoma 
is further subdivided into non-classical Hodgkin’s 
lymphoma and classic Hodgkin’s lymphoma.1,3,4 NHL 
includes numerous subtypes, with the most prevalent 
being diffuse large B-cell lymphoma (DLBCL) (25-30%), 
accounting for over 30% of B-NHL cases.5-8 In contrast to 
Hodgkin’s lymphoma, 90% of cases belong to the NHL 
category, which includes B-cell NHL (B-NHL) expressing 
markers CD20, CD19, or CD22, T-cell NHL (T-NHL) 
expressing CD3, CD4, or CD8, and natural killer (NK)/T 
cell NHL expressing CD56.9-11

The lymphatic system, an integral component of the 
immune system,12 is crucial in combating infections and 
disease while facilitating fluid transport throughout the 
body.13 B and T lymphocytes residing in lymphatic tissue 
contribute to defense against infectious agents. Chronic 
antigenic stimulation increases B and T cell proliferation, 
raising the risk of genetic anomalies and triggering 
lymphoma.6 Lymphomas can originate in any region 
containing lymphatic tissue, including the spleen,14 bone 
marrow,9 thymus,15 tonsils,16 and lymph nodes.17 

As of 2021, lymphoma is estimated to have affected 
825,651 individuals in the United States.18 In 2022, it is 
estimated that there will be 91 010 new cases (82 470 NHL 
cases and 8540 HL cases) with a predicted death toll of 170 
people,19 accounting for 3.5% of global cancer fatalities.20,21 
While lymphoma-associated mortality rates remain low, 
lymphoma risks developing secondary malignancies, such 
as lung, kidney, breast, colorectal, and skin melanoma, 
if inadequately treated.19,22 Similar to breast cancer, 
radiotherapy increases the cancer susceptibility.23 T cell 
dysfunction in HL and DLBCL has been linked to an 
elevated risk of skin melanoma.24 Additionally, a family 
history of lung, colorectal, or breast cancer further 
increases the likelihood of secondary malignancies,19 
potentially leading to higher mortality rates if lymphoma 
triggers a secondary cancer. 

Tumor development exhibits variability across stages; 
however, tumors generally display cellular infiltration 
resembling centrocytes. Lymphomas are characterized 
by small size, abundant cytoplasm, and an irregular 
nucleus. Lymphoma cells express immunoglobulins IgM, 
IgG, and IgA. Subsequently, NHL exhibits increased 
expression of CD19, CD20, and CD22 receptors.6 In 
contrast, HL predominantly expresses the characteristic 
immunophenotypic pattern of CD15, CD30, and CD45 
receptors.4 

 

Immunotherapeutic approaches and CAR-T cell 
therapy for lymphoma

Immunotherapy, a therapeutic approach that aims to 
enhance the functionality of immune cells to eliminate 
neoplastic cells, has made significant advancements in 
oncological treatment and yielded clinically meaningful 
outcomes. Various immunotherapy approaches have 
rapidly developed, including oncolytic virus therapy, 
tumor-specific antigens as cancer vaccines, dendritic 
cell-based cancer vaccination, genetic modification of 
autologous tumor cells to evoke tumor-specific immune 
responses, the application of cytokines in cancer treatment, 
adoptive cell transfer (ACT), and immune checkpoint 
inhibitors. Advances in genetic engineering have led 
to numerous innovations in cancer immunotherapy, 
emphasizing the importance of immunotherapy in clinical 
applications for cancer treatment. Immunotherapy 
primarily focuses on activating T cells due to their potent 
tumor-killing capability.25 

ACT employs autologous T cells, which undergo 
isolation, genetic engineering, and ex-vivo expansion 
before being reinfused into the patient to eliminate 
cancerous cells. Initially, ACT utilized tumor-infiltrating 
lymphocytes (TILs), but this approach induced persistent 
clonal repopulation of T cells in cancer patients. 
Consequently, ACT has evolved to incorporate genetically 
engineered T cells targeting specific neo-antigens, 
which are then reinfused into the patient for cancer cell 
eradication.25,26

Two primary categories of genetically engineered T 
cells exist: T-cell receptor (TCR)-engineered T cells and 
chimeric antigen receptor (CAR)-T cells. The underlying 
principle of CAR-T cells involves the genetic engineering 
of TCRs with elevated tumor antigen avidity, known as 
CARs, which are subsequently cloned or ex-vivo expanded 
and transduced into patient T cells. This methodology 
directs cytotoxic T-cell activity toward tumor antigens.27 
CAR-T cells have been primarily employed in treating 
hematological malignancies, including acute lymphoblastic 
leukemia, chronic lymphocytic leukemia, lymphoma, 
and multiple myeloma. The most efficacious CAR targets 
CD19, a crucial biomarker of the B cell lineage. Autologous 
T cells undergo genetic modification to target CD19 B-cell 
antigens via the expression of anti-CD19.28

CAR-T cells represent one of the most cutting-
edge immunotherapeutic approaches for relapsed or 
chemotherapy-refractory B-cell NHL, particularly for 
patients who have shown no resolution following multiple 
courses of chemotherapy.29 

Choice of lymphoma antigen for CAR-T targeting 
Various therapies, from monoclonal antibodies to 
CAR-T cells, have been developed to treat lymphoid 
malignancies.7,9,10 CARs are composite constructs 
composed of multiple domains derived from various 
proteins, including (1) an antigen recognition domain 
typically sourced from an antibody, (2) a CD3 T-cell 
co-receptor signaling domain and (3) a co-stimulatory 
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domain necessary for T-cell activation during antigen 
presentation (Figure 1).30,31 

CARs consist of four components: an extracellular 
domain, typically comprising single-chain variable 
fragments (scFv); a hinge region; a transmembrane 
domain; and an intracellular domain encompassing a 
T-cell activation domain and a co-stimulatory domain, 
both of which contribute to CAR-T cell activation and 
proliferation.7,8,10 CAR molecules target antigens on the 
surface of tumor cells, which may include compounds 
composed of carbohydrates, glycolipids, and proteins. 
The interaction between CAR and these targets creates 
immune synapses, resulting in contact-dependent 
cytotoxicity.32 

Modifications and amalgamations of CAR-T cells have 
been devised to enhance therapeutic effectiveness while 
minimizing adverse effects. The CAR-T cell constructs 
that have been developed encompass armored CAR, 
tandem CAR, multi-CAR, and switchable CAR.33 The 
appropriate antigen for lymphoma therapy with CAR-T 
cells should be selected following the molecular markers 
of both B and T cell lymphoma subtypes.10

CD19, a transmembrane glycoprotein regulating B cell 
activation in an antigen receptor-dependent manner, is 
an optimal target for CAR-T therapy of B-cell lymphoma, 
as CD19 is expressed throughout B cell differentiation 
and frequently during B cell malignant transformation. 
Furthermore, CD19 is a ubiquitously expressed antigen 
on the surface of B cells, including B-NHL.7,8,11 The 
most widespread and popular clinical treatment strategy 
is CAR-T cell therapy targeting CD19.34 In relapsed/
refractory (R/R) aggressive B-cell NHLs, the CD19 
marker in malignant cells is lost, necessitating alternative 
antigens for targeting these malignant cells. CAR-T cells 
targeting CD20 or CD22 under R/R conditions have been 
investigated, albeit in preliminary stages.10,11,35,36 Other 
potential targets for various lymphoma types include 
CD30,37 k-light chain (Table 1),38 and receptor-tyrosine-

kinase-like orphan receptor 1 (ROR1).
ROR1, one of the most promising cancer targets, is 

aberrantly expressed in numerous malignancies yet 
exhibits minimal expression in normal tissue, rendering 
it a viable candidate for CAR-T therapy.39 ROR1 may 
represent a tumor-specific target for treatment since it 
was found to be significantly expressed in B-cell chronic 
lymphocytic leukemia (B-CLL) but not in normal B cells.40 
ROR1-targeted T-cell therapies could be advantageous in 
treating B-CLL and other ROR1-positive cancers. 

Multiple clinical trials have discovered that CAR-T cells 
with specific targets exhibit a broad range of therapeutic 
effects in various lymphoma types, as demonstrated in 
Table 1, such as Hodgkin lymphoma (CD19/CD30); 
Anaplastic large cell lymphoma (CD30); Follicular 
lymphoma (CD19/CD20); Diffuse large B-cell lymphoma 
(CD19/CD20/k-light chain); Small lymphocytic 
lymphoma (CD19); Transformed follicular lymphoma 
(CD19/ k-light chain); Primary central nervous system 
lymphoma (CD19); Splenic marginal lymphoma (CD19); 
Mantle cell lymphoma (CD19/CD20/k-light chain); 
Primary mediastinal large B cell lymphoma (CD19); 
NHL (CD19); Lymphocyte lymphoma (k-light chain); 
Large B cell lymphoma (CD19); Primary skin marginal 
zone B-cell lymphoma (CD19/CD20); B-cell lymphoma 
characterized by DLBCL and Burkitt lymphoma (CD19). 
These patients received treatment with co-stimulatory 
molecules, including CD28, 4-1BB + CD28, 4-1BB 
(CD137), or CD37.

Design, manufacturing, delivery, and global regulatory 
aspects of successful CAR-T cell therapy
Design of CAR-T cells
Recent studies on TCR recognition have the potential 
to improve the design and function of synthetic CARs. 
Factors such as Kon/Koff rates, spatial constraints 
between T-cells and antigen-presenting cells (APCs), 
immunological synapse formation, TCR clustering, and 
interactions of CD4 and CD8 co-receptors with major 
histocompatibility complex (MHC)/peptide complexes 
determine TCR affinity for MHC/peptide complexes, 
affecting downstream signaling, T cell function, and 
cell fate.63 

Active APCs play a role in co-stimulating TCR 
signaling. Some organizations are developing tumor-
specific CARs that aim not to identify normal cells by 
co-expressing two CARs with separate binding domains.64 
However, this dual receptor approach involving CARs 
and antigens presents challenges. For instance, Wilkie 
et al. targeted overexpressed Her2 and Muc1 in cancers 
using a split receptor approach. Muc1-specific CARs had 
CD28 co-stimulatory domains, while Her2-binding CARs 
had CD3 signaling domains,65 resembling T cell signal 1 
and 2 checkpoints. Dual-specific CAR-T cells were only 
generated when Her2/Muc1 double-positive target cells 
delivered signals 1 and 2, while single-positive target 

Figure 1. CAR-T cell structure and its role in targeting cancer cells (Edited in 
BioRender.com)
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cells did not develop them.66 Dual-specific CAR-T cells 
successfully destroyed Her2 + Muc1 + /- cells in vitro. Grada 
et al. encountered similar issues with their split receptor 
system, as dual-specific CAR-T cells killed CD19 + and 
Her2 + target cells despite targeting only one type.67 Since 
they cannot discriminate between single-positive and 
double-positive target cells, these CARs cannot enhance 
the specificity of single-input CAR-T targeting specificity. 
Kloss et al. demonstrated that “signal 1” CARs can be 
switched off, leaving only the co-stimulatory CAR-T cells 
to activate T cells fully. They tested PSCA-targeting CAR-

scFvs.68 The poorly produced CARs by T cells failed to 
eliminate PSCA + tumor cells in mice or the lab. However, 
an alternative approach involving a less-than-ideal CAR 
and a second co-stimulatory CAR that conveyed signals 
for CD28 and 4-1BB allowed T cells to recognize both 
PSCA + and PSMA + tumor cells in vivo. This technique 
targets CARs and reduces non-tumor effects.69 

CARs achieve tumor specificity through a divided 
receptor system that signals negatively to normal tissue 
but not tumor tissue. In conventional T-cell biology, 
dominant TCR signaling suppression is advised.70 T-cells 

Table 1. Choice of lymphoma antigen for CAR-T cell targeting

CAR Configuration Target Antigen Co-stimulatory Domain Pathology/Disease Outcome Ref.

CD19-4-1BB-CD3ζ CD19 4-1BB

B Cell Lymphoma

CR: 3/20 PR: 1/20 41

CD19-CD28-CD3ζ CD19 CD28 CR: 1/8; PR: 5/8; SD: 1/8 42,43

CD19-CD28-CD3ζ CD19 CD28 CR: 8/15; PR: 4/15; SD: 1/15 44

CD19-CD28-CD3ζ CD19 CD28 CR: 1/9; PR: 5/9 45

CD20-CD3ζ CD20 None CR: 2/7; PR: 1/7; SD: 4/7 46

CD19-CD3ζ CD19 None CR: 7/16; PR: 4/16 47

CD20-4-1BB-CD3ζ CD20 4-1BB CR: 3/6; PR: 1/6 48

k-Light Chain- CD3ζ k-light chain None CR: 2/10; PR: 3/10 38

CD30-4-1BB-CD3ζ CD19/CD30 4-1BB HL/ALCL CR: 1/6; PR: 3/6; PD: 2/6 49

CD19-4-1BB-CD3ζ CD19 4-1BB (CD137)

Lymphoma - 28

CD19-CD28-CD3ζ CD19 CD28 

CD19-CD28-CD3ζ CD19 CD28 

CD19-CD28-CD3ζ CD19 CD28

CD19-CD28-CD3ζ CD19 CD28

CD19-CD28-4-1BB-CD3ζ CD19 CD28 and 4-1BB

CD19-CD28-CD3ζ CD19 CD28 Acute Non-Chronic Lymphoma CR: 6/20, PR: 2/20 50,51

CD19-CD28-CD3ζ CD19 CD28 B Cell Lymphoma CR: 3/8, PR: 1/8 51,52

CD19-CD28-CD3ζ CD19 CD28 Acute and Chronic Lymphoma CR: 11/19 51,53

CD19-4-1BB-CD3ζ CD19 4-1BB Acute Lymphoma CR:1/2 34,51

CD19-CD28/CD137/CD27-CD3ζ CD19 CD28/CD137/CD27 Acute Lymphoma CR:4/6 51,54

CD19/CD20-CD3ζ CD19/CD20 None FL/DLBCL RR: 2/4, CR: 2/4  35 

CD19-CD28-CD3ζ CD19 CD28 SLL/TFL/PCNSL/ DLBCL RR: 0/6, CR: 0/6 55

CD19-CD28-CD3ζ CD19 CD28 FL/SMZL RR: 4/5, CR: 0/5 43

CD20-CD28-4-1BB-CD3ζ CD20 CD28 and 4-1BB MCL/FL RR: 3/3, CR: 2/3 56

CD20-4-1BB-CD3ζ CD20 4-1BB DLBCL RR: 5/7, CR: 1/7 48

CD19-CD28-CD3ζ CD19 CD28 SMZL/PMBCL/DLBCL/low-grade NHL RR: 8/11, CR: 5/11 44

CD19-CD28-CD3ζ CD19 CD28 DLBCL/MCL/TFL RR: 2/10, CR: 1/10 50

k-Light Chain-CD28-CD3ζ k-Light Chain CD28 DLBCL/MCL/TFL/LPL RR: 3/7, CR: 2/7 38

CD19-CD28-CD3ζ CD19 CD28 and 4-1BB LBCL/TFL.MCL/FL RR: 19/30, CR: 10/30 47

CD20-CD28-CD3ζ/ CD19-CD3ζ CD19 None/ CD28 DLBCL/MCL RR: 15/16, CR: 13/16 57

CD20-4-1BB-CD3ζ CD20 4-1BB DLBCL/FL/MCL/PCMZL RR: 9/11, CR: 6/11 58

CD19-CD28-CD3ζ CD19 CD28 DLBCL/FL/PMBCL/MCL RR: 16/22, CR: 12/22 45

CD19-CD28-CD3ζ CD19 CD28 DLBCL RR: 5/7, CR: 4/7 59

CD19-CD28-CD3ζ CD19 CD28 DLBCL/FL/PMBCL RR: 83/101, CR: 55/101 60

CD19-CD28-CD3ζ CD19 CD28 DLBCL/FL RR: 18/28, CR: 16/28 29

CD19-CD28-4-1BB-CD3ζ CD19 CD28 and 4-1BB DLBCL/MCL/FL RR: 3/9, CR: 3/9 61

CD19-CD28-4-1BB-CD3ζ CD19 CD28 and 4-1BB DLBCL/SLL/BCLU RR: 9/13, CR: 7/13 62 
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activate PD-1/CTLA-4, which disrupts TCR signaling 
either by competing for co-stimulatory ligands (such as 
CTLA-4 for CD28-ligands CD80 and CD86) or by binding 
to APC ligands activated by pro-inflammatory cytokines 
(e.g., PD-1 for PD-L1 and PD-L2).71 Negative feedback 
mechanisms reduce pro-inflammatory T-cell activation 
and host harm. Mice deficient in PD-1 and CTLA-4 
develop autoimmune and lymphoproliferative diseases. 
PD-L1 is produced by ocular neurons and placental 
trophoblasts, contributing to immune-protected tissues.72 
In chronic infections and cancers, “tired” T cells with 
prolonged antigen exposure activate inhibitory receptors. 
In clinical settings, PD-1 and CTLA-4 immunotherapies 
activate T cells to viral and tumor antigens.73

Modulating CAR recognition through the co-expression 
of a second inhibitory CAR specific for an antigen produced 
in average but not malignant tissue allows CAR-T cells 
to avoid normal tissue. Fedorov et al. demonstrated that 
co-expressing a CD19-specific activating CAR with CD3 
and CD28 endodomains and a PSMA-specific inhibitory 
CAR with PD-1 or CTLA-4 endodomains was effective.74 
CAR-T cells could stimulate CD19-expressing targets, 
while PSMA-expressing target cells could not multiply, 
kill target cells, or release pro-inflammatory cytokines. 
Enhancing CAR activation selectivity for ligands produced 
on some normal and some malignant cells is intriguing.75 
However, creating inhibitory CARs is challenging due 
to a limited understanding of TCR signaling inhibitory 
receptors. Another challenge is selecting ligands binding 
exclusively to normal cells to transmit a negative signal. 
PD-1 blocks TCR signaling by co-localizing with TCR 
microclusters at the synapse,76 attracting SHP2 and 
dephosphorylating proximal TCR signaling proteins, 
such as CD3, Zap70, and PKC. The PD-1 endodomain 
may require the inhibitory CAR-T close to the activating 
CAR. CTLA-4 competes with CD28 for binding to CD80/
CD86 and physically obstructs CD28 from the synapse, 
reducing co-stimulatory and TCR signaling.77 Recent 
research suggests that the CTLA-4 endodomain modulates 
surface CTLA-4 expression without inhibitory signals. 
Co-stimulatory endo-domains in second- and third-
generation activating CARs can reduce their efficacy, with 
PD-1 potentially better at suppressing second-generation 
CAR activity than CTLA-4.78 

Improved assays are needed to understand better how 
split receptors differ from TCR signaling and how they 
might be modified to mimic it better. These assays should 
track proteins during immune synapse development 
using planar lipid bilayers as fake APCs. This method 
can determine how many ligands activate or inhibit 
co-expressed CARs and whether co-stimulatory or co-
inhibitory CARs target highly expressed antigens. Studies 
indicate that co-stimulatory or co-inhibitory receptors 
must co-localize with TCRs at the synapse to stimulate or 
delay the immune response. Confocal microscopy should 
provide insights into CAR signaling in terms of location 

and time and how CAR split receptor systems differ from 
T cell signaling.79,80

Production of CAR-T cells
Quality control is essential during CAR-T cell 
manufacturing. Leukapheresis is the process of extracting 
leukocytes from the patient’s blood and returning it to 
circulation. This procedure enriches T cells. Leukapheresis 
is followed by washing the cells in an anticoagulant-
containing buffer. Counterflow centrifugal elutriation 
separates cells based on size and density, further 
enhancing the enrichment of lymphocytes. The next step 
involves separating T cells into CD4 and CD8 subsets 
using antibody bead conjugates or markers.81,82

The activation of T cells with patient APCs involves 
multiple steps. Achieving a potent CAR-T cell product is a 
complex and time-consuming process. Beads coated with 
anti-CD3/anti-CD28 monoclonal antibodies have proven 
more reliable and effective for stimulating T cells (Life 
Technologies). While IL-2, feeder cells, and anti-CD3 
antibodies have been used for years, the activation and 
proliferation of T cells outside the body are less efficient 
compared to the use of beads coated with anti-CD3/
anti-CD28 monoclonal antibodies or cell-based artificial 
antigen-presenting cells (aAPC).83 Magnetic separation 
simplifies the removal of aAPC beads during culture. 
Interleukin-2 and aAPC can support the logarithmic 
growth of T cells in a perfusion bioreactor for weeks. K562 
aAPC can produce co-stimulatory ligands and expand 
T lymphocytes ex vivo. Altering the culture conditions 
can bias T cells towards a Th2 or Th17 phenotype, and 
preclinical studies have shown good performance with 
Th17-polarized CAR-T cells. Clinical T-cell polarization 
may also be feasible.84

CAR-containing viral vectors are used to stimulate 
T lymphocytes. After several days, the viral vectors 
are eliminated through dilution or media change. 
Viral machinery links the viral vectors to patient cells, 
providing them with RNA. CAR-T cell therapy generates 
CARs from genetic information, permanently altering the 
patient’s genetics by reversing RNA into DNA. Bioreactor 
cells continuously express CARs, displaying them on the 
cell surface. For CAR-T cell research, CTL019 employs 
retroviral vectors, known for having safer integration sites 
than gamma-retrovirals. T cell CAR expression has also 
been investigated using the Sleeping Beauty transposon 
system and mRNA transfection. Clinical use of transient 
mRNA-transfected CAR-T cells require multiple 
infusions. Despite its lower cost and early clinical trials, 
concerns persist about the efficacy of the Sleeping Beauty 
transposon system compared to lentiviral vectors, the 
unexplored potential of insertional mutagenesis, and the 
possibility of transposons “jumping” again.85,86

Delivery of CAR-T cells
The treatment of solid tumors with CAR-T cells faces 
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significant challenges due to physical, physicochemical, and 
physiological constraints. Physical and physicochemical 
barriers hinder the aggregation and growth of CAR-T 
cells within the tumor, while physiological obstacles, such 
as the unique cells within the tumor and the immune-
suppressing properties of the tumor microenvironment 
(TME), enable the tumor to evade T cells and impede their 
function. Addressing these significant challenges is crucial 
to enhancing the effectiveness of CAR-T cell therapy 
for solid tumors.87 CAR-T cells can communicate with 
cell-loading devices close to solid tumors. These devices 
facilitate the development and movement of CAR-T cells. 
Innovative bioresorbable CAR-T cell-loading devices can 
sustain CAR-T cells’ viability and functionality within 
the tumor, eventually disintegrating within biological 
tissues.88 Although these cell-loading devices can offer 
long-term delivery of therapeutic cells, further research 
is needed to ensure patient safety and assess their impact 
on malignancies. Micro- and nano-devices capable 
of infiltrating solid tumors may assist CAR-T cells in 
overcoming the tumor stroma and improving their anti-
cancer efficacy.89

CAR-T cell therapy can complement other treatments 
for solid cancers. Combining two or more therapies can 
synergistically enhance therapeutic benefits and reduce 
adverse effects. Photothermal treatment, for instance, 
induces mild hyperthermia to facilitate the infiltration 
of CAR-T cells into solid tumors. In cases of deep 
tumors, non-invasive methods like focused ultrasound 
or radio-frequency electromagnetic radiation can induce 
hyperthermia.90 Cytokines and chemokines play a crucial 
role in immune responses, and improved CAR-T cells can 
release these immune-boosting molecules. Research on 
cytokines and chemokines can lead to the development 
of CAR-T cell immunomodulators. Another approach 
is the injection of tumor-specific cytokines through 
bioresponsive drug delivery. Solid tumor CAR-T cell 
therapy must aim to avoid cytokine release syndrome 
(CRS) and “on-target, off-tumor” side effects. Strategies 
for controlled activation and elimination of CAR-T cells 
are being explored, but clinical testing is required.91,92

Furthermore, advancements in gene-editing 
technologies, such as CRISPR/Cas9, are poised to 
revolutionize CAR-T cell therapy. These tools can be used 
to engineer CAR-T cells, making them more resilient 
against the immunosuppressive tumor microenvironment, 
improving their tumor-targeting efficiency, and reducing 
off-tumor cytotoxicity. For example, removing immune 
checkpoint molecules like PD-1 in CAR-T cells may 
enhance their resistance to the suppressive effects induced 
by solid tumors.93 Additionally, the concept of ‘armored 
CAR-T cells,’ designed to secrete immune-stimulating 
cytokines or pro-inflammatory molecules, could bolster 
their anti-tumor potency by counterbalancing the 
immunosuppressive environment and recruiting other 
immune effector cells to the tumor site. Finally, to enhance 

the precision and safety of CAR-T cell therapy, researchers 
are exploring inducible CAR-T cell systems, allowing 
external modulation of CAR expression and activity. 
These cutting-edge approaches have the potential to toggle 
CAR-T cell activity “on” and “off ” as needed, significantly 
enhancing the safety profile of this powerful therapeutic 
intervention. Future research and clinical efforts will 
determine the optimal strategies for incorporating these 
novel advances into the next generation of CAR-T cell 
therapies for solid tumors.

Global regulatory considerations for successful CAR-T 
cell therapy
CAR-T cell therapies hold great promise, and their 
widespread success hinges on harmonizing global 
regulations. These therapies offer significant benefits to 
patients, which may prompt regulatory agencies worldwide 
to collaborate and enhance international cooperation. 
The regulation of this emerging therapy is becoming a 
global challenge.93 The FDA has long played a crucial role 
in regulating and providing guidance on cell and gene 
therapy. However, the regulatory landscape varies among 
major countries, each with its approach to evaluating 
clinical trial submissions. For example, the EU requires a 
qualified person to assess compliance with current good 
manufacturing practices (cGMP), while the US focuses 
on document review. As more countries participate in 
clinical trials, the manufacturing process must become 
more robust to address different regulatory authorities’ 
diverse criteria and questions.94 Efforts to harmonize 
global regulations for CAR-T cell therapies began in 
earnest when, on October 11, 2012, nine members of the 
global regulatory community, including ANVISA, Brazil’s 
European Medicines Agency (EMA), Health Canada, 
India’s National Institute of Biologicals (NIB), Japan’s 
Ministry of Health, Welfare, and Labor/Pharmaceutical 
and Medical Devices Agency, South Korea’s Ministry of 
Food and Drug Safety (formerly KFDA), and Singapore’s 
Health Sciences Authority, met to facilitate collaboration 
among developers of cell and gene therapies.95,96 Product 
development in this field remains unpredictable, and 
regulators often rely on their judgment, lacking unified 
norms and cross-domain experience. Each country’s 
unique production requirements further complicate 
matters, encompassing nationwide screening, testing, 
tracing, labeling, patient privacy, and apheresis standards. 
The international distribution of donor materials and 
finished products complicates the regulatory landscape. 
Definitions and quality control standards for starting 
materials vary by region.97 Multi-country testing should 
balance accommodating individual country requirements 
and maintaining the quality of starting materials. It is 
essential to ensure the accessibility of information related 
to reagent origin, provenance, content, and certification. 
Furthermore, it is worth noting that each region has its 
guidelines for materials used in cell and gene therapies, 
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including those related to cell culture serum.98 To address 
these regulatory challenges, efforts are underway to 
develop methods for producing CAR-T cells using 
chemicals that meet quality criteria accepted in multiple 
regions. It includes, for example, adopting the same 
international supplier across global regions.99

Achieving widespread success with CAR-T cell 
therapies necessitates a harmonized approach to clinical 
trial regulations. It entails reaching a consensus among 
regulatory authorities on the design of clinical trials, 
endpoints, and the targeted patient population. With 
varying definitions of clinical efficacy across countries, 
especially in multi-country trials, there is a growing 
need for globally accepted, uniform clinical efficacy and 
safety standards. Additionally, harmonized guidelines for 
managing and reporting adverse events are crucial, given 
the unique and potentially severe side effects associated 
with CAR-T cell therapy. Regulatory bodies must agree 
on toxicity grading scales and management strategies to 
ensure the well-being of patients across diverse healthcare 
systems.

Furthermore, requirements for long-term patient 
follow-up following CAR-T cell therapy may vary 
between countries, highlighting the importance of a 
global consensus on the appropriate duration and scope 
of these follow-ups. It not only aids in monitoring late-
onset adverse events but also assesses the therapy’s 
long-term efficacy. Finally, given the rapid technological 
advancements, regulatory frameworks must exhibit 
flexibility and adaptability to accommodate the distinctive 
characteristics of emerging CAR-T and other cell and 
gene therapies.

Advantages, drawbacks, and challenges of CAR-T cell 
therapy 
CAR T-cell therapy is the subject of extensive investigation 
due to its potential in treating specific malignancies, 
particularly leukemias and lymphomas.100 This therapy 
offers several advantages but presents drawbacks and 
challenges that must be addressed.

One significant advantage of CAR-T cell therapy 
is its ability to enhance the immune system’s tumor-
killing activity in patients with chemotherapy-resistant 
lymphoma.8 It has shown promising results in improving 
the prognosis of individuals with certain types of low-risk 
lymphoma.101 Additionally, anti-CD19 CAR-T cell therapy 
has demonstrated remarkable effectiveness in relapsed or 
refractory aggressive B-cell lymphomas.102

However, there are certain drawbacks associated with 
CAR-T cell therapy. Disease progression or recurrence 
is a common concern among patients undergoing this 
treatment.101 Challenges arise during the manufacturing 
process, where insufficient harvesting of CAR-T cell 
products or inadequate expansion of generated CAR-T 
cells can occur. Immediate recurrence is observed in many 
patients due to poor CAR-T cell persistence or cancer cell 

resistance resulting from antigen loss or modulation, such 
as the loss or downregulation of CD19 and/or CD22 on 
malignant B cells.103

Two common toxicities associated with CAR-T cell 
therapy are CRS and immune effector cell-associated 
neurotoxicity syndrome (ICANS). Current strategies for 
managing these toxicities involve careful monitoring, 
early detection, and timely intervention with supportive 
care or administering tocilizumab and corticosteroids for 
severe cases.8,102 Technical and financial challenges are also 
encountered in manufacturing patient-specific batches of 
CAR-T cell products.28

Several challenges lie ahead in the field of CAR-T 
cell therapy. There is a need to improve the therapy’s 
efficiency further and reduce response times.8 Identifying 
the subtypes of lymphoma that are most likely to benefit 
from CAR-T cell therapy is crucial.101 Developing patient-
specific therapies103 and overcoming obstacles to treatment 
while enhancing efficacy and minimizing toxicity are 
essential objectives.101 Exploring prophylactic strategies to 
reduce toxicity without compromising efficacy is another 
area of focus.102 Multi-antigen-targeting strategies should 
be considered to address disease recurrence mechanisms 
and potentially achieve more durable remissions.103 
Furthermore, determining the appropriate circumstances 
to choose CAR-T cell therapy over other promising 
modalities, such as bispecific antibodies, requires careful 
consideration.101

Safety of CAR-T cells for lymphoma
CAR-T cell therapy is associated with several safety 
concerns, including toxicity, cytokine release syndrome, 
graft-versus-host disease (GVHD), cytopenia 
(thrombocytopenia, anemia, and neutropenia), as well 
as febrile neutropenia and neurotoxicity. Among 16 
studies evaluating the incidence of neurotoxicity during 
CAR-T therapy, a rate of 9% was reported. Neurotoxicity 
presents as a series of reversible neurological syndromes 
with unknown pathogenesis, and grade 3-4 neurotoxicity 
can be life-threatening.104 The etiology may be attributed 
to the absence of pre-conditioning prior to treatment.105 
Importantly, no significant difference in neurotoxicity was 
observed between various cancer types. 

The most common adverse effect observed is CRS, 
characterized by forming a cytokine storm that can cause 
tissue damage. In severe cases, immediate intervention is 
necessary.104 CRS is the most frequently reported toxicity 
and manifests with symptoms such as high fever, rigors, 
sweating, anorexia, headache, myalgia/arthralgia, altered 
mental status, nausea/vomiting, and potential progression 
to life-threatening capillary leak with hypoxia, hypotension, 
and multiorgan dysfunction.104,106,107 Dramatic elevations 
of cytokines, including interferon-gamma, granulocyte-
macrophage colony-stimulating factor, IL-10, and IL-6, 
have been observed following CAR-T cell infusion.106

Additionally, acute and chronic GVHD after alloHCT 
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were observed in 2 and 6 patients, respectively. Four 
patients showed evidence of graft-versus-leukemic 
activity following immunomodulation (tapering down 
immunosuppression, transfusion of donor lymphocytes, or 
administering checkpoint inhibitors). Importantly, when 
leukapheresis, no patient exhibited evidence of GVHD or 
immunocompromised CAR-T cell generation. Moreover, 
no patient showed GVHD or immunosuppression during 
leukapheresis for CAR-T cell production. Except for 
one CLL patient with 15% circulating tumor cells, all 
other evaluable patients demonstrated complete donor 
chimerism in peripheral blood during leukapheresis. 
All patients had active disease during lymphodepletion 
despite prior bridging therapy in 7 of 10 cases.108

Future perspectives on CAR-T cell therapy in lymphoma 
management
Successful implementation of CAR-T cell therapy requires 
better toxicity grading and management strategies to 
address the toxic side effects and other obstacles to its 
application.

CAR-T treatment’s two frequent and potentially fatal 
side effects are CRS and neurotoxicity. Gaining a deeper 
understanding of these toxicities’ underlying mechanisms 
and causes will lead to improved toxicity management 
and increased CAR-T efficacy. Furthermore, it is essential 
to expand the benefits of CAR-T therapy to solid tumors 
promptly, as most clinical trials and studies to date have 
focused on liquid diseases like lymphomas.109

More research is needed to identify response predictors 
and enhance the benefit-to-risk profile, ultimately 
reducing toxicity and treatment burden for patients. 
Novel CAR-T cell designs can potentially improve antigen 
recognition on lymphoma cells and enhance CAR-T cell 
persistence while minimizing the risk of CRS and ICANS. 
For patients with a high disease burden requiring urgent 
therapy, exploring off-the-shelf allo-CAR cells, which 
do not require individualized manufacturing and can be 
cryopreserved and banked in batches, may help overcome 
logistical and financial challenges. This approach has the 
potential to reduce lead times and create a more accessible 
platform for cell therapies.110

Nanotechnology perspectives
Integrating CAR-T cells with nanotechnology has emerged 
as a promising approach for lymphoma treatment. 
Nanotechnology offers unique advantages in enhancing 
CAR-T cells’ efficacy, specificity, and delivery, addressing 
some of the limitations associated with conventional 
CAR-T cell therapy.

One critical application of nanotechnology in CAR-T 
cell therapy is the design and development of nanoparticles 
for the targeted delivery of CAR-T cells to the tumor 
site. Engineered nanoparticles can carry CAR-T cells 
and selectively target tumor cells, thereby improving 
therapeutic outcomes. Functionalizing nanoparticles with 
specific ligands or antibodies allows for precise recognition 

and binding to tumor-associated antigens, facilitating the 
targeted delivery of CAR-T cells to lymphoma cells while 
minimizing off-target effects.

Furthermore, nanotechnology provides opportunities 
to enhance the functionality of CAR-T cells. Surface 
modification of CAR-T cells with nanomaterials can 
improve their persistence and cytotoxicity against 
lymphoma cells. For instance, integrating nanomaterials 
such as mesoporous silica nanoparticles or graphene oxide 
with CAR-T cells can enhance their survival, expansion, 
and tumor-killing abilities. These nanomaterials can also 
serve as carriers for immunomodulatory drugs, cytokines, 
or gene editing tools, enabling the on-demand release 
of therapeutic agents to further enhance the anti-tumor 
response of CAR-T cells.

Nanotechnology also enables precise control over the 
spatiotemporal release of immunomodulatory factors to 
modulate the TME and overcome immunosuppression. 
Nanoparticles loaded with immune checkpoint inhibitors, 
such as PD-1 or CTLA-4 inhibitors, can enhance the 
activation and function of CAR-T cells within the 
TME. Moreover, nanoscale drug delivery systems can 
be engineered to release immunomodulatory agents 
in a controlled manner, thereby improving the overall 
therapeutic efficacy of CAR-T cell therapy for lymphoma.

In addition to improving the delivery and functionality 
of CAR-T cells, nanotechnology offers opportunities 
for real-time monitoring and imaging of CAR-T cell 
biodistribution and tumor response. By incorporating 
imaging agents, such as fluorescent dyes or nanoparticles, 
CAR-T cells can be visualized in vivo, assessing their 
migration, homing, and persistence in lymphoma lesions. 
This real-time monitoring enables clinicians to evaluate 
the effectiveness of CAR-T cell therapy and make informed 
decisions regarding treatment strategies.

Overall, incorporating nanotechnology into CAR-T 
cell therapy holds great potential for enhancing 
lymphoma treatment. Leveraging the unique properties of 
nanoparticles and nanomaterials can improve CAR-T cell 
delivery, functionality, and monitoring, ultimately leading 
to more effective and targeted therapies for lymphoma 
patients. Continued research and development in this 
interdisciplinary field will pave the way for translating 
nanotechnology-based CAR-T cell therapies into clinical 
practice, offering new avenues for personalized and 
precision medicine in lymphoma treatment.

Bioinformatics and AI perspectives
Artificial intelligence (AI) and machine learning (ML) are 
revolutionizing CAR-T cell therapy for lymphoma and 
beyond. From identifying ideal patients and navigating 
potential complications to optimizing CAR design 
and streamlining production, these powerful tools are 
transforming every facet of this life-changing treatment. 
AI algorithms predict responses, personalize therapy, 
unveil novel targets, and automate manufacturing, paving 
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the way for a future where CAR-T conquers more cancers, 
saving more lives.111

The fusion of bioinformatics and AI has revolutionized 
the development and design of CARs. Bioinformatics, 
which combines computer science, statistics, and 
biology, is instrumental in analyzing biological data and 
identifying optimal scFv sequences for CAR construction. 
AI, a branch of computer science dedicated to intelligent 
machines, complements bioinformatics by devising 
algorithms that analyze data and predict the most effective 
CAR combinations. AI technologies profound learning, 
have significantly improved the accuracy and precision of 
CAR design. Deep learning algorithms discern patterns 
within data, facilitating the creation of CARs with highly 
efficient scFv combinations. This integration empowers 
scientists to craft CARs with heightened specificity, 
improved affinity, and enhanced efficacy in targeting 
specific antigens.

In the context of CAR-T cell therapy, AI plays a crucial 
role in several aspects, including predictive modeling, 
personalized medicine, and target identification. AI 
algorithms, such as ML, enable the creation of predictive 
models that can anticipate patient responses to CAR-T 
cell therapy. By analyzing extensive datasets of patient 
characteristics, genetic profiles, and treatment outcomes, 
AI can identify patterns and factors that influence therapy 
effectiveness. AI allows for the customization of CAR-T 
cell therapies based on individual patient profiles. This 
involves tailoring the design of CAR constructs to target 
specific antigens present on the patient’s cancer cells. AI-
driven approaches help optimize the therapeutic potential 
of CAR-T cells for each patient. AI algorithms can analyze 
vast biological databases to identify novel target antigens 
for CAR-T cell therapies. By processing genomic and 
proteomic data, AI aids in discovering unique markers on 
cancer cells that can be targeted by CAR-T cells, expanding 
the scope of potential therapies.

Current databases are pivotal in optimizing CAR design 
by offering various scFv sequences. Analyzing these 
databases assists scientists in identifying the most suitable 
scFv sequences to integrate into other CAR constructs, 
further refining CAR design.

The synergy of bioinformatics and AI has led to 
significant advances in CAR design, such as the 
identification of new target antigens and the creation of 
more effective CARs for killing cancer cells. This powerful 
combination has the potential to lead to the development 
of more precise and personalized CAR therapies for 
cancer.111

Therefore, bioinformatics, AI, and current databases 
are indispensable tools for developing optimal CARs. 
The amalgamation of bioinformatics, AI, and ML aids in 
pinpointing suitable scFv sequences for CAR construction. 
Additionally, current databases provide valuable insights 
for fine-tuning CAR design. By harnessing these tools, 
scientists can create CARs with highly efficient and precise 

scFv combinations.

Machine Learning Perspective
The emergence of CAR T-cell therapy has provided a 
promising avenue for the treatment of lymphoma, a group 
of blood cancers that has traditionally been challenging 
to address. This innovative approach involves genetically 
engineering a patient’s own T cells to target and eliminate 
cancer cells, resulting in notable remission rates. To 
further enhance the efficacy and personalization of 
CAR-T therapy for lymphoma, Artificial Intelligence (AI) 
and Machine Learning (ML) play a pivotal role in several 
key areas.

AI and ML are instrumental in identifying optimal 
target antigens on lymphoma cells, which is crucial for 
CAR-T design. By analyzing extensive genomic and 
proteomic data from tumor samples, these technologies 
can uncover novel target antigens that may not be readily 
apparent to human researchers, potentially leading to the 
development of more effective CAR-T constructs.112

AI and ML contribute to the optimization of CAR design 
by predicting the most effective combination of signaling 
domains, T cell costimulatory molecules, and spacer 
sequences within the CAR construct. This data-driven 
approach holds the promise of creating more potent and 
less prone to side effects CAR-T cells.113

AI and ML help predict patient response to CAR-T 
therapy by analyzing a patient’s medical history, genetic 
profile, and tumor characteristics. This personalized 
prediction enables clinicians to tailor treatment options 
and manage expectations, thereby enhancing the overall 
therapeutic strategy.

The integration of AI and ML in CAR-T therapy 
represents a significant advancement in the fight against 
lymphoma. By streamlining design, enhancing efficacy, 
and personalizing treatment, these technologies offer a 
new dawn in the battle against this devastating disease, 
potentially transforming once hopeless diagnoses into 
hopeful outcomes.112

Over the years, ML has become crucial for 
immunotherapeutic applications. A prominent 
application is peptide binding affinity prediction, which 
identifies targets for TCR-T treatment or customized 
neoantigen vaccination. The accuracy of binding affinity 
estimates has improved significantly, thanks to ongoing 
developments in ML algorithms and the availability of 
training data. While CD8 + cytotoxic T cells have received 
substantial attention, CD4 + T cells also play a significant 
role. Consequently, efforts are underway to enhance 
predictions for MHC class II presented epitopes, which 
is more challenging due to the broader range of peptide 
lengths and the open binding groove.114

Despite the progress in ML, there are still challenges, 
particularly in understanding immunogenicity, 
especially in personalized therapy based on neoepitope 
identification. This complexity arises from the unique and 
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heterogeneous interactions between a patient’s immune 
system and tumor. To advance more reliable personalized 
immunotherapy, researchers are focusing on identifying 
immune system features that influence T cell recognition 
of individual epitopes in tumors, thereby benefiting 
multiple patients.115

Immunotherapy offers the advantage of fewer side 
effects compared to existing cancer treatments. Enhanced 
bioinformatics tools and prediction algorithms have 
the potential to make immunotherapy more precise, 
customized, and effective.

However, several obstacles must be overcome to 
increase the use of CAR-T cells in standard clinical 
practice. These challenges include addressing 
technical difficulties in CAR-T cell development and 
manufacturing, standardizing clinical trial results for 
meaningful comparisons (including protocols, patient 
pre-conditioning, CAR-T cell formulation, quality, and 
persistence), and identifying reliable tools to optimize 
treatment decisions.116,117

Researchers have developed an optimized process for 
designing specific scFvs with strong binding affinities. 
This process uses ML techniques to integrate target-
specific binding affinities and information from protein 
sequences. The approach involves high-throughput 
binding quantification, pre-training language models, 
fine-tuning models for binding affinity prediction, 
constructing a fitness landscape, in silico scFv design 
using Bayesian optimization, and experimental validation. 
Training data is generated using a yeast mating assay, 
and language models are trained for affinity prediction. 
A Bayesian-based fitness landscape is constructed, and 
sampling algorithms are employed to generate high-
affinity scFv libraries. These libraries are experimentally 
tested, and the top sequences are selected for further 
analysis.

In the context of CAR-T cell therapy and bioinformatics, 
ML plays a crucial role in several aspects, including 
feature selection, clustering and classification, pattern 
recognition, and automated decision support.

Feature Selection: ML techniques are employed to 
identify the most relevant features or variables from 
complex biological data. This helps in selecting the key 
factors that influence treatment outcomes and guide the 
development of CAR-T cell therapies. ML algorithms 
can categorize patients into distinct groups based on 
their genetic profiles and disease characteristics. This 
enables the identification of patient subpopulations that 
may respond differently to CAR-T cell therapy, allowing 
for tailored treatment strategies. ML models excel at 
recognizing subtle patterns and associations within large-
scale genomic and proteomic datasets. This capability aids 
in uncovering potential biomarkers, predicting treatment 
responses, and optimizing CAR-T cell design. Automated 
Decision Support: ML-based decision support systems 
can assist healthcare professionals in making informed 

treatment decisions by providing real-time analysis of 
patient data and treatment options

Convolutional neural network (CNN)
Computer vision (CV) has gained traction in autonomous 
technology and advanced surveillance systems. In recent 
years, there has been a surge in research on medical 
image processing to aid physicians in disease diagnosis 
and identify features that may go unnoticed. Unlike 
doctors, CV can work continuously and efficiently while 
maintaining decent accuracy. The conventional approach 
involves ML, where pre-processing techniques like 
principal component analysis, independent component 
analysis, and linear discriminant analysis extract key 
information. However, this method may miss important 
features, leading to lower accuracy. Classification 
methods can be categorized as supervised learning (e.g., 
support vector machine, k-nearest neighbor, classification 
and regression tree) and unsupervised learning (e.g., 
K-Means). ML requires sufficient information to achieve 
higher accuracy, prompting the exploration of alternative 
methods to overcome this challenge.

With the advancement of computer technology, new 
hardware and software have emerged that offer larger 
memory capacity and higher processing power for deep 
learning (DL) training. DL overcomes the limitations of 
traditional ML. CNNs play a crucial role in DL, comprising 
multiple convolutional layers with kernels of varying 
sizes, enabling end-to-end learning. CNN utilizes these 
convolutional kernels to extract a multitude of features 
and combine them to accomplish downstream tasks. 
The application of CNN in medical image processing 
has garnered interest from both researchers and doctors. 
When it comes to cell classification, outer phenotype 
and inner structure are commonly used input features. 
Cell recognition reports encompass various cell types, 
including blood cells, cancer cells, and others.

Several models have been developed and adapted for 
cell recognition. One effective approach involves a hybrid 
model that combines transfer learning and generative 
adversarial networks (GANs) to enhance the accuracy of 
a small dataset containing staining-free cancer cells. This 
model utilizes optical path delay maps obtained from low-
coherence off-axis holography as input and pretrains the 
GANs with sperm cells before training the main dataset. 
The accuracy achieved by this model is 99%, surpassing 
the performance of single GANs or MobileNet with 
transfer learning.112

In another study, an accuracy of 99.54% is achieved by 
combining DL and support vector machine for classifying 
sickle cells and normal blood cells. This approach 
incorporates transfer learning and data enhancement 
techniques. Moreover, a deeply supervised residual 
network demonstrates an accuracy of 99.98% in classifying 
human epithelial-2 cells.

For the analysis of cellular inner structure, DL 
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proves effective in classifying Cercopithecus aethiops 
monkey kidney cells based on microtubule networks, 
outperforming human experts. Additionally, CNN shows 
promise in distinguishing normal and cancer cells in breast 
tissue by identifying discrepancies in actin cytoskeleton 
structures, serving as an additional diagnostic marker 
with superior performance compared to human experts.

CNNs possess strong inductive biases, such as local 
correlation and weight sharing, which enhance accuracy 
and effectiveness. However, CNN also imposes limitations 
on the upper performance bound of the model. While 
deeper CNNs can mitigate the impact of limited receptive 
fields and long-range dependencies, they require more 
complex and larger architectures, making training more 
challenging. On the other hand, the Transformer model 
excels in capturing global correlations and has been widely 
successful in natural language processing. However, 
Transformer training is time-consuming and demands an 
extensive dataset and high computational memory.

Efforts have been made to combine CNN and 
Transformer to leverage their respective strengths and 
achieve improved results. For example, the ViT model 
crops multiple patches from an image and reshapes 
them to resemble word embeddings, thereby employing 
the Transformer structure with modified input. 
Another hybrid model, AA-ResNet, integrates CNN 
and Transformer and achieves an accuracy of 77.7% 
on ImageNet classification. However, a comprehensive 
Transformer is intricate and less adaptable for transferring 
from text processing to image processing. The Bottleneck 
Transformer (Bot) block addresses this by using the core 
self-attention mechanism from Transformers to replace 
the middle convolutional layer in ResNet50’s last blocks. 
Although the model structure remains largely unchanged, 
it attains higher accuracy compared to traditional CNN 
approaches.

CAR-T DATASET
To the best of our knowledge, no existing CAR-T cell 
dataset is currently available. Therefore, in this work, we 
have constructed the first CAR-T cell dataset, which can 
serve as a baseline and reference for future research and 
dataset construction in this field.

The CAR-T cell dataset was obtained from six patients 
with acute lymphoblastic leukemia who received CAR-T 
therapy at the First Affiliated Hospital of Harbin Medical 
University. Blood samples were collected from these 
patients within several days or weeks after CAR-T therapy. 
All patients provided informed consent for the study, and 
the protocol received ethical approval from the hospital’s 
ethical committee. The blood samples were stained using 
the May Grünwald-Giemsa method, and CAR-T cells 
were confirmed through immunostaining for CAR-T 
specific markers. Wide-field microscopy with a 100x oil 
immersion lens was used to capture CAR-T cell images, 
with each image having a size of 384 × 384 pixels and 

containing only one cell.
To label the CAR-T cells in the dataset, we collaborated 

with professional blood morphologists due to the 
complexity and scarcity of blood samples. The dataset 
consists of two categories of cells: CAR-T cells and other 
normal cells. We collected 250 images per class, with an 
assignment ratio of 8:2 for each class.113

AI in CAR-T
Therapy involving CAR T-cells is a technologically 
advanced cancer treatment method based on adoptive 
cellular immunotherapy. It uses the patient’s own T-cells, 
which are genetically modified outside the body to express 
the CAR receptor specific to the tumor antigen. These 
reprogrammed T lymphocytes are then administered 
intravenously, where they expand, recognize, and 
eliminate cancer cells. CAR T-cell therapy has shown great 
effectiveness in treating B-cell lymphomas, B-cell acute 
lymphoblastic leukemia, and multiple myeloma. It has 
the potential to complement conventional treatment and 
hematopoietic stem cell transplantation. Ongoing clinical 
trials suggest its efficacy in early disease phases. However, 
the treatment is associated with unique toxicities that may 
limit its use. Additionally, CAR T-cell therapy is expensive 
and requires advanced technology for production. Precise 
qualification, monitoring, and possible interventions are 
necessary. Artificial Intelligence can be used to combine 
biomarkers associated with CAR T-cell response to create 
robust prognostic/predictive models. Building such 
models using AI requires large datasets, necessitating 
data aggregation from multiple institutions to avoid 
overfitting.113

Future manufacturing perspective
This perspective explores early ideas regarding the 
potential application of automated AI-driven CAR-T 
cell production directly at the point of care within 
hospitals, emphasizing engineering considerations for 
making hardware and software components efficient 
in manufacturing autologous CAR-T cells. Significant 
barriers must be addressed before widespread deployment 
in the regulatory landscape. While facility design according 
to GMP standards and Government-Mediated Access 
Price (GAMP) recommendations have been contemplated 
for software, specific regulatory guidance from the EMA 
and FDA is essential before implementing an AI-driven 
manufacturing platform. It involves ensuring the AI 
algorithm’s reliability and ability to operate confidently, 
including aspects such as the quality and quantity of 
data suitable for training and potentially for continuous 
training.118,119

Economic factors are also a key consideration. The 
reduction in labor costs compared to automation costs is a 
critical aspect. Demonstrating the potential for overall cost 
reduction is achievable by comparing similar technologies 
for automated stem cell production.120 In future 
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developments of AI-driven Decentralized Production 
for Advanced Therapies in the Hospital (AIDPATH), 
economic health assessments will be a focus, considering 
patient supply considerations alongside economic factors. 
Due to parallelization, bioreactors can strive for high 
scalability and throughput, which can increase patient 
access through reduced production and delivery timelines. 
The extent to which centralized and decentralized CAR-T 
cell production coexists in the future requires further 
discussion, as does the operator model.

While not everyone needs highly specialized skills, 
the system can be operated by individuals with the flow 
working automatically, featuring an easy-to-use user 
interface. The role of AI in hospitals, external service 
providers, or pharmaceutical companies remains 
uncertain, and it is essential to consider that maintenance 
and operation of hardware, AI, and IT infrastructure will 
necessitate new responsibilities for operators.121

In summary, this concept presents a promising idea 
that will require ongoing refinement and expansion in the 
coming years to keep pace with the rapidly evolving cell 
and gene therapy market.122

To further enhance the understanding of this concept, 
it is essential to consider the interdisciplinary exchange 
of stakeholders and the development of a holistic 
approach to exploit the full potential of automated 
CAR-T cell therapy. The deployment of an automated 
AI-driven CAR-T cell manufacturing platform in smart 
manufacturing hospitals is a significant step toward this 
future. The concept, developed within the scope of EU 
H2020 project AIDPATH (AI-driven, Decentralized 
Production for Advanced Therapies in the Hospital), 
focuses on addressing technological challenges and 
potential solutions, emphasizing the need for regulatory 
guidance and economic health assessments.

The visual representation of an automated CAR-T cell 
production system within a hospital setting, along with 
data flow diagrams and scalable bioreactors, can provide 
a vivid and comprehensive understanding of the potential 
of this technology. These visuals can help stakeholders 
grasp the intricacies of the AI-driven process and the 
potential for increased patient access through faster 
production times

Future medical imaging perspective
Among these evolving technologies, medical imaging 
methods hold significant importance. The utilization and 
purposes of medical imaging are still evolving, but the 
findings presented above strongly indicate that imaging will 
play a pivotal role in guiding treatment decisions. Recent 
research suggests that in a cohort of patients with DLBCL 
who received first-line chemotherapy, the assessment of 
lesion dissemination on PET/CT, measured by the most 
significant distance between two lesions (normalized 
with body surface area), contributes to evaluating disease 
spread and holds independent prognostic value, regardless 

of Total Metabolic Tumor Volume.123

Radiomics, another emerging field, can assist in 
extracting clinically relevant information from medical 
imaging. Recent studies across various solid tumor types 
suggest that a signature composed of a small subset 
of imaging biomarkers, whether assessed before124 or 
during124,125 treatment, may help identify individuals 
who could benefit from early intervention.126 Several 
quantitative imaging biomarkers, including increased 
tumor volume, higher tumor glucose metabolism, 
tumor organotropism in visceral organs, and reduced 
skeletal muscle index, have demonstrated the potential 
to predict responses to immunotherapies involving 
immune checkpoint blockers. Importantly, all of these 
biomarkers exhibit a negative correlation with treatment 
outcomes.127–129

Cost analysis in the future
In the current stage of development, researchers are still 
assessing the cost-effectiveness of CAR-T treatment while 
considering the inherent risks associated with large-scale 
CAR-T production. An in-depth analysis of CAR-T cell 
therapy necessitates labor-intensive laboratory tests 
conducted by experienced professionals. Most of these 
processes must adhere to specific GMP standards to ensure 
the success of CAR-T production. Compared to other 
cancer treatment methods, CAR-T treatment involves 
several stages that come with higher costs, including 
virus-based gene delivery, the extensive use of cell line 
cultures, and CAR-T safety testing for each recipient.130,131

Efforts to reduce the costs of CAR-T production involve 
optimizing various stages. It includes selecting the most 
efficient vector for gene delivery, researching viruses 
with the highest competence in transducing target genes, 
employing optimal techniques for cell packaging lines 
in cGMP production, and minimizing additional post-
infusion care required for CAR-T-treated patients.130

In contrast, some patients have compared the costs of 
CAR-T treatment infusion to traditional chemotherapy, 
considering factors like the stage of cancer, the potential 
side effects of chemotherapy, the costs associated with 
post-infusion CAR-T care, and the more promising 
outcomes.132,133 While selecting CAR-T patients based on 
specific criteria has been implemented, it has not always 
yielded optimal results—additionally, patients who do not 
exhibit a treatment response after CAR-T treatment risk 
incurring treatment costs. Therefore, extensive testing 
before CAR-T infusion treatment is necessary to minimize 
unnecessary expenses.134

Governments have expressed concerns about CAR-T 
treatment due to its high cost and the need for complex 
legal permits. However, scientific advancements 
deserve recognition, even if all do not readily accept 
them. As a result, various efforts are needed to enhance 
knowledge, streamline regulatory logistics, and allocate 
funds for further development. Current technology 
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strongly supports the evolution of CAR-T treatment, 
thanks to contributions from scientists aiming to make 
CAR-T treatment more efficient and accessible. These 
considerations are crucial, as preliminary studies have 
shown the effectiveness of CAR-T treatment in saving 
cancer patients.135

Conclusion
Lymphoma, one of the cancer types requiring increased 
attention in its treatment, still faces limitations in available 
medications on a global scale. As an immunotherapy tool, 
CAR-T cell therapy holds the promise of a significant 
breakthrough in the treatment of lymphoma cancer. To 
gain a comprehensive understanding of cancer treatment 
using CAR-T cell therapy technology, one must delve into 
detailed information and consider which types of cancer 
treatments should be explored and developed in future 
manufacturing.

This review has focused on the evolution of CAR-T 
cell therapy over the years, the selection of appropriate 
lymphoma antigens for CAR-T targeting, and the design, 
production, and administration of CAR-T cell therapy. It 
has also presented the advantages and drawbacks of this 
therapy, supplemented by insights into the future potential 
of CAR-T cell therapy from a computational study 
perspective. This information is anticipated to provide 
valuable insights for researchers and other stakeholders in 
developing this promising technology for more effective 
lymphoma cancer treatment.
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