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Two years on from the initial release of AlphaFold, we have 
seen its widespread adoption as a structure prediction 
tool. Here, we discuss some of the latest work based on 
AlphaFold, with a particular focus on its use within the 
structural biology community. This encompasses use cases 
like speeding up structure determination itself, enabling 
new computational studies, and building new tools and 
workflows. We also look at the ongoing validation of 
AlphaFold, as its predictions continue to be compared 
against large numbers of experimental structures to 
further delineate the model’s capabilities and limitations.

AlphaFold | structural biology | protein structure prediction

The first experimental protein structures were determined 
in the 1950s using X-ray crystallography, proving that protein 
chains fold into well-defined 3D shapes (1). Anfinsen went 
on to assert that each sequence of amino acids adopts a 
specific 3D structure (2). This raised an important question: 
Can we predict a protein’s structure given only its amino acid 
sequence?

Even in the early days of structural biology, when few pro-
tein structures were available, it became clear that proteins 
with similar sequences adopt similar shapes. This quickly led 
to the idea of homology modeling—predicting a structure 
based on its sequence similarity to known structures, see, 
e.g., ref. 3. As more experimental data accumulated, the 
Protein Data Bank (PDB) was established in the 1970s (4). 
This was crucial for the field, making possible open sharing 
of structural data, facilitating its analysis, and laying the foun-
dation for all future structure prediction efforts.

In 1994, the critical assessment of methods for protein 
structure prediction (CASP) was started to encourage the 
development of more accurate prediction methods (5). CASP 
consists of blind prediction challenges: Participants predict 
nontrivial protein structures for which experimental results 
have not yet been made public. With the growth in comput-
ing power and in the PDB during the late 90s and 2000s, 
novel computational methods flourished. Fragment-based 
methods used short protein fragments extracted from exper-
imental structures as building blocks to construct a predic-
tion (6). More recently, methods incorporating evolutionary 
information and contact prediction showed great promise 
(7–9). However, predictions rarely met the bar for near-
experimental quality (a GDT_TS score > 90) before CASP14, 
when the machine learning system AlphaFold2 (referred in 
this paper as simply AlphaFold) achieved this level of accu-
racy on the majority of CASP targets (10, 11).

Since AlphaFold’s release in 2021, it has seen rapid and 
widespread adoption. Based on data from OpenAlex, the 
paper describing the method has now received over 10,000 

citations (10). Originated as a repository of 360,000 predicted 
protein structures from 21 organisms including humans, the 
AlphaFold Database has since grown exponentially, encom-
passing a staggering collection of 214,000,000 structures in 
2022. The AlphaFold Database has had 1.6 million unique 
visitors from more than 190 countries, and the whole archive 
has been downloaded over 23,000 times as of January 2024 
(12–14). Finally, our own analysis of PDB depositions up to 
January 2023 found ~850 entries associated with a paper that 
uses AlphaFold (of which over 60% were cryo-EM structures); 
evidence of the method’s widespread use among experimen-
tal structural biologists. Here, we review how AlphaFold is 
being used today, with a particular focus on that community. 
We also discuss recent work on evaluating AlphaFold by com-
paring its predictions against experimental results on a larger 
scale. Given the rapid pace of the field, we do not expect this 
review to be complete.

AlphaFold in Structural Biology

Impact on Experimental Structure Determination. A major 
outcome of improvements in structure prediction has been 
to accelerate the work of experimental structural biologists 
by simplifying certain steps in their workflow.

This first became apparent in X-ray crystallography. To 
determine a structure by X-ray crystallography or microcrystal 
electron diffraction, it is necessary to reconstruct the phase 
information lost during the diffraction experiment. Molecular 
replacement is a technique to reconstruct the phases that 
requires no additional experimental work, but it does rely on 
having a search model that closely resembles the target struc-
ture. There have now been numerous reports of successful 
molecular replacement using AlphaFold predictions (15–18), 
including challenging cases where all search models derived 
from PDB had failed (19, 20), where the target had a novel fold 
(21) or was a de novo design (22). In fact, work by Terwilliger 
et al. (discussed later) suggests that a high percentage of 
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structures can now be phased largely automatically using 
AlphaFold (23).

The community has developed a variety of tools to support 
this workflow, making a further valuable contribution to 
accelerating the process. Both major software suites for mac-
romolecular crystallography, CCP4 (24, 25) and PHENIX (26), 
now include import procedures that convert AlphaFold’s 
pLDDT* confidence metric into an estimated B-factor and 
remove low-confidence regions. CCP4Cloud, a cloud-based 
environment for crystallographic computations (27), offers 
online access to AlphaFold modeling (25). Widely used auto-
matic tools like MRBUMP (28) and MRPARSE (29) can now 
search for templates and fetch predictions from the 
AlphaFold Database with minimal user intervention. In some 
cases, it is better to split a prediction into smaller regions 
before attempting molecular replacement. Software like 
Slice’n’Dice in CCP4 (30) and PHENIX’s process_predicted_
model (31) can split an AlphaFold prediction into domains 
based on its PAE plot† or on spatial clustering, while 
ARCIMBOLDO (32), an ab initio phasing tool, can extract frag-
ments from AlphaFold models (33). The Low Resolution 
Structure Refinement pipeline (LORESTR) has also been 
updated to automatically fetch models from the AlphaFold 
Database and use them for restraints generation (25, 34).

AlphaFold has also had a substantial impact on structure 
determination by cryo-EM. Since the “Resolution Revolution” 
(35) it is relatively common to obtain detailed electron density 
maps with resolution better than 3.5 Å. Still, many recon-
structions suffer from data collection problems leading to 
lower resolution in some regions. Cryo-ET and subtomogram 
averaging are also now used to visualize large assemblies or 
parts of whole cells and can yield lower resolution data. 
Combining cryo-EM with AlphaFold predictions can give the 
best of both worlds, with the experimental data serving to 
validate the prediction and reveal domain arrangements, 
while the prediction provides fine atomic details.

A pioneering example of this integrative approach was 
work on the nuclear pore complex, which fit AlphaFold mod-
els for individual proteins and small subcomplexes into elec-
tron density maps with resolution 12 to 23 Å, reconstituting 
the majority of this enormous ~120 MDa assembly (36, 37). 
Since then, we have seen numerous other integrative cryo-EM 
examples, elucidating the structures of the intraflagellar train 
(38–40); the augmin complex (41, 42); components of the 
yeast small subunit processome (43); and components of the 
eukaryotic lipid transport machinery (44). In the case of 
Retriever (part of a 0.5 MDa endosomal trafficking complex), 
particles suffered from preferred orientations, leading to one 
direction being poorly resolved with an overestimated overall 
resolution of 4.3 Å. However, the close agreement with 
AlphaFold’s prediction made it easy to fit the model into 
experimental maps, and the authors went on to reconstruct 
the whole Commander complex, combining information from 
experimental structures and predictions (45).

Recognizing the utility of this approach, some of the major 
model building and fitting programs used in cryo-EM have 

added support for AlphaFold predictions. COOT (46) can 
import predictions from the AlphaFold Database, while 
ChimeraX (47) includes an option to generate new predictions 
in ColabFold (48). Again the community has built on AlphaFold 
to produce useful automated workflows. For example, an 
iterative procedure for model building has been developed 
that begins by fitting an initial AlphaFold prediction into the 
experimental density using PHENIX tooling (49). In subse-
quent iterations, the latest fitted structure is provided to 
AlphaFold as a template, producing a prediction that more 
closely matches the density. This iterative procedure improves 
the resulting structures beyond simple rebuilding against 
experimental data. Another automated solution uses a deep 
learning–based quality score (DAQ) to identify low-quality 
regions and then rebuilds these in a targeted fashion with 
AlphaFold (50). Interestingly, an analysis using the ML-based 
validation tool checkMySequence has highlighted at least one 
example where a deposited cryo-EM structure appears to 
suffer from a register shift, while a rebuilt model guided by 
an AlphaFold prediction is in good agreement with the exper-
imental density map (51). Another ML tool conkit-validate 
specifically uses AlphaFold predictions to derive interresidue 
contacts and distances for identification of register shifts (52).

A particularly novel use of AlphaFold in cryo-EM has been 
identifying unknown densities via structural search. In one 
example, researchers were working to solve the structure of 
the mycobacterial lipid transporter Mce1 (53). Their density 
maps revealed a previously unknown subunit of the complex, 
in sufficient detail to build a polyalanine model of the protein. 
They were then able to perform a structural search of the 
model against a large number of predictions in the AlphaFold 
Database, which returned a hit for MSMEG_3032/LucB. The 
assignment was subsequently validated by checking that 
LucB and the rest of the Mce1 system copurify. This method 
in particular is only possible thanks to the availability of large 
prediction databases.

Predicting Protein–Protein Interactions. Although AlphaFold 
initially was not trained to predict protein–protein complexes, 
it became apparent that even a monomer version of AlphaFold 
is capable of predicting them (54). A specially trained AlphaFold-
Multimer was released later in 2021, facilitating the discovery 
and characterization of new protein–protein (including protein–
peptide) interactions (55). Computational methods are useful in 
this context, as they can scale to screening millions of protein 
pairs. One of the first examples was work by Humphreys et al., 
which used a combination of RoseTTAFold (56) and AlphaFold 
to screen 8.3 million protein pairs from Saccharomyces cerevisiae 
(54). Searching for complexes that might be broadly conserved 
across eukaryotes, they identified 1,505 novel interactions and 
proposed predicted structures for 912 assemblies. Other large-
scale interaction prediction efforts have explored the human 
proteome (57) and the proteome of Bacillus subtilis (58), using 
experimental data and prior knowledge to narrow down the 
set of protein pairs to process.

More recent work has used AlphaFold-Multimer to better 
understand specific biological pathways on a mechanistic level 
(55). For example, Gu et al. had identified the largely uncharac-
terized protein midnolin as a novel mediator of proteasomal 
degradation, involved in regulating levels of transcription factors 
like EGR1, FosB, and c-Fos (59). They used AlphaFold-Multimer 

*pLDDT (predicted Local Distance Difference Test) is a per-residue score between 0 and 
100 that reflects the AlphaFold’s confidence in the local structure of a domain.
†PAE (Predicted Aligned Error) is an AlphaFold confidence metric reported for each pair 
of residues, and reflects confidence in their relative positions. A low PAE implies high 
confidence.
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to predict the structure of midnolin in complex with several of 
its substrates, including IRF4. The complex prediction suggested 
a mechanism of action in which two Catch domains in midnolin 
come together to capture a β-strand portion of the substrate. 
This hypothesis was tested for several midnolin substrates, 
either by introducing targeted mutations into the predicted 
β-strand region or deleting it altogether, after which the inter-
action with midnolin no longer occurred.

In a separate example, Lim et al. were studying the protein 
DONSON, which is necessary for the assembly of CMG helicase 
in vertebrates (60). However, exactly how DONSON mediated 
helicase assembly was unclear. The authors used AlphaFold-
Multimer to screen 70 core DNA replication factors for possible 
interactions with DONSON. Based on the most confidently 
predicted complexes, they were able to build up a structural 
model of a pre-Loading Complex, in which DONSON interacts 
with GINS, TOPBP1, and Pol ε. Experimental evidence for the 
model was subsequently obtained from coimmunoprecipita-
tion and site-directed mutagenesis. Analogously, Sifri et al. 
investigated a system for DNA double-strand break repair, 
employing AlphaFold-Multimer to predict all possible pairwise 
protein combinations within the 53BP1-RIF1-shieldin-CST 
pathway. Their analysis revealed a novel binding interface 
between RIF1 and SHLD3 and provided structural information 
for seven previously characterized interactions; these findings 
were subsequently confirmed experimentally (61). These 
examples illustrate how multimeric structure prediction can 
shed light on protein–protein interactions, both through large-
scale screens and more targeted structure modeling.

Today, software is available that aims to simplify and accel-
erate interaction screening with AlphaFold-Multimer, notably 
AlphaPulldown (62). Besides large-scale screening, other 
supported use cases include locating the binding interface 
between two proteins by screening pairs of sequence frag-
ments, and identifying which subunits of a complex are in 
direct contact via all-to-all screening. Given a list of pairwise 
subunit interactions, other tools like MoLPC can attempt to 
build out a model of the full complex (63). MoLPC uses Monte 
Carlo tree search to explore possible orders in which to 
assemble the chains, stopping when there are too many 
clashes and scoring each output to identify the most prom-
ising assembly. The latest update of AlphaFold-Multimer also 
supports higher residue and chain limits, meaning that com-
plexes of up to 20 chains may now be predicted directly.

Use in Protein Design. While AlphaFold is not intended as a 
protein design model, it has been used by the community as 
a component in design pipelines. For example, Wicky et al. 
used AlphaFold to generate novel “hallucinated” complexes 
by beginning with a random sequence and number of copies 
and then performing Monte Carlo search using AlphaFold 
confidence plus a cyclic symmetry metric as the loss function 
(64). This generated topologically diverse 1- to 7-mers that were 
subsequently used as targets for design with ProteinMPNN (65). 
A more recent investigation has shown that both AlphaFold 
and RosettaFold are useful for filtering protein designs, with 
the inclusion of a structure prediction step increasing success 
rates significantly over a purely energy-based pipeline (66). 
After exploring several filtering approaches, the authors used 
AlphaFold average interchain PAE < 10 as a selection criterion 
in their prospective analysis, finding that this yielded a higher 

success rate for binder designs by between eightfold and 30-
fold.

Another way AlphaFold has been used in design is simply 
to generate a starting prediction for a protein with no exper-
imental structure, which can then be used to guide design 
efforts and suggest which domains or residues to edit. For 
example, in recent work by Kreitz et al. the authors aimed to 
re-engineer a contractile injection system from the bacterium 
Photorhabdus asymbiotica so that it would target human cells. 
As no experimental structure was available, they modeled 
the trimeric distal tip protein with AlphaFold, revealing a 
globular domain that appeared to be responsible for target 
recognition. By replacing this domain with alternative binding 
proteins, they were able to alter the injection system to target 
human and mouse cells, demonstrating its potential as a 
delivery system for therapeutics (67).

Enabling New Computational Work. A key advantage of com­
putational methods is their ability to scale. Experimental 
structural biology may take months to solve one protein 
structure and so cannot keep pace with the rapid accumulation 
of known protein sequences. Structure prediction tools can 
keep up with modern sequencing, and enable the construction 
of extremely large prediction databases. Examples include 
the AlphaFold Database (12, 13), which now covers over 
200M UniProt sequences (68), and ESM Metagenomic Atlas 
(69), which covers 600M metagenomic sequences. The com­
munity has further enriched these prediction databases 
with information from other sources. For example, AlphaFill 
adds ligands to predictions by “transplanting” them in from 
similar PDB structures (70), while TmAlphaFold and AFTM use 
software to add predicted membrane planes (71, 72).

The availability of large structure databases has spurred 
on the development of efficient algorithms like FoldSeek (73) 
and FoldSeek cluster (74), which can group structurally sim-
ilar entries or identify proteins similar to a query structure. 
We have already mentioned how structural search can be 
used to identify unknown densities in cryo-EM maps. It can 
also be applied in other situations where researchers would 
previously have relied on sequence homology, e.g., for func-
tional annotation (75), or for identifying parasite proteins 
that are molecular mimics of a host protein (76).

Large structure prediction databases also contribute to the 
effort to catalog protein folds. CATH, a hierarchy-based struc-
tural classification of protein domains, now incorporates 
AlphaFold predictions from 21 model organisms. Analysis of 
~370,000 predicted domains, filtered based on confidence 
and geometrical quality, assigned 92% of them to existing 
CATH superfamilies. Nevertheless, AlphaFold predictions con-
tained considerable structural novelty: 25 new superfamilies 
and a 36% increase in the number of unique “global” folds 
(77). More recent analyses of the full AlphaFold Structure 
Database have looked at the properties of its structural clus-
ters (74) and its potential for use in function annotation (78).

Other computational work builds on AlphaFold by leverag-
ing its confidence metrics rather than its ability to scale. Two 
particularly interesting examples explore AlphaFold’s ability 
to rank its own predictions. First, a method called AFSample 
has been developed which generates and ranks ~5,000 
AlphaFold-Multimer predictions for any given input (79). 
Diversity is boosted by enabling dropout and by varying a 
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range of settings (e.g., whether templates are used and the 
number of recycling iterations). AFSample demonstrates that 
ranking large numbers of diverse predictions using a pTM-
based score‡ often succeeds in picking out higher accuracy 
models, and the method ranked top in the protein assembly 
category of CASP15, with a +0.13 higher DockQ score than 
default AlphaFold-Multimer.

Meanwhile, Roney and Ovchinnikov have investigated 
whether AlphaFold can rank predictions made in the absence 
of any evolutionary information from a multiple sequence 
alignment (80). They generated multiple predictions for a 
given target structure, each using a different “decoy” structure 
as the input template. A “composite confidence score” based 
on several AlphaFold outputs was able to rank the resulting 
predictions with a mean Spearman’s coefficient of 0.925, iden-
tifying the decoys closest to the target. Composite confidence 
outperformed ROSETTA’s energy function (81) and DeepAccNet 
(82) at this task. The authors proposed based on the results 
that AlphaFold has “learned an energy function that can assess 
sequence–structure agreement, but needs coevolution data 
or templates to help search for optimal structures.”

This observation resonates with another finding: AlphaFold's 
low confidence scores (low pLDDT and high predicted aligned 
error) correlate strongly with intrinsic protein disorder, making 
it a state-of-the-art predictor of protein disordered regions. 
This was initially observed during large-scale protein structure 
modeling for the AlphaFold Database (13) and later confirmed 
by independent researchers (17, 83, 84).

Although AlphaFold was originally designed to predict only 
one conformation for a particular sequence of amino acids, 
it seems that it is often possible to induce AlphaFold into 
generating alternative structural states of a protein. One way 
of doing this is subsampling or clustering of MSA based on 
sequence similarity (85, 86). Another strategy is combining 
shallow MSA with a template corresponding to the specific 
state (87, 88). If the MSA signal is strong, AlphaFold tends to 
ignore structural information from the template; artificial 
weakening of the MSA signal by reducing the number of 
sequences in the MSA increases contribution from the tem-
plate and pushes AlphaFold prediction to the conformation 
specified by a template. This can be easily done by specifying 
the corresponding parameters of ColabFold, a popular, 
community-driven front-end to AlphaFold (48).

Experimental Validation of AlphaFold Models

CASP14 provided the initial evidence for AlphaFold’s accu-
racy. However, the evaluation of any computational method 
is necessarily an ongoing process, involving continued com-
parison of predictions against new experimental results. This 
section looks at recent investigations that compare AlphaFold 
predictions against experimental results on a larger scale, to 
evaluate different aspects of the method.

Single Chains. Molecular replacement, a technique to solve 
phase problem in macromolecular crystallography, requires a 
search model that closely resembles the actual contents of the 
target crystal. Typically this technique works well if the rmsd 
between model and target is <1.5 Å (89), and it may work at <2 Å 

rmsd on 50% of atoms (90). Therefore, if AlphaFold predictions 
can be used for molecular replacement it indicates that they 
closely resemble the crystal structures. A comprehensive 
investigation into the use of AlphaFold models for molecular 
replacement has now been conducted by Terwilliger et al. (23). 
They took 215 recent PDB structures solved by experimental 
phasing (indicating that molecular replacement attempts by 
the original depositors likely failed). They then tried to solve 
the structures using an AlphaFold search model followed by 
a fully automated iterative refinement process. Molecular 
replacement succeeded for 208/215 cases, and further auto­
mated refinement went on to yield a high-quality model for 
87% of the structures (at least 50% of C-alpha atoms matching 
the deposited model to within 2 Å).

A second investigation used the same benchmark set of 215 
structures to study how closely AlphaFold predictions matched: 
1) density maps from the automated refinement process and 
2) deposited PDB models (91). The mean map-model correla-
tion was 0.56 for AlphaFold predictions vs. 0.86 for the depos-
ited models. AlphaFold predictions had a median Cα rmsd to 
the corresponding PDB structure of 1.0 Å. To put this in context, 
the median rmsd for another PDB structure of the same pro-
tein crystallized in a different space group would be 0.6 Å. 
Confidence scores were predictive of the level of agreement 
with deposited models, highlighting the importance of refer-
ring to these when interpreting predictions. Regions with low 
confidence (pLDDT < 70) had a median rmsd of 3.5 Å, while for 
high-confidence regions (pLDDT > 90) the median rmsd was 
only 0.6 Å. An analysis of side chains indicated that 20% of 
AlphaFold-predicted side chains are substantially different 
from the map data and 7% are incompatible with the data; 
corresponding values for PDB structures in a different space 
group were 6% and 2%. The authors concluded that AlphaFold 
predictions are “valuable hypotheses” that “accelerate but do 
not replace experimental structure determination.”

Complexes. Evidence for predicted complexes can be obtained 
at scale using nonstructural experimental techniques like 
cross-linking mass-spectrometry (XL-MS). In this method, 
chemical cross-linkers are used to covalently fix amino 
acids that are spatially close. After a protease digestion step, 
the short cross-linked peptides can be identified by mass 
spectrometry, providing structural constraints on a protein 
or protein–protein interface. In one study, in-cell XL-MS 
was used to search for protein–protein interactions in B. 
subtilis. Based on AlphaFold-Multimer modeling, novel high-
confidence structures were proposed for 153 dimeric and 14 
trimeric protein assemblies. The authors then looked at the 
cross-link violation rate of AlphaFold-Multimer predictions 
as a function of the ipTM confidence metric. They found 
that models with ipTM > 0.85 show especially low rates of 
cross-link violation and tend to agree with experimental 
interresidue distances identified in situ (58). Models in the 
lower confidence 0.55 to 0.85 ipTM range showed a wide 
range of violation rates and would particularly benefit from 
checking against independent experimental data.

Biologically Relevant States. The majority of data used to train 
AlphaFold come from crystal structures, and there is a long-
standing discussion in the field about how representative 
these are of proteins in solution and in cells (92).

‡pTM stands for predicted TM-score, and is a measure of AlphaFold’s expected global 
accuracy on a protein or complex. An interface-only version of pTM can be computed for 
complexes, called ipTM.
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Cross-linking mass spectrometry is one method that can 
deliver information about protein states in situ. A study by 
Bartolec et al. generated a high-coverage cross-link dataset 
for HEK293 cells and then looked at whether these cross-links 
were satisfied in PDB structures as well as in AlphaFold pre-
dictions (93). Of note, 92% of intrachain cross-links were 
satisfied in high-confidence AlphaFold models for proteins 
without an experimental structure. This compares favorably 
with the corresponding cross-link satisfaction rate for PDB 
structures (89 to 99%). Another study looked at the 100 best-
sampled proteins from intact Tetrahymena thermophila cilia, 
cross-linked in situ (94). AlphaFold models satisfied 86.2% of 
the experimental cross-links, with 43% of proteins showing 
no cross-linking violations at all. Observed violations tended 
to occur in low-confidence regions or between domains. 
Based on this, the authors concluded that AlphaFold “pre-
dicts biologically relevant protein conformations.”

Protein structures solved by NMR are another interesting 
point of comparison for AlphaFold models. In contrast to crys-
tallography, NMR provides information about solution-state 
protein structures, in the form of spectra and derived cou-
pling constants, e.g., chemical shifts. Fowler and Williamson 
have reported that AlphaFold outputs are sometimes a better 
fit to the underlying NMR data than deposited ensembles, 
based on quality metrics like ANSURR (95). Their investigation 
looked at 904 human proteins and found that the AlphaFold 
model had a significantly higher quality score in 30% of cases, 
while the NMR ensemble was preferred in 2% of cases. 
Specifically they suggest that AlphaFold can produce more 
correct hydrogen bonds that persist in solution. A separate 
focused study on nine small monomeric proteins, absent 
from the AlphaFold training set, concluded that AlphaFold 
predictions fit the NMR data almost as well as, or in some 
cases even better than, experimental structures (96). An inves-
tigation of short peptide NMR structures produced more 
mixed results, with AlphaFold outperforming the other com-
putational methods tested, but showing weaknesses on 
highly solvated peptides and helix-turn-helix structures (97).

Conclusions and Future Directions

The arrival of AlphaFold has been a transformative event in 
the field of structural biology. We have reviewed some of the 
many ways the method has been applied in the field, from 
accelerating experimental structure determination and pro-
tein design to discovering and understanding protein–protein 

interactions. AlphaFold has also enabled breakthroughs in 
closely related areas like genetics and molecular biology, for 
instance allowing development of AlphaMissense, which clas-
sifies the pathogenicity of the human genetic variants (98). 
The ability of AlphaFold to scale along with its self-reported 
confidence metrics has enabled a range of new computational 
work. We also touched on the ongoing process of evaluating 
AlphaFold predictions by comparing them against newly 
deposited structures and experimental data from other meth-
ods. A common theme is the importance of interpreting pre-
dictions in the light of their confidence metrics, with higher 
confidence models more likely to prove accurate. In lower 
confidence bands, a prediction can still provide a useful start-
ing hypothesis, but it is even more important to seek inde-
pendent experimental data to validate conclusions.

Current AlphaFold limitations can be viewed as an action 
plan for future development: modeling protein–DNA and pro-
tein–RNA complexes, predicting all functional states of a pro-
tein, elucidating the effects of point mutations, predicting the 
binding of ligands/ions, and modeling posttranslational mod-
ifications; first steps in some of these directions have already 
been reported (99, 100). Other challenges include predicting 
larger complexes than ever before, improving predictions for 
antigen–antibody interactions and orphan proteins, and 
improving domain positioning for membrane proteins. The 
inclusion of new categories in CASP15 in 2022 is a sign that the 
wider field of structure prediction is now moving beyond single 
protein chains. It also reflects the growing interest in structure 
prediction and its broader application. We are excited to see 
what new research future models might enable.

We would like to thank the multitude of people who have 
contributed to the development and adoption of AlphaFold. 
This includes not only the team at Google DeepMind but the 
many scientists who contributed to the training data, have 
used AlphaFold in their research, integrated AlphaFold into 
their tools, expanded its functionality, and provided construc-
tive feedback. The method’s widespread adoption and suc-
cessful use is thanks in large part to the work of this wider 
community.

Recent progress in structure prediction is a testament to 
the power of AI; we believe that this is only the beginning. 
The future of AI for science is full of promise, and we are only 
starting to scratch the surface of what is possible.
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this work.
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