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A Network Toxicology Approach for Mechanistic Modelling
of Nanomaterial Hazard and Adverse Outcomes

Giusy del Giudice, Angela Serra, Alisa Pavel, Marcella Torres Maia, Laura Aliisa Saarimäki,
Michele Fratello, Antonio Federico, Harri Alenius, Bengt Fadeel, and Dario Greco*

Hazard assessment is the first step in evaluating the potential adverse effects
of chemicals. Traditionally, toxicological assessment has focused on the
exposure, overlooking the impact of the exposed system on the observed
toxicity. However, systems toxicology emphasizes how system properties
significantly contribute to the observed response. Hence, systems theory
states that interactions store more information than individual elements,
leading to the adoption of network based models to represent complex
systems in many fields of life sciences. Here, they develop a network-based
approach to characterize toxicological responses in the context of a biological
system, inferring biological system specific networks. They directly link
molecular alterations to the adverse outcome pathway (AOP) framework,
establishing direct connections between omics data and toxicologically
relevant phenotypic events. They apply this framework to a dataset including
31 engineered nanomaterials with different physicochemical properties in two
different in vitro and one in vivo models and demonstrate how the biological
system is the driving force of the observed response. This work highlights the
potential of network-based methods to significantly improve their
understanding of toxicological mechanisms from a systems biology
perspective and provides relevant considerations and future data-driven
approaches for the hazard assessment of nanomaterials and other advanced
materials.
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1. Introduction

Chemical safety assessment, compris-
ing the evaluation of exposure hazard
and risk, is essential for safeguarding
human and environmental health.[1]

Hazard assessment relies on model sys-
tems to perform an initial evaluation of
potential adverse effects of chemicals.

Traditionally, hazard evaluation focused
on the compound characteristics, overlook-
ing the context of the exposure that occurs
in real-life situations. However, a growing
perspective suggests that the molecular
configuration of the biological system ex-
posed (here defined as all the active genes
and present epigenetic modifications at
the physiological stage) can influence the
observed phenotype.[2] This is especially
relevant for the emerging class of advanced
materials, such as engineered nanomate-
rials (ENMs), where extrinsic descriptors
(namely those properties which are affected
by the test system exposed), take different
values depending on external conditions.[3]

Indeed, in contemporary toxicology, the

A. Serra, A. Federico, D. Greco
Tampere Institute for Advanced Study
Tampere University
Tampere 33100, Finland
H. Alenius
Human Microbiome Research Program (HUMI)
University of Helsinki
Helsinki 00014, Finland
H. Alenius, B. Fadeel
Institute of Environmental Medicine
Karolinska Institutet
Stockholm 171 77, Sweden
D. Greco
Institute of Biotechnology
University of Helsinki
Helsinki 00790, Finland

Adv. Sci. 2024, 11, 2400389 2400389 (1 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedscience.com
mailto:dario.greco@tuni.fi
https://doi.org/10.1002/advs.202400389
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


www.advancedsciencenews.com www.advancedscience.com

observed toxicities are often assumed to be primarily influenced
by the dose and the intrinsic properties of the ENMs exposure
(i.e., its physicochemical characteristics and all the properties that
are not dependent on the test system exposed), while the features
of the exposed biological system (test system) are referred to as
“biological descriptors” of the exposure.[4] However, understand-
ing the system effects is important for selecting relevant models
and to correctly characterize the hazard.[5] Thus far, a plethora
of omics (e.g., transcriptomics, proteomics) data have been gen-
erated to investigate the molecular responses to compounds in
various test systems.[6] However, the impact of the biological sys-
tem on the observed toxicity is frequently overlooked.

The view of living organisms as integrated systems of dy-
namic and interrelated components has shaped the field of sys-
tems biology.[7] This holistic paradigm also includes interactions
between organisms with xenobiotics, which is the conceptual
foundation of systems toxicology.[8] The systems theory paradigm
states that the interactions store more information than the indi-
vidual elements of the system (the whole is bigger than the sum1).
In this light, molecular profiling of systems alterations are in-
terpreted using analytical approaches with increasing complex-
ity, often based on network theory.[9,10] We previously described
a systems toxicology approach for ENM grouping and prioritiza-
tion, demonstrating that including molecular alterations of bio-
logical systems after the exposure provides better molecular prox-
ies of toxicity.[11] However, traditional approaches in mechanis-
tic toxicogenomics do not explicitly require modeling the inter-
actions between genes, and are based on the assessment of a
linear representation of the response.[12] Established methods to
characterize chemicals mechanism of action (MOA) using omics
data, preprocess and filter data in order to select the most rele-
vant alterations and characterize them functionally. A common
strategy uses gene ontology and pathway databases to interpret
these alterations.[13] Similarly, other studies interpreted differen-
tially expressed genes and dose responsive genes using the ad-
verse outcome pathway (AOP) framework.[4,14] Such representa-
tions, however, are often difficult to associate with system-level
effects, and require interpretation and manual reconstruction of
the events. We recently demonstrated on a larger set of transcrip-
tomic alterations associated with ENM exposures that, despite
the heterogeneity of individual profiles, conserved mechanisms
of gene regulation underlie the response to nanoparticulate expo-
sure across multiple species.[6] The patterns of co-regulation can
be represented as connections between genes and highlighted
by network models. We previously used co-expression network
inference to characterize the MOA of nanomaterials.[15] How-
ever, also in this case, molecular alterations were interpreted via
functional annotation, requiring the MOA to be manually recon-
structed. Therefore, translating gene-level data into interpretable
biological responses is needed in order to explain the observed
toxicity in a mechanistic fashion.

Systems effects in toxicology are usually expressed as a
causal chain of molecular, cellular and systemic events linking
exposures with adverse outcomes (i.e., functional and apical
endpoints). These representations are organized in the AOP
framework, a multiscale concept connecting early molecular
initiating events (MIEs) to adverse outcomes (AOs) through a
causally linked chain of events, referred to as key events (KEs).[16]

In hazard assessment, AOPs are usually selected a priori based

on the end-point of interest. However, the structure of the AOP
and the presence of shared events in multiple pathways allows
the representation of the entire AOP as a comprehensive network
of events which can be applied to a variety of stressors.[17–22] The
use of a network of events allows the simultaneous investigation
of multiple toxicity mechanisms and the prediction of multiple
adverse outcomes. However, limitations still exist in connect-
ing this conceptual framework with molecular alterations (as
deduced from omics data). The recently curated molecular an-
notation of KEs represents an essential step in connecting AOPs
to measurable and mechanistic information as derived from tox-
icogenomics data.[14,23] Indeed, the annotation provides sets of
genes associated to each event, which has been manually curated
on a selection of taxonomically relevant AOPs. The annotation
was based on information derived from pathways, phenotypes
and gene ontologies, and provides a robust and functionally
relevant molecular dimension to the AOP framework.

Here, we describe a novel network toxicology framework that
directly interprets the molecular response to chemicals as a chain
of toxicologically relevant events. Our framework exploits net-
work properties to contextualize the toxicological responses with
respect to the test system. We showcase examples based on a
comprehensive set of 31 industrially relevant ENMs of varying
chemistries, which are representative of a range of different
physicochemical properties and hazard potentials. Our dataset
was previously tested on both in vitro and in vivo test systems,
with global expression levels of mRNA, miRNA, and proteins
previously assessed from two human cell lines (monocyte-like
THP-1 cells and bronchial epithelial BEAS-2B cells), mRNA ex-
pression from mouse lung tissues, protein corona profiles, and
comprehensive characterization of all the ENMs.[11] While other
studies considering both in vitro and in vivo assays focused
on developing in vitro-to-in vivo extrapolation models for dose-
response evaluation, this study focuses on exploiting network
and systems theory to contextualize the molecular response to
ENMs with respect to the test system used and interpreting it as
a coherent chain of causative events leading to toxicologically rel-
evant effects.

2. Results and Discussion

2.1. A Novel Network-Based Framework Links Toxicogenomics
Data to AOPs

Representing the response to an exposure as the result of the
biological system-chemical interactions requires modeling ap-
proaches that scale from molecular alterations to phenotypic ef-
fects in a system-dependent manner. Different biological sys-
tems respond differently to the same stimulus, due to their dis-
tinct molecular buildup (genotype and epigenotype).[24] This is
reflected by the differences in the expression profiles, both in
terms of amplitude of the response, as well as coordinated ex-
pression patterns (co-expression) across genes.[25] The response
mechanism to an exposure is investigated as all the statistically
significant changes at a cellular and molecular level induced by
the substance. In transcriptomic studies, this is usually repre-
sented as lists of differentially expressed genes (DEGs) which,
in turn, are interpreted via functional annotation and/or enrich-
ment (Figure 1).[26]

Adv. Sci. 2024, 11, 2400389 2400389 (2 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 1. Approaches for the analysis and interpretation of the MOA of ENMs starting from toxicogenomics data. In step 0, toxicogenomics data are
generated and preprocessed. In step 1, traditional methods represent molecular alterations in terms of lists of differentially expressed genes (DEGs),
while other studies (including this study) model them as co-expression networks. In step 2, previous approaches reconstruct the mechanism of action
(MOA) via functional annotation or enrichment of adverse outcome pathway (AOP) associated genes, leading to an arbitrary interpretation of the
retrieved functions (step 3). The proposed study allows a reconstruction of an AOP based network of alterations, requiring minimal interpretation with
respect to previous approaches.

The obtained results (lists of annotated pathways) require
manual interpretation in order to reconstruct the MOA and con-
nect functions with toxicologically relevant endpoints. While pre-
vious studies have linked the transcriptomic profile of ENMs ex-
posure to AOPs, reconstructing a unique mechanism of response
from lists of events still requires manual interpretation.

Here, we developed a framework that exploits network prop-
erties and the AOP annotation to convert molecular alterations
into chains of events across organismal complexity levels (from
molecular to tissue/organism). The aim is to interpret input tox-
icogenomics data exploiting the connection between events (rep-
resentative of the mechanism) and genes (representative of the
test system) in order to reconstruct a model of AOP-based mecha-
nism of action (Figure 2). This alternative approach is completely
data driven, and requires minimum interpretation with respect
to previous methods, converting omics data in a set of consecu-
tive events that are more readily assessed.

We tested our framework by characterizing the effects of 31
ENMs in three biological systems (the human monocytic cell line
THP-1, the human bronchial epithelial cell line BEAS-2B, and
lung tissue from C57BL/6 mice exposed by oropharyngeal aspi-
ration). While it is not feasible to characterize the response to all
available ENMs in a single study, we selected a dataset as it is
representative of different physicochemical characteristics (e.g,

shape, size, core chemistry, and surface functionalisation) with a
range of hazard potentials.[27,28] This allows to investigate materi-
als with various characteristics, as well as to compare exposures
while minimizing confounding factors deriving from different
experimental designs and nanoparticles manufacturing differ-
ences. From the original dataset we identified 93 experimental
settings (test system, time, dose, and materials exposed) which
we modeled inferring co-expression networks. In this study, an
exposure will be considered as a combination of these experimen-
tal variables. In order to infer a network for each exposure, the
top and bottom 100 deregulated genes with respect to the control
were selected, and a statistical test (i.e., the Hotelling test) was
used to assess shared patterns in the expression of each gene pair.

We systematically evaluated the differences arising from the
traditional MOA investigation and the use of network-based ap-
proaches. All the results for each exposure are reported in the
supplementary materials and the comparison results are de-
scribed in the following paragraph (Supplementary Files, avail-
able at https://doi.org/10.5281/zenodo.10390383 in the “enrich-
ment_results” and “network_comparison_results” folders, re-
spectively). In order to identify significantly represented KEs in
the exposure co-expression networks, we developed a topological
enrichment method. The method consists in comparing the co-
expression network in input (based on experimental data) with
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Figure 2. Workflow converting molecular profiles in networks based on the AOP framework. Network models of the exposure (co-expression networks
or preselected edgelists) are used as input of the framework. In step 1, a topological enrichment of the adverse outcome pathway (AOP) network is
performed based on the input data. In step 2, possible molecular initiating events (MIEs, blue squares) and adverse outcomes (AOs, red squares)
connecting to the enriched events (KEs, green squares) are prioritized based on topological properties of the AOP network and molecular alterations.
In step 3, the list of MIEs, KEs and AOs is mapped on the AOP network to form an AOP-based interpretation of the mechanism of action (MOA). The
results can be visualized as a network or in tabular form, and interpreted independently or compared with other exposure mechanisms.

the AOP network built by combining all the MIEs, KEs, and AOs
as they are linked in the AOP-wiki. In detail, our strategy identi-
fies KEs as enriched in the co-expression network if their genes
are more densely connected in the AOP network with respect to
random sets of genes of the same size (cf. Methods) (Figure 2).
The enrichment results were then filtered to exclude KEs for
which the expression of the annotated genes did not reach a sig-
nificant alteration, ensuring that the enriched KE had a relevant
effect in the biological system under study. The filtered results
were then mapped on the AOP network and the MOA was re-
constructed. To do so, the most probable MIEs and AOs within
the AOP network were selected based on topological and molec-
ular information. The workflow is depicted in Figure 2 (refer to
Methods for details).

2.2. Network-Based Approach can be used to Mechanistically
Interpret Toxicogenomics Data

In order to analyze the results produced by our framework, we
selected three case studies on ENMs exposures which were pre-
viously described in,[27,28] demonstrating that the proposed ap-
proach can recapitulate the main findings while providing addi-
tional knowledge with respect to previous studies relying on DEG
analysis. Previous in vivo studies on the same dataset revealed
that the multi-walled carbon nanotubes (MWCNTs) triggered the
most prominent changes in the transcriptome amongst all stud-
ied materials, as well as an extensive eosinophil infiltration in
mouse lungs.[28] Here, we evaluated the reconstructed mecha-
nism of pristine MWCNTs in the mouse lung using as an in-
put the co-expression network derived from exposure data. Our
novel network-based framework reported a response mechanism
mostly centered on inflammation and reactive oxygen species
(ROS) production, which has been largely discussed in the field
(Supplementary Figure 1).[29–34] The enrichment of “frustrated
phagocytosis” is a relevant event that plays a pivotal role in re-
sponses to high aspect ratio materials. For instance, frustrated
phagocytosis has been implicated in the prolonged production

of proinflammatory cytokines and ROS,[35] as well as poor clear-
ance of inhaled particles.[36] All of these factors contribute to the
pathogenic potential of MWCNT exposures and favor the de-
velopment of pulmonary fibrosis, which is a known long term
consequence of MWCNT exposure (Supplementary Figure 1).[37]

Our results also highlighted the enrichment of “decreased fibri-
nolysis”, which tightly controls the enzymatic process ensuring
the breakdown of fibrin, hence controlling blood clot formation.
While the disruption of fibrinolysis is associated with inflam-
matory processes, direct interactions with ENMs and the coag-
ulation system have also been reported.[38,39] These mechanisms
on fibrinolysis may also play a part in the profibrotic effects of
MWCNTs.[40] Interestingly, the retrieved mechanism also sug-
gested a substantial epigenetic regulation (ncRNA expression al-
teration, peroxisome activator receptor promoter demethylation)
which has been explored in independent studies on the same
material.[41,42] The discussed fibrosis and inflammatory events
were well captured by the in vivo model, but were less evident
in THP-1 cells. Interestingly, only the BEAS-2B cells displayed
enrichment for the modulation of the extracellular matrix com-
position and for alterations of the TGF-𝛽 dependent fibrosis path-
way.

The same dataset revealed the most pronounced inflamma-
tion in the CuO-exposed group, associated with high levels of
neutrophil infiltration in mouse lungs.[28] Specifically, greater
toxicity was observed for the pristine and amino-functionalized
forms of CuO.[27] This is also evident in the present study, where
the reconstructed mechanisms of response reported apoptosis
and decreased cell proliferation in both cell lines (Supplementary
Table 1). Hence, while the pristine CuO enriched both events
associated with inflammation in all the test systems and cell
viability, the CuO-NH2 showed a massive effect on cell prolif-
eration in the two cell lines, and impact on the DNA repair,
chromosome stability and altered microtubule dynamic in the in
vivo model. Interestingly, the predicted MIEs included alteration
of the oxidative status in all the test systems, and alteration of
ion pumps and receptors in both lung and BEAS-2B. This is in
line with the other findings that report a toxicity mechanism
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Figure 3. Reconstructed mechanism of response to titanium dioxide (TiO2) exposures with varying shapes, i.e., spherical (A) versus rod-shaped (B).
Enriched key events (KEs), molecular initiating events (MIEs) and adverse outcomes (AOs) are reported in green, blue, and red, respectively. Dashed
lines connect events which are not formally linked in the AOP-Wiki database, but are related to common biological processes (not provided as output
of the framework).

mainly based on oxidative insults.[43] Similar results were also
observed in the A549 cell line, revealing an acute genotoxicity of
nano-sized CuO, which is well captured by our framework.[43–45]

We also investigated the response mechanism to titanium
dioxide (TiO2) in the mouse lung, and compared the effects of
variations in the material geometry (Figure 3). Previous stud-
ies demonstrated that the spherical TiO2 or rod-shaped in-
duce different responses, albeit without describing the specific
mechanism.[28] Our framework highlights the effect of the rod
shape on the cell membrane, with initiating events comprising
narcosis and decompartmentalization (Figure 2B). Alterations
of the cell membrane also affect lipid composition and induce
the activation of AKT2 signaling, which regulate many processes
including metabolism, proliferation, cell survival, growth and
angiogenesis.[46] The spherical TiO2, instead, showed its main
effect on inflammation, ROS production, ion balance alteration,
and effects on the calcitonin gene-related peptide, inducing res-
piratory alterations (Figure 2A and Supplementary Files, avail-
able at https://doi.org/10.5281/zenodo.10390383 in the “enrich-
ment_results” folder). Moreover, the framework captured the
genotoxicity associated with TiO2 nanoparticles, one of the con-
cerns behind the recent and much-debated EU ban on their
use as food additives.[47] The effects of rod-shaped TiO2 have
been scarcely described to date; however, other studies on rod-

shaped nanocarriers and rod-shaped silica and silver nanoparti-
cles reported a significant effect of shape, leading to increased
cell uptake, especially by epithelial cells.[48–50] Notably, BEAS-2B
response mechanisms to TiO2 showed substantially more alter-
ations with respect to the other test systems.

Finally, we evaluated the results obtained by our framework
when giving in input lists of dose-dependent genes, which is
a relevant scenario for regulatory purposes. We selected dose-
dependent data obtained from the analysis of epithelial primary
cell lines derived from an asthmatic patient, subsequently ex-
posed to CuO in an air liquid interface protocol (GSE127773).[51]

In this case, the enriched events captured the cilia impairment
which is a typical characteristic of epithelial cells in the lungs
of asthmatic patients, as well as an evident cytotoxic effect of
epithelial cells (Supplementary table 2). Importantly, our find-
ings, based solely on the expression data, are confirmed by
the in vitro cytotoxicity assays results reported in the original
study.

In sum, we have showcased a selection of the results, using
MWCNTs, CuO, and TiO2 as exemplars, to demonstrate the po-
tential of our framework by validating the retrieved ENMs mech-
anism of action against previous studies, literature knowledge
and in vitro assays. By achieving comparable conclusions in a
data-driven manner, we show how our approach can alleviate the
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problem of toxicogenomics data interpretability when profiling
the molecular response to chemical nanomaterial exposure.

2.3. Representing the MOA as a Network Increases the
Information Content

Systems biology relies on the principle that connections store
more information than isolated pathways or gene sets.[12]

We previously demonstrated that different transcriptomic pro-
files in response to nanoparticulate share similar regula-
tory mechanisms.[6] Gene-to-gene connections can be modeled
through the construction of co-expression networks, where genes
are linked based on the presence of a statistically significant
co-expression. These relationships may originate from shared
functional attributes, involvement in common pathways, partic-
ipation in protein complexes, or engagement in transcriptional
regulation.[52] Therefore, we tested whether the response mech-
anism extracted from co-expression networks via our framework
would provide better qualitative and quantitative results than the
one relying solely on gene sets. Since network approaches can
be used on entire sets of transcripts while gene expression analy-
sis is based on the selection of differentially expressed genes, we
purposefully inferred the network filtering genes based on their
expression changes, so that no bias derived from an increased
input could affect the results.

In order to evaluate how effectively the network based strategy
performs with respect to the traditional representation of ENM
responses (Figure 2), we compared the detected mechanisms
when levels of neutrophil infiltration induced by ENM exposure
are compared ([11], (Supplementary Figure 2,3)). To ensure an
unbiased comparison, we used as input our framework lists of
DEGs and performed a classic enrichment of the KE, and com-
pared the retrieved mechanisms. In both cases, our framework
detects inflammatory events associated with exposures with
low neutrophil infiltration (Supplementary Figure 2,3). Early
pathological alterations in the lung are usually linked to injury
of pulmonary endothelial cells and vessel destabilization.[53]

The network-based approach did capture this element, together
with TGF-𝛽 activation, when medium neutrophil infiltration
is induced (Supplementary Figure 2). The gene set based
approach, instead, captures the TGF-𝛽 activation for high in-
filtration levels only (Supplementary Figure 3). Interestingly,
exposures resulting in high neutrophil infiltration induce “ox-
idation of membrane lipids” and “NRF2 depression” in network
reconstructed mechanisms, but not in the ones derived by
gene sets (Supplementary Figure 2). NF-E2-related factor-2 is a
regulator of cellular antioxidant responses, largely expressed by
neutrophils and only recently identified as a key player in the
regulation of inflammasome activation.[54] The coexistence of
oxidative stress markers, lipid peroxidation, inhibition of NFkB,
and a high neutrophil infiltration (as evidenced by the network
approach) is well known as being prognostic of chronic and
deregulated inflammation and has recently been associated with
lung function deterioration in COVID-19.[55]

In order to produce a quantitative evaluation of the use
of network models to represent exposure responses, we de-
fined measures of information content and compared the re-
sults obtained from gene sets and co-expression networks based

strategies (Figure 4). Detailed results of the framework for
each set of DEGs is reported in the supplementary files (avail-
able at https://doi.org/10.5281/zenodo.10390383 in the “net-
work_comparison_results” folder). When profiling the MOA of
an exposure, information gain can be defined as the ability to
reconstruct a complete mechanism connecting the initiating
event(s) to observable outcome(s). In this light, we defined the
“AOP completeness score” as a measure of the ability to observe
a complete chain of events connecting one or more MIE and one
or more AO (Figure 4A, and refer to Methods). A desirable gain
can also be expressed in terms of less uncertainty of the observed
mechanism, indicating a more predictable or homogeneous ex-
posure response. Therefore, we defined the “Key event connec-
tivity score” as the ratio between the portion of connected KEs
against the unconnected ones characterizing the MOA of an ex-
posure. For the same exposure, the DEGs and the co-expression
networks were used as input to obtain two independent mod-
els of the MOA. In both cases, we demonstrated that both the
“AOP completeness score” and the “Key event connectivity score”
showed higher values when a co-expression network was used as
input (Figure 4, Supplementary Files available at https://doi.org/
10.5281/zenodo.10390383 in the “network_comparison_results”
folder). It is important to note that the AOP network was solely
built based on the case-effect relationships as retrieved from the
AOP-wiki database. Therefore, the inference of the co-expression
network is completely unrelated to it, suggesting that the higher
value of the “Key event connectivity score” only depends on the
evaluation of gene-gene relationships. Taken together, these re-
sults demonstrate that a network-based representation of toxi-
cogenomics data systematically outperforms a traditional anal-
ysis based on the evaluation of individual molecules. For this
reason we focus on the results obtained from co-expression net-
works only.

2.4. Network-Based Models of Exposure Highlight Mechanisms
Related to Different Hazard Levels

A current need in toxicological assessment is to prioritize highly
hazardous materials for comprehensive testing. However, previ-
ous efforts showed that toxic responses cannot be clearly distin-
guished when analyzing whole transcriptomic profiles or by re-
lying only on specific physicochemical properties.[56] Given the
increase in information content of the network approaches, we
investigated whether it was possible to identify differences in
nanomaterials exposures with varying toxicity levels. First, we
grouped the 93 exposures based on the toxicity endpoints we had
collected in ref. [11]. Briefly, for each of the 31 materials included
in the original dataset, in vitro assays were performed in order to
assess cytotoxicity, genotoxicity and immunotoxicity. In Fortino
et al.,[11] the results were homogenized and clustered, which re-
sulted in a general toxicity score for each exposure and, finally, in
three toxicity groups (no-to-low, medium, and high hazard). Sec-
ond, for each group, we extracted overrepresented edges in the
co-expression networks of the same group (namely edges which
are significantly more present in a group of networks with respect
to others). This allows the extraction of characteristics which are
representative of that group, but not of others. Finally, the edges
were interpreted in the AOP context using our framework. Our

Adv. Sci. 2024, 11, 2400389 2400389 (6 of 15) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://doi.org/10.5281/zenodo.10390383
https://doi.org/10.5281/zenodo.10390383
https://doi.org/10.5281/zenodo.10390383


www.advancedsciencenews.com www.advancedscience.com

Figure 4. Graphical representation of the defined information score based on the possibility of reconstructing the mechanism of action (MOA) of the
compound. A) The “AOP completeness score” was defined as a measure of the ability to observe a complete chain of events connecting one or more
molecular initiating events (MIEs) and one or more adverse outcomes (AOs). B) The “Key event connectivity score” was defined as the ratio between
the portion of connected key events (KEs) against the unconnected ones characterizing the MOA of an exposure. For each score, pie charts representing
the results in the information metric values when mechanisms of response are reconstructed based on lists of differentially expressed genes (DEGs)
and co-expression networks.

results showed that low hazard exposures (as defined in ref. [11])
were associated with oxidative stress, recruitment of inflamma-
tory cells, and decreased lung function (Supplementary Figure 4).
In intermediate hazard exposures, cell proliferation alterations
emerged, as well as cell activation, and cytoskeleton modifica-
tions (Supplementary Figure 4). Among the most relevant MIEs
represented in medium hazard nanomaterial exposures, we
found frustrated phagocytosis and tubulin binding (Supplemen-
tary Figure 4). Previous studies on high aspect ratio materials
proved that mesothelial cells initiate pro-inflammatory responses
when retaining materials, even after weeks, and can play an im-
portant role in stimulation of tumor growth.[57,58] Highly haz-
ardous materials mainly enriched adenomas and carcinomas as
AOs (Supplementary Figure 4). Interestingly, the relative repre-
sentation of AOs was the highest in the events enriched by highly
toxic compounds, with the amount of molecular initiating events
following the opposite trend (Figure 5). This suggests that a pos-
sible difference between low, medium and highly toxic materials
is related to the induction of alterations which are indicative of an
adverse outcome. It is known that different stimuli can alter a cell
state either in an irreversible or reversible manner.[24] In the first
case, the molecular response facilitates the transition of the cell
from the steady state to a new stable state, whereas in the second
case a temporary unstable state is reached that may be reverted
to the initial one, once the stimulus is removed.[24] In the context
of an AOP, reaching an adverse outcome represents a multiscale

event implying that alterations have happened across biological
levels of organization (molecular, cellular, tissue, organism). Tis-
sue responses, for example, underlie cellular and molecular com-
plex events that need to happen in order for the macroscopic ef-
fect to emerge. Our hypothesis echoes the “hierarchical oxidative
stress model” of Nel et al., where the nanoparticle capability of
inducing different levels of ROS, triggers molecular and cellular
events with increasing toxicity potential.[59] Our results suggest
that highly hazardous materials may induce an alteration that
quickly spreads across biological levels and moves towards a new
phenotypic state which is, therefore, harder to revert.

2.5. Network Properties Underline the Impact of the Exposed
Biological System

The results discussed above pointed towards differences between
the test systems. Therefore, we decided to investigate the overall
impact of the test system on all the 93 exposures we previously
defined (i.e., dose, time, materials, and test system) by cluster-
ing the inferred co-expression networks based on their topologi-
cal properties. Our analysis showed that biological systems have
a significant impact on the response to ENM exposure, with ex-
posures to different materials in the same test system clustering
together (Figure 6A). Furthermore, exposures in the same biolog-
ical system share portions of the response identified as the set of
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Figure 5. Distribution of molecular initiating events (MIEs), key events (KEs) and adverse outcomes (AOs) across engineered nanomaterials (ENMs)
toxicity classes (low, medium, high). Data are reported as a percentage of the total enriched events.

statistically overrepresented edges in the networks inferred from
the transcriptomics data profiled in the same biological system.
These overrepresented edges underlie functions which are rep-
resentative of the system under evaluation (Figure 6C–E), such
as inflammogenic functions for THP-1 cells (Figure 6C), phago-
cytosis and endocytosis for BEAS-2B cells (Figure 6E). How-
ever, for mouse lungs, this behavior is less evident, with less
overrepresented edges and functions shared across the expo-
sures. This is possibly due to the cytological complexity of the
tissue, as well as to the different growth conditions of the test
system which may affect the biocorona formation on ENMs[60]

(Figure 6D).
In order to evaluate the impact of the biological system on the

molecular response, we clustered the reconstructed AOP-based
response mechanisms for each exposure. We observed that the
exposures cluster based on the induced biological response,
rather than the exposed material (Supplementary Figure 5).
Our results indicated that even when exposed to the same
ENM, the observed response mechanism is a function of the
interaction between the compound and the test system. Indeed,
the 93 exposures clustered in two groups, almost completely
separating the THP-1 and BEAS-2B exposures (Supplementary
Figure 5). When a major inflammatory response was gener-
ated, THP-1 responses were closer to the responses in mouse
lungs. On the contrary, when cell stress responses, mainly
based on DNA damage, were activated, exposures in BEAS-2B
overlapped more with the lung mechanism. Lung exposures
split in the two groups according to the nature of the tissue
response (Supplementary Figure 5). These results do not imply
the validity of the in vitro or in vivo models, but highlight the
effect of different test models provide on the MOA of nano-
materials, which needs to be considered when assessing the
hazard.

Several previous efforts have focused on the possibility of
identifying physicochemical similarities between the ENMs to
predict common responses.[61] Our results suggest that in vitro
test systems, due to their molecular buildup, usually show only
portions of the complete response, as already described.[14] On
the other hand, in complex systems, such as the lung tissue,
a core mechanism drives the response, but it is difficult to
dissect the contribution of specific cytological components. This
supports the idea that, in order to correctly estimate hazards,
information on the test system must be considered, as the
observed mechanism of action depends on the test system used
for the assessment even in comparable experimental settings
(same material, same or equivalent doses and time of exposure).
To further investigate this phenomenon, for each ENM in the
original dataset, we compared the similarity of the in vitro
systems and the in vivo counterpart. This is an important step in
light of efforts to develop alternative methods to animal testing,
where the in vivo system is often considered as the benchmark
for new approach methodologies (NAMs). Other investigators
have compared animal experiments with non-animal-based
alternatives in order to assess in vitro-to-in vivo extrapolation
(IVIVE).[62] However, defining IVIVE relationships requires
a focus on doses and physiologically based kinetic models,
which is out of the scope of this study. Here, we focused on the
impact of the in vitro or in vivo test system with respect to the
observed response. In order to exploit the network properties
to assess the similarities or differences between in vitro and in
vivo systems, we defined a “biological system similarity score”
as the comparison between the response mechanism in pairs
of systems, with respect to the complete AOP network (refer to
Methods for further details). More than half of the ENMs showed
a higher similarity between mouse lungs and THP-1 cells, while
the remaining exposures equally split in the other two categories
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Figure 6. Biological systems influence the response to ENM exposures. A) Clustering of the 93 exposures co-expression networks based on topological
properties (edge betweenness, Jaccard, Hamming distance, SMC distance between the existing edges of the networks as well as a percentage value of
shared edges between each pair of input networks). Each measure is converted into a distance when possible, and a consensus is taken as input for
the clustering. Clustering results are reported as a heatmap, where the individual 93 exposures and the 5 clusters are plotted on the y axis and on the x
axis, respectively. B) Similarity between biological systems in exposures of the same material. In teal, exposures where the highest similarity is between
lung and THP-1, in violet when the highest value is between BEAS-2B and lung, in gray when the in vitro systems are not representative of the in vivo
counterpart. Engineered nanomaterial (ENM) chemistry has been annotated. C–E) Top fifteen enriched pathways of the overrepresented edges for each
biological system, with their respective enrichment score (ES). The enrichment was performed using a weighted Kolmogorov-Smirnov test against the
information in the KEGG pathways database. The statistical significance of the enrichment analysis was estimated by permutation analysis over 100
random shuffles of the edge sets. The p-values were corrected for multiple comparisons using the false discovery rate (FDR) method and setting 0.05
as the significance threshold.

representing mouse lungs and BEAS-2B cells, and THP-1 cells
and BEAS-2B cells, respectively (Figure 6B). This is not unex-
pected, as many ENMs induce an inflammatory response that
is well captured by cell lines such as THP-1,[63] suggesting that
specific properties of the cell lines allow the mechanistic trans-
latability across test systems. However, in 25% of the cases, the
THP-1 and BEAS-2B in vitro systems shared more similarities
than the in vivo system, suggesting that the in vitro assessed
hazard was less overlapping with tissue-level observations in one
quarter of the exposures. Thus, selecting the appropriate cell

line(s), or utilizing a panel of cell lines of varying origin, may be
important.[2,64]

2.6. The Molecular Buildup Influences the Applicability Domain
of Hazard Tests

Given the remarkable impact of the test systems on the observed
response mechanism, we investigated whether the molecular
buildup of the biological system would affect the assessable
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Figure 7. Explorable AOP network is determined by the biological system. Subgraph of the AOP network containing the events enriched by the 31
engineered nanomaterials (ENMs) in the three biological systems: mouse lungs (orange), BEAS-2B cells (blue), and THP-1 cells (teal). Event type has
been reported in the legend.

hazard with respect to the complete set of KEs in the AOP frame-
work. An AOP represents the toxicologically relevant events to be
tested in order to mechanistically assess the hazard of chemicals.
To this aim, we combined the AOP-based response mechanisms
of all 93 exposures in the different test systems, and represented
them as a portion of the AOP network (Figure 7).

Mapping patterns of molecular alterations to the AOP has
been shown to highlight similarities across biological systems.[14]

This is also observed in the present study, where a core por-
tion of the AOP network is enriched by all the test systems,
covering events related to oxidative stress, NADH-ubiquinone
and ROS production, TGF-𝛽 and cytokine release. The OECD
has recently concluded that nanotoxicity related to human health
mainly arises from inflammation, oxidative stress, and cytotoxi-
city (https://one.oecd.org/document/ENV/CBC/MONO(2022)3/
en/pdf ). These patterns were overlapping across test systems,
suggesting that some early KEs involved in the initial assessment
of hazard for ENMs, can indeed be tested in vitro while being
representative of the in vivo counterpart. However, our results
also show that test systems enrich different portions of the AOP
network, de facto limiting the range of the assessable response
mechanisms. THP-1 exposures specifically enriched pathways

related to immunity and adipogenesis. Furthermore, the airway
hyperresponsiveness is a specific mechanistic chain visible only
in this cell line, as well as infertility and placental insufficiency.
BEAS-2B enriched KEs associated with neuronal degeneration,
lysosomal dysfunction, as well as events specific to epithelial
cells. Importantly, BEAS-2B enriched lung fibrosis and collagen
deposition, which is a relevant long-term consequence of ENM
exposure, but is not visible in all the test systems. Overall, molec-
ular events such as nuclear receptor activations appear to be bet-
ter observable in vitro. Surprisingly, the chain of NFkB related
KEs, a pivotal element of ENM-induced responses, are only en-
riched by in vitro systems. Exposures in the lung, on the contrary,
enriched calcium homeostasis related pathways, and the com-
plete mechanistic chain connecting nuclear receptors with PPAR
gamma and adipogenesis. Internalization of the compounds and
DNA damage associated KEs are extensively observable in the
lung, and partially shared with BEAS-2B. Given the experimen-
tal design of this dataset,[27,28] this is a strong indicator that the
differences in the observed events emerged because of the se-
lected test system. The test system impact on the emerging phe-
notype upon compound exposure highlights the importance of
considering both the exposed system and the compound in toxi-
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cological settings. A similar concept has been addressed by regu-
latory agencies as “the appropriateness of test species”.[65] How-
ever, this often only refers to the species-specific effects of ENMs.
In contrast, we show here how the molecular buildup of differ-
ent test systems impacts both the observed toxic effect and the
detectable MOA in terms of toxicity testing.

Importantly, our results show that while some core events of
ENMs exposure response are observable both in vitro and in vivo,
the choice of the test system impacts the overall assessable re-
sponse. While the applicability domain of a test system typically
refers to the types of chemicals that can be tested, the present
results suggest that exposures are not defined exclusively by the
intrinsic features of the test substance. Our study indicates that
in vitro systems can better assess molecular events, but they may
fail to capture entire mechanistic chains, which are observable in
the in vivo setting. These considerations suggest that our frame-
work could be used to contextualize existing molecular toxicolog-
ical evidence with respect to the biological system. The impact of
the molecular buildup of the test system informs on the consis-
tency and biological concordance criteria which are usually eval-
uated to weight the relevance of omics data for regulatory hazard
assessment.

3. Conclusions

The ultimate aim of the 21st century chemical assessment is to
build a mechanistic understanding of the chemical-biological
interactions. This can be achieved by using the AOP frame-
work, including knowledge concerning MIEs and KEs with
their underlying data, to produce models able to associate
unstudied substances with known AOPs mechanisms.[66] In
this study, we presented a novel network-based framework for
linking toxicogenomics data to AOPs and for interpreting the
response mechanisms of biological systems to nanomaterial
exposures. Our framework acknowledges the inherent variability
in how different biological systems respond to the same stimuli
(exemplified here by ENMs) due to their unique molecular
buildup. It enables the conversion of molecular alterations into
chains of events across different levels of organismal complexity,
ranging from molecular to tissue/organism events. This eases
the challenges of interpreting omic responses and provides a
robust and generalizable strategy to link molecular evidence
with toxicologically relevant phenotypes.

To validate our framework, we conducted an extensive anal-
ysis of 93 exposures to 31 ENMs in three distinct biologi-
cal systems. This dataset was selected for its comprehensive
coverage of industrially relevant ENMs with varying physico-
chemical characteristics and well-defined hazard levels.[11] Im-
portantly, while we presented and validated our framework on
ENMs, we strongly believe that it can seemingly be used on
a variety of chemical exposures. Indeed, AOPs are stressor-
agnostic, and can easily be applied to chemical and not chem-
ical stressors, as already reported.[67] Similarly, omics data can
be obtained from a plethora of exposure conditions, which ex-
pands the applicability of our methodology beyond nanomaterial
exposure.

We systematically compared the outcomes of our network-
based approach with traditional MOA investigations. Our results
revealed that the network-based approach provided a deeper in-

sight into the observed response. Representing MOAs as net-
works offers a framework to interpret multiscale complex events,
extrapolating substantial more information as compared to other
analytical frameworks for interpretation of toxicogenomics data.
While network-based approaches are already well established in
other fields of life sciences, systems toxicology applications are
still in their infancy, with network properties hardly being ex-
ploited to solve toxicologically relevant issues.[9,10] This study un-
derscores for the first time the potential of network theory in im-
proving toxicogenomics data interpretability and its contribution
to hazard assessment.

We also addressed the crucial issue of hazardous materials
identification, a challenging task that traditional toxicogenomics
methods struggle with. By applying our framework to ENMs ex-
posures inducing various levels of toxicity, we highlighted com-
mon features and distinct molecular response mechanisms in
each group. This approach allowed us to connect highly haz-
ardous materials with molecular alterations associated with more
apical events in the AOP framework. Importantly, this suggests
that toxicity could be re-defined as the ability of inducing a mul-
tiscale alteration reaching a new stable patho/physiological state
(e.g., an AO) in a particular experimental setting. In this light,
no exposure would be “inert”; instead, it simply induces an al-
teration that can be easily reverted to homeostasis. While dosing
and temporal information cannot be considered by the current
framework, we believe that future studies can integrate this in-
formation. This key insight, and the link to the molecular layers,
are important inputs to the future design of quantitative AOPs.

Importantly, we showed that the choice of the test system pro-
foundly influences the observed response mechanism, empha-
sizing the need to consider the interaction between the com-
pound and the biological system when assessing hazards. While
this notion is well established in toxicology, this study highlights
the importance of the molecular buildup (defined by the geno-
type and epigenotype) of different test systems in toxicological
settings and its impact on the observable toxic effects and mecha-
nisms of action. From a practical study design point-of-view, this
means that toxicologists need not only to describe the features
of the test materials and model systems[68] but also need to con-
sider whether biological responses are assessable or not given the
choice of the model system.[2]

In conclusion, our network-based framework represents a sig-
nificant step forward in understanding the complex relationship
between chemical exposures and biological responses. It has the
potential to contribute to toxicological assessments by providing
a more comprehensive and informative perspective on toxicoge-
nomics data interpretation. One of the limitations of this work is
represented by the scarce number of endorsed AOPs, which are
for the majority of cases (394 out of 443) still under development
or review. However, as the structure of the AOP framework and
its molecular annotation will be unchanged and enriched over
time, the approach described in this study will still provide a way
to systematically map and interpret omics data for regulatory pur-
poses. As the biomedical knowledge encoded in the AOP frame-
work will increase, this approach will be also potentially useful to
further characterize pathophysiological mechanisms of disease.
Our observations could be seamlessly integrated into future safe-
and-sustainable-by-design frameworks, offering a powerful tool
for researchers and regulators alike.
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In conclusion, our network-based approach overcomes some
limitations of current omics based approaches, increasing inter-
pretability and extrapolation of the effect of the specific exposure
components, while also representing the first example of the po-
tential contribution of systems and network theory to the hazard
assessment of ENMs and, potentially, of other advanced materi-
als.

4. Experimental Section
Data and statistical analysis: Datasets selection and preprocessing: The

case studies are based on the publicly available datasets GSE148705 and
GSE157266. These datasets we previously generated cover a broad panel
of ENMs including metal, metal oxide, and carbon-based ENMs with dif-
ferent core (Ag, Au, TiO2, CuO, nanodiamond and multiwalled carbon
nanotubes) and surface chemistries (COOH, NH2, or PEG). Each mate-
rial was tested at equipotent doses (EC10) in the two different human cell
lines (THP-1 and BEAS-2B), and at a dose of 10 μg/day for four consecu-
tive days in mice. For further details, refer to Gallud et al.[27] and Kinaret
et al.[28]

For the dose dependent analysis, the dataset GSE127773 was used.[51]

Transcriptomic data were preprocessed with the EUTOPIA software as
previously described.[6,69]

For the GSE157266 dataset, mouse genes have been converted to their
orthologs, excluding the genes with no 1:1 relationship between the mouse
and human genome. In these datasets, for each ENM exposure, three
replicates were present.

The final number of genes shared among all the datasets were
11 972. In the preprocessing phase, the MDS highlighted out-
lier samples both in the BEAS-2B and Mouse datasets. Therefore
the samples ‘RNA_2_NTND_24_0_1′, ‘RNA_2_NTQD_24_0_1′,
‘RNA_2_NTCuO_24_0_1′, ‘RNA_2_NTND_24_0_3′ and ‘NS6_1_4′

have been discarded from the datasets, respectively.
AOP network and annotation: In order to link the transcriptomic al-

teration induced by ENMs exposure, we exploited the AOP-gene anno-
tation curated in ref. [14]. The gene sets associated with each KE in the
AOP were previously described in ref. [23]. Briefly, a molecular annota-
tion of the events as retrieved from the AOP-wiki was performed using
a combination of natural language processing and manual curation. As
a result, all the events (MIEs, KEs, and AOs) are associated with lists of
genes based on their association with known pathways, phenotypes and
gene ontologies. Only taxonomically relevant AOPs were selected, and the
presence of redundant events was manually curated. The robustness and
functional relevance of the molecular annotation was evaluated with a vari-
ety of experiments in ref. [14]. The AOP network used in this framework was
obtained by exploiting the connections between KEs present in the AOP-
Wiki database (https://aopwiki.org/, downloaded on 26.10.2022). Further-
more, the exact annotation and AOP network used in this study, has been
made available (cf. Data and code availability statement).

Computational framework: Framework input: Network inference, dif-
ferential and dose-dependent analysis

In the current study, input data for the framework were either in the
form of a list of genes to be enriched or of a network (Figure 2).

Differential expression analysis was performed using the “limma” R
package to compute the gene expression difference between exposed and
controls, and correcting the P-value using the Benjamini–Hochberg. The
normalized and corrected expression matrix was filtered according to stan-
dard thresholds (p-value < 0.05 and |logFC| > 0.58).

In order to infer co-expression networks for each exposure, we first de-
fined gene nodes that would be shared in all the transcriptomic profiles.
We selected genes present in all the studied dataset, where for human and
mouse a conversion between orthologs has been performed, and mapped
them to Ensembl ID. For each individual exposure, we ranked the genes
based on both fold change and p-values, and selected the 100 top and
bottom deregulated genes. The union resulted in 3061 genes.

Due to the limited sample size (3 replicates for each condition), for
each pair of genes we performed a Hotelling test (using the R pack-
age Hotelling, version 1.0), to identify differences in their multivari-
ate means, which is routinely applied for multivariate analysis of gene
expression.[70,71] To mitigate the risk of false positives resulting from mul-
tiple comparisons, we applied a correction to the p-values using the False
Discovery Rate (FDR). Edges were ranked according to their p-value from
the lowest to the highest. Only edges with a p-value lower than the 5%
percentile of the distribution were included in the network.

This was repeated for each triple resulting in 93 binary networks. In-
formation on the p-value was stored as an edge attribute in the exposure
specific network (log), while information on the fold change was stored as
node attribute and used in further steps of the analysis for filtering. The
code to infer network starting from expression data is made available (cf.
Data and code availability statement).

In order to provide dose-dependent genes as an input, we followed the
procedure outlined in the BMDx tool (version commit February 2022).[72]

In summary, multiple models were fitted and evaluated, with the opti-
mal model chosen based on the Akaike information criterion. Estimates
for effective doses (BMD, BMDL, and BMDU) were computed assuming
constant variance. The benchmark response was determined using the
standard deviation method with a benchmark response factor (BMRF) of
1.349, indicating a minimum 10% deviation from control levels. Genes
were considered relevant only if they exhibited lack-of-fit P > 0.01 and
had estimated BMD, BMDL, and BMDU values. Any genes with BMD or
BMDU values exceeding the highest exposure dose were excluded. Ad-
ditionally, genes were excluded if the ratio between predicted doses ex-
ceeded suggested thresholds (BMD/BMDL> 20, BMDU/BMD> 20, and
BMDU/BMDL> 40).

AOP gene sets enrichment and topological enrichment: In order to ob-
tain enriched KEs for input lists of genes, we performed an enrichment
of the differentially expressed genes. Differential expression analysis was
performed as described under the “Framework input: Network inference, dif-
ferential and dose-dependent analysis” section. Then, enrichment was per-
formed against KEs associated gene sets using Fisher’s exact test im-
plemented in the enrich function of the R package “bc3net”.[73] The set
of genes associated with each key event were originally derived from
Saarimäki et al.[14] Given the redundancy of some events in the AOP-wiki
database, the jaccard index between sets of genes annotated to each KE
was used as a similarity measure in order to identify redundant events. In
such cases, the events and respective sets of genes were merged and used
as clustered KEs. Gene sets of each test system and genes from clustered
KEs were merged, and unique genes were used to prepare the background
of the enrichment.

In case a network is used as input for the framework (both in the
cases in which we analyzed a co-expression network or overrepresented
set of edges) a topological enrichment was developed and used to find
overrepresented KEs in the AOP network. First, all shortest paths be-
tween all nodes on the input network were estimated with the sknet-
work.path.get_shortest_path function.[74] For each gene set (comprising
the genes associated with a given KE) the average shortest path between
each gene pair on the co-expression network was calculated. 1000 t-tests
were performed by comparing the average shortest path of the known gene
set versus randomly drawn gene sets of the same size. After estimating the
average p-value, a key event was considered to be enriched if the average
shortest path length of the known gene set divided by the average shortest
path length of the random gene set was lower than 1.

Reconstruction of the AOP based mechanism of response: In order to rep-
resent the MOA of the exposure as a network of KEs, we created a frame-
work which filters the most relevant KEs, prioritizing “plausibile” MIEs and
AOs, and finally maps it back to the AOP network.In this context, plausi-
bility was defined both as a measure of proximity to an enriched KE on the
AOP network, as well as the presence of statistically altered genes in the
annotated gene set of the event.

First, the enrichment p-values were corrected using the “fdr” method
with the p.adjust function of the R package “stats”. KEs with more than
1000 genes annotated and adjusted p-value higher than 0.05 were dis-
carded. On the filtered results, only events with a p-value lower than the
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5-th percentile of the distribution were selected. Finally, KE where genes
annotated had a fold change lower than 0.58 were discarded.

Second, probable MIEs and AOs were prioritized based on the expres-
sion of the annotated genes, the closeness on the AOP network, and the
size of the annotated gene set. Closeness was computed with the short-
est.paths function in the “igraph” R package.[75] Events with no annotated
gene differentially expressed were discarded. MIEs and AOs were ranked
based on the p-value of the expression of the annotated genes and the dis-
tance from the enriched KE. In case more than 20 events were prioritized,
20 was considered as an arbitrary cut-off. All the prioritized events were
mapped on the AOP network and plotted using the “igraph” R package.[75]

In order to ensure complete usability and reproducibility of the framework,
all the code and custom functions have been made available (cf. Data and
code availability statement).

Network comparison: Definition of information measures: In order to
quantitatively compare our framework results obtained using either co-
expression networks or lists of differentially gene sets as an input, we de-
fined two measures of information. First, we defined information as the
capability of reconstructing an AOP based mechanism from a MIE to an
AO, which we defined as the “AOP completeness score”. In this light, we
computed, for each reconstructed network of ENM response, the tran-
sitivity, betweenness, shortest paths and diameter using the homonym
functions of the igraph R package.[75] When multiple values were returned
(e.g., betweenness and shortest paths), the mean of the values distribu-
tion was considered. These measures indicate a more connected network,
thus a better possibility of reconstructing a unified mechanism of response
between causally linked events. For this reason, we considered a greater
(mean) value as an indication that a longer mechanism could be com-
pleted. When comparing the results of two mechanisms, we evaluated as
more informative the response network having at least three out of four
higher values of connectedness.

Second, we considered the possibility of having a more predictable or
homogeneous mechanism, which can be a desirable gain as the informa-
tion content is less uncertain. We defined it as The “Key event connectivity
score”, namely the ratio between the portion of connected KEs against the
unconnected ones (isolated nodes) characterizing the MOA of an expo-
sure.

Computation of a biological system similarity score between network re-
sponses: We investigated whether the obtained mechanism of response
could be used to derive the similarities between exposures of the same
material across biological systems. We defined this measure as the con-
sensus of four difference parameters. First, we evaluated how similarly the
two networks cover a portion of the complete AOP network. To determine
the coverage of the AOP by each network, we calculated the delta of the ra-
tio between the number of Key Events (KEs) enriched by each network and
the total number of KEs in the complete AOP. In essence, this quantifies
how much each network contributes to the enrichment of events within
the AOP relative to the others.

Second, we considered the overlap between the two response networks,
computing a jaccard index of the KEs nodes and edges.

Finally, we computed the ratio of the diameters of the biggest compo-
nent (computed with the diameter function in the R package “igraph”),
as it represents the largest retrievable mechanism in each response
network.[75] The mean of all the normalized scores (between 0 and 1) was
used as a similarity measure between the networks.

Network analysis: Clustering strategies for co-expression networks and
AOP events networks: Co-expression networks were clustered using the
functions developed in VOLTA, a python package for co-expression net-
work analysis.[76] Briefly, we first computed edge based similarities be-
tween each network pair using the get_edge_similarity function. The
get_edge_similarity.estimate_similarities_edges from VOLTA is a wrapper
function that returns the consensus between the jaccard similarity, jaccard
distance, kendall rank coefficient for the edges ranked based on between-
ness, hamming distance and SMC similarity. Where applicable the simi-
larities are converted into a distance by taking 1-x. These distances were
used as input values for the clustering, which was also performed based
on the VOLTA functionalities. In detail, the consensus_clustering function
was used based on the three individual clusterings (hierarchical, affinity

propagation, k medoids). Clustering results are reported in Supplemen-
tary Table 3.

In order to cluster the AOP based mechanisms of response, we first
computed a similarity score as the mean of the jaccard index between
networks nodes and edges. This similarity reflects the number of shared
nodes and edges between the response mechanisms. For each pair of net-
works, the similarity was converted in distance. Finally, the clustering was
performed using the “hclust” function from the R package stats, with the
ward.D2 method, and results plotted as a dendogram.

Identification of overrepresented structures: In order to highlight edges
overrepresented in groups of networks, we exploited the function
get_statistical_overrepresented_edges from VOLTA in the pattern match-
ing module. Briefly, the function finds edges that are statistically overrepre-
sented in a cluster (group of networks) based on a hypergeometric func-
tion and Benjamin-Hochberg correction. Edges associated with specific
biological systems, nanoparticle surface modifications, and toxicity end-
points were retrieved in the same way.

Edge based enrichment analysis: Classical enrichment analysis is used
to identify classes of genes that are over-represented in large sets. How-
ever, when performing enrichment analysis over the nodes co-expression
network, the classical algorithm does not consider if the genes connected
by edges in the network are part of the same pathways. In order to con-
sider gene-gene association we performed enrichment of network edges
against gene pairs derived from human pathways.

To create the background, we collected data for pathway gene sets in
the KEGG databases.[77] Background edges were created based on the an-
notation of genes to the same gene set. Input edges were ranked from the
most to the least co-deregulated, based on their p-value. In case of edges
present in multiple exposures (like overrepresented edges), the individual
p-values were combined using the sumlog method. The enrichment anal-
ysis was performed by means of a weighted Kolmogorov-Smirnov test, to
identify edge sets that are over-represented on top of the rank. The sta-
tistical significance of the enrichment analysis was estimated by permuta-
tion analysis over 100 random shuffles of the edge sets. The p-values were
corrected for multiple comparisons using the false discovery rate (FDR)
method and setting 0.05 as the significance threshold. The analysis was
performed by using the code originally developed in ref. [78].
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