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Abstract

Recent advances in machine learning (ML) have enabled the development of next-generation 

predictive models for complex computational biology problems, thereby spurring the use of 

interpretable machine learning (IML) to unveil biological insights. However, guidelines for using 

IML in computational biology are generally underdeveloped. We provide an overview of IML 

methods and evaluation techniques and discuss common pitfalls encountered when applying IML 

methods to computational biology problems. We also highlight open questions, especially in the 

era of large language models, and call for collaboration between IML and computational biology 

researchers.

Introduction

Machine learning (ML) has significantly shaped the landscape of computational biology, 

with the integration of high-throughput data acquisition and burgeoning computational 

power leading to the creation of potent prediction models. More recently, the advancements 

inspired by large language models (LLMs) – a term which conventionally refers to models 

that can perform a wide variety of natural language processing tasks, but is increasingly 

encompassing transformer-based, pretrained large-scale models in other domains such 

as computational biology – have further enhanced our ability to model and analyze 

biomolecular sequences and gene expression data. With the rapid development of these 

new models, there is a growing need for techniques that can yield interpretation or 

comprehension of model behavior, enabling researchers to verify that the proposed model 

reflects actual biological mechanisms. Yet, the complexity of these prediction models often 

renders them challenging to interpret. For instance, merely presenting the multitude of 
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weights from deep learning models such as convolutional neural networks or transformer 

models to a user will not yield immediate comprehension or interpretation.

To address this challenge, researchers have embraced techniques from the field of 

Interpretable Machine Learning (IML), which aims to elucidate why a prediction model has 

arrived at a particular score or classification, either by deriving an explanation post-training 

or by building interpretable mechanisms into the model architecture [1, 2]. The application 

of IML methods has surged in prominence within computational biology research across a 

wide range of biological tasks [3–7]:

• These techniques have been extensively employed to uncover critical sequence 

patterns and interpret sequence variants in DNA, RNA, and protein sequence-

based tasks, such as the prediction of gene expression, epigenetic modifications, 

3D structures, and protein-DNA/RNA interactions [8–13].

• IML methods have also exhibited promising results in identifying key 

biomarkers in phenotype predictions based on gene expression, metagenomics, 

and genetic variations, often referred to as one-dimensional tabular data. The 

tasks commonly associated with tabular data involve the prediction of cellular 

phenotypes, such as cell states and cellular response, as well as clinical 

phenotypes, such as complex diseases [14–17].

• Additionally, IML has demonstrated its potential to capture distinctive features in 

biomedical imaging tasks [18–20].

Despite the growing significance of IML in computational biology, guidance on the 

application and evaluation of IML methods within complex biological settings is scarce, 

leading to ad-hoc applications of popular IML techniques and inconsistent, and potentially 

unreliable, interpretations of IML outputs. In this Perspective, we first provide an overview 

of classical IML methods and evaluation techniques. We then expand upon prior discussions 

on the pitfalls of applying ML techniques to the sciences [21–23] by highlighting potential 

issues concerning the current use of IML methods in computational biology applications. 

We specifically focus on pitfalls in the selection of IML methods, interpretation of IML 

outputs, and improper evaluation of findings from IML methods. Each pitfall is also 

delineated using illustrative examples from the literature, which include applications of IML 

methods to the newest transformer-based models and other biologically-informed networks. 

Finally, in light of recent advancements in LLMs, we close by highlighting IML techniques 

that have been developed to explain these new models and presenting multiple opportunities 

for how they can be adapted for biological problems. These directions for future work 

represent ripe opportunities for collaboration between the IML and computational biology 

communities toward developing better practices and methodologies.

IML Methods and Evaluations in Computational Biology

Methods

We first provide an overview of the two primary IML approaches employed to explain 

prediction models in computational biology applications, as shown in Fig. 1. Both 

approaches are featured in many of the examples cited in subsequent sections. For an 
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additional discussion of each approach and an overview of other IML methods that are less 

commonly used in computational biology applications, we refer the readers to Azodi et al. 

[3], Chen et al. [24], and Rauker et al. [25].

Post-hoc Explanations—The most widely used IML methods are post-hoc explanations, 

which are flexible and typically model-agnostic due to their application after the design 

and training of a prediction model. Feature importance methods are commonly used in 

computational biology applications [6, 26]. These methods assign each input feature, such 

as a pixel in a cellular image or a DNA sequence feature, an importance value based on its 

contribution to the model prediction. Consequently, a large magnitude feature importance 

score would imply a significant contribution. These importance values can be calculated in 

one of two ways: (1) gradient-based methods (e.g., DeepLIFT [27], Integrated Gradients 

[28], GradCAM [29]), and (2) perturbation-based methods (e.g., in silico mutagenesis [30], 

SHAP/DeepExplainer [31], LIME [32], Fourier-based attributions [33]).

By-design Methods—Interpretable by-design models are, as the name suggests, models 

that are naturally interpretable [34]. For instance, a linear model is deemed interpretable 

because one can easily inspect the coefficient weights to ascertain the importance of 

each feature to the prediction outcome. Similarly, decision trees are interpretable as 

one can examine the splits in the tree. Other interpretable by-design models include 

logistic regression, decision rules, and generalized additive models (GAMs) [35]. While 

the aforementioned models are conventional by-design models in the IML literature, new 

by-design IML approaches that leverage recent advancements and superior performance 

of deep neural networks are emerging in computational biology. These methods construct 

biologically-informed neural networks or incorporate attention mechanisms.

Biologically-informed neural networks are model architectures that encode domain 

knowledge. The process of architecture design is application-specific and constitutes an 

open problem that is beyond the scope of this work. Examples of biologically-informed 

neural networks include DCell [14], which represent the hierarchical cell subsystems 

capturing interwoven intracellular components and cellular processes in the neural network 

design, P-NET [36], which leverages the organization of biological pathways, and KPNN 

[37], which integrates biological networks, such as gene regulatory network and protein 

signaling pathways, into the network architecture. In these examples, the hidden nodes in the 

neural network correspond to biological entities such as genes and pathways. The relative 

importance of the biological entities is often interpreted using a self-defined measure, such 

as the Relative Local Improvement in Predictive Power score defined in DCell [14] and 

the node weight-based importance score defined in KPNN [37]. Post-hoc explanations 

can still be applied to the by-design neural networks, for instance, as in P-NET [36], to 

explain the model prediction using importance scores with respect to a certain biologically 

meaningful hidden layer. In addition, PAUSE [38] demonstrates one way to bridge post-hoc 

and by-design methods, where a biologically-constrained autoencoder model is explained 

using a post-hoc game theoretic approach.

Attention is a technique that has become a popular addition to neural networks that handle 

sequence-based inputs, where the network incorporates and learns a set of weights indicating 
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the amount of attention the model is assigning to specific parts of the input. Most notably, 

transformers are encoder-decoder models that have capitalized on attention mechanisms 

through a variation called self-attention and move beyond the need for recurrent units 

[39]. Attention weights, which do not incorporate domain knowledge, are automatically 

learned as part of the training process and have been shown empirically to assist the 

network in focusing on the correct parts of the input sequence. The weights have often 

been considered as an explanation [16, 40]. More recently in transformer-based models, for 

example, Enformer [8] utilizes attention scores to identify the potential enhancers regulating 

gene expression. The recent Geneformer [17] inspects the attention weights from different 

layers to probe how the model encodes the gene regulatory network hierarchy. However, 

the validity and reliability of such an approach to explain the model’s reasoning remains 

debatable [41–44]. In the later section on “Opportunities for IML Developments in the 

Age of LLMs”, we review more recent IML approaches designed for transformers, and in 

particular the direction of mechanistic interpretability [45, 46].

Evaluation Techniques

To algorithmically assess the quality of explanations generated by IML methods, several 

concepts have been proposed, which are generally agnostic to the type of IML method 

that is applied. We focus on two metrics, depicted in Fig. 2, that frequently appear in the 

IML literature and are being increasingly adopted by computational biology publications. 

We provide a brief background on these evaluation measures and summarize existing 

evaluations of popular IML methods along both evaluation metrics.

Faithfulness (or fidelity) is the most common metric used to evaluate explanations 

generated by IML methods. This metric captures the degree to which an explanation 

reflects the ground truth mechanisms of the underlying ML model [47, 48]. While several 

benchmarking efforts have been conducted to evaluate the faithfulness of IML methods 

across multiple datasets and approaches to generating ground truth mechanisms [49–53], 

there is no method which generally outperforms other methods across the board, pointing to 

general unreliability of existing methods. We note that these evaluation approaches heavily 

relied on the use of synthetic data to encode variations of ground truth logic in the data, 

which may not be feasible in many computational biology contexts, where synthetic data 

fails to encapsulate the complexities of real biological processes. Consequently, it might be 

more suitable to identify and test IML methods against real data for which the ground truth 

mechanism is known, examples of which we discuss further in Pitfall #1.

Stability is a measure of consistency that can complement an evaluation of faithfulness. It 

primarily answers the question: “how consistent are the explanations for similar inputs?” 

This evaluation was proposed in response to the observation that feature importance often 

varies substantially when small perturbations are applied to an input [47, 54]. Many popular 

methods, including SHAP [31] and LIME [32], have been empirically shown to cause 

unstableness and again, there is no single method that is most stable across multiple real-

world datasets [53]. These findings motivate our later discussion in Pitfall #3 about the 

importance of stability evaluations for clearer biological interpretations of results derived 

from IML methods.
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Pitfalls of IML Usage in Computational Biology

As the computational biology community increasingly adopts IML methods as an important 

tool to understand ML model behaviors, we identify three pitfalls that should be avoided 

when using IML methods, depicted in Fig. 3. We describe each pitfall with illustrative 

examples and discuss how prior work has addressed them.

Pitfall #1: Only considering one IML method

While one might naturally apply a well-known IML method as a first step of model 

interpretation, it is important to note that different methods often produce different 

interpretations of the same prediction due to differences in their underlying assumptions and 

algorithms [49–51]. In fact, these underlying differences can lead to disagreements between 

IML method outputs (e.g., when the top-k most important features output by methods 

differs), a phenomenon that has been increasingly characterized across ML contexts [55]. 

Disagreement among IML methods has been reported in computational biology applications. 

DeepLIFT [27] demonstrates that not all IML methods can correctly identify key motifs 

for cooperative binding of transcription factors (TFs). Assessments on transcriptomics data 

show that different IML methods identify varying top genes for tissue type classification 

[56]. Additionally, even for a specific IML method, different hyperparameters (e.g., the 

baseline input in DeepLIFT [27] and Integrated Gradients [28]), or multiple runs of the same 

workflow, may lead to variance in the derived importance scores. Therefore, relying on a 

single run of one IML method may result in biased feature importance.

To obtain a more comprehensive view of the model’s behavior, we recommend employing 

multiple IML methods with diverse sets of hyperparameters and comparing their results. 

For example, Enformer is a transformer-based neural network that predicts gene expression 

from DNA sequences [8]. The authors computed feature importance scores using a diverse 

set of methods, including attention scores, input gradients, and perturbation-based scores, 

to understand important regulatory elements for gene expression. To identify the distinctive 

features for the classification of Alzheimer’s disease pathologies, Tang et al. [57] examined 

the differences in feature maps captured by Guided Grad-CAM [29] and the feature 

occlusion method [58], focusing on the specific features each method reveals under different 

conditions. Furthermore, KPNN [37], which represents a by-design, biological network with 

a partially connected neural network, proposed several design modifications to enhance the 

robustness of feature importance and assessed the effectiveness using the simulation data 

with known ground truth. These applications illustrate how incorporating multiple IML 

methods can foster a more reliable and comprehensive assessment of model behavior and 

feature importance.

However, if applying multiple IML methods leads to conflicting conclusions, it is important 

to develop evaluation mechanisms to assess the faithfulness of each IML method (i.e., 

comparing the generated explanation to real data or expert knowledge). This practice 

is increasingly common and has been applied to problems where there is some prior 

knowledge about the underlying mechanisms, such as TF binding motifs. Additionally, when 

the ground truth is significantly lacking, experimental validation will be crucial to verify 

the predictions made by IML methods. Incorporating “human-in-the-loop” and “lab-in-the-
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loop” approaches can further enhance interpretation and ensure the findings are biologically 

relevant and actionable.

Pitfall #2: IML output disconnected from biological interpretation

Although IML methods can identify features that are highly predictive of the output labels, 

they may not directly provide a biological interpretation of the resulting importance scores. 

For example, while gradient-based methods assign nucleotide-level feature importance in 

DNA sequence-based prediction tasks, post-processing steps are necessary to summarize the 

genome-wide importance scores and reveal the important sequence patterns. Similarly, for 

cell imaging-based classification tasks, the set of pixels that are highlighted by the feature 

attribution methods need to be converted to human-interpretable features.

Post-hoc explanation methods typically compute importance scores for the input features. 

The post-processing techniques to uncover the biological interpretation of these importance 

scores are highly domain-specific: For sequence-based tasks, various methods can extract 

meaningful insights from importance scores. For instance, TF-MoDISco [59] summarizes 

the nucleotide-level importance scores and performs de novo motif discovery to reveal 

the important sequence patterns. Additionally, statistical enrichment analysis can detect 

the known sequence patterns that frequently occur in regions with high importance. In 

the context of metagenomic sequence analysis, IDMIL [60] uses local sequence alignment 

search tool to identify the microbiome species with high-attention sequence fragments based 

on metagenomic data. In gene expression-related tasks, importance scores are typically 

assigned to individual genes using the feature importance attribution methods, such as 

DeepLIFT and SHAP. Subsequently, Gene Ontology (GO) enrichment analysis is commonly 

leveraged to identify the key functions of the top-ranked genes based on the computed 

importance scores [15, 61]. For cellular imaging analysis, the important regions highlighted 

by IML methods need to be translated into human interpretable features [62]. Moreover, 

when imaging data are transformed into a vector representation, generative models can 

visualize phenotype changes associated with important features in the latent space [19, 63]. 

Likewise, generative models can generate counterfactual images, enabling human experts to 

better understand the underlying reasoning processes [20].

In contrast, by-design explanation methods inherently embed feature importance within 

the network, utilizing components such as neurons, hidden layers, or attention matrices. 

Unveiling this information often requires subsequent post-processing steps. Recent methods, 

particularly in the context of single-cell RNA-seq, have incorporated prior knowledge (e.g., 

known gene functions, regulatory relationships, and biological pathways) into the network 

architecture to improve the intrinsic interpretability of neural networks [14, 37, 38]. For 

these biologically informed models, it is important to interpret the learned weights of various 

biologically relevant components and establish meaningful connections to prior knowledge. 

For instance, DCell [14], which embeds the GO hierarchical structures into the network 

architecture to perform phenotype predictions, further identifies the mechanisms of the 

genotype-phenotype connections by evaluating how subsystems mimic different logic gates.

Interpreting 2D attention matrices in attention-based models as pairwise dependencies 

between distinct loci may initially appear straightforward; however, these attention-based 
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models typically comprise multiple layers, each containing multiple attention heads. Each 

attention head within a layer may learn a distinct aspect of pairwise attention, making 

it challenging to summarize and extract the biologically meaningful features or pairwise 

interactions. The existing works have attempted to tackle this challenge with a diverse 

set of approaches. Enformer, which predicts gene expression levels from DNA sequences 

through a combination of convolutional neural network (CNN) and transformer layers, 

summarizes the attention weights by averaging the attention matrices across all heads 

and layers [8]. C.Origami, a multi-modal transformer-based neural network that predicts 

chromatin organization from DNA sequences and chromatin features, inspects the layer-

specific attention scores by averaging all the attention heads within the same layer [64]. 

Nucleotide Transformer, a pre-trained model based on DNA sequences, employs the 

BERTology method to evaluate attention scores associated with key genomic elements 

learned by individual attention heads [65]. Besides the methods discussed above, attention 

rollout and attention flow are other techniques to process the raw attention matrices [66].

After examining the application of post-processing techniques for both post-hoc and by-

design methods, it is evident that the post-processing step is essential for converting the 

raw IML output into meaningful biological interpretations. Moreover, the selection of these 

techniques is closely linked to the specific characteristics of the data type and model 

architecture.

Pitfall #3: Cherry-picked presentation of results

Evaluations of faithfulness have been increasingly conducted to comprehend the quality of 

IML outputs across various inputs of interest, but are often presented cherry-picked manner. 

Firstly, evaluations that present only selective examples where the IML output aligns with 

previously identified biological mechanisms may be misleading, overlooking the remaining 

samples that could suggest different underlying behaviors. Additionally, evaluations may 

also selectively highlight certain conclusions drawn from the examples, leading to an 

incomplete understanding of the overall findings. Oftentimes, this pitfall occurs not because 

researchers are intentionally trying to present misleading IML interpretations but rather 

because they try to select the “best” examples to showcase in a paper.

We now provide concrete examples of cherry-picking in various computational biology 

applications. For example, in DNA/RNA/protein sequence-based prediction tasks, cherry-

picking involves presenting results that only showcase local regions where the subsequences 

with high importance scores are consistent with the existing annotations, or partially 

showcase only the convolutional kernels that match the known sequence patterns. In 

phenotype prediction tasks based on tabular data, cherry-picked results include those that 

only report the biomarkers assigned high importance scores, which overlap with previously 

known biomarkers. Such practices are problematic and may lead to a biased interpretation of 

the underlying mechanisms.

To present a more robust evaluation, we recommend conducting a quantitative analysis of 

the faithfulness of the importance score to prior knowledge across the entire dataset and 

summarizing the overall feature importance. It is crucial not to overlook the non-trivial 

feature importance attributions that may appear inconsistent with prior knowledge. For 
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instance, for BPNet, [9] conducted a comprehensive genome-wide scanning to identify the 

motifs for each TF. Importantly, the authors reported all 51 identified motifs, assessing 

the sequence properties to decide whether to include them in the final representative 

set, providing sufficient justifications for their choices. The final representative set was 

compared with the previously known transcription factor binding motifs. CITRUS [16] 

embeds cancer somatic variations and predicts gene expression through an attention-based 

architecture. To evaluate the consistency between the high-attention genes and the known 

cancer driver genes, the authors split the gene set into more and less attended groups and 

performed statistical tests to confirm that cancer drivers are indeed enriched in the high-

attention genes, supported by small p-values. IAIA-BL [18] is an imaging-based workflow 

for classifying breast lesions. An interpretability metric, named activation precision, is 

defined to assess the concordance between important regions identified by Grad-CAM 

[29] and human expert annotations. In summary, the examples presented above showcase 

the recommended practice of assessing feature importance across the entire dataset and 

employing quantitative metrics for evaluation.

For each IML method, we also recommend including a measure of stability. This can 

be computed in several ways. For example, UnitedNet [67] assesses the robustness of 

SHAP in determining feature relevance in single-cell multi-modality data across various 

hyperparameters and models trained on distinct subsets of data. Washburn et al. [68] 

calculated the average gradient value attributed to each DNA base pair across 10 iterations 

of five-fold cross-validation. C. Origami [64] conducted a comparison among three different 

methods, including Gradient-weighted Regional Activation Mapping (GRAM), attention 

scores, and perturbation impact scores. Notably, they evaluated feature importance scores for 

GRAM with varied window sizes and random seeds, revealing its relatively lower robustness 

compared with the other methods. Stability can also be measured by verifying whether the 

most important features identified in one dataset are consistent when applying the same 

workflow to an independent dataset. All the methods discussed above are effective ways 

of evaluating the stability of the feature importance, thereby assessing the faithfulness of 

interpretation and enhancing confidence in biological discoveries.

Opportunities for IML Developments in the Age of LLMs

Besides establishing better practices to avoid the pitfalls of IML usage, there are 

multiple opportunities to develop novel IML techniques for new model architectures and 

biological applications. Despite the rapid development in predictive modeling for biological 

applications, particularly with recent advancements in large language models (LLMs), 

specialized techniques to interpret these models lag behind. Concretely, we observe that the 

state-of-the-art transformer-based models, such as Enformer [8] and Geneformer [17], still 
utilize the classic IML methods, such as attention, for explanations. However, the validity 

and reliability of this explanatory approach remain open to debate, as we addressed in the 

section “IML Methods and Evaluations in Computational Biology”. We highlight challenges 

and associated opportunities for developing and applying IML techniques to pre-trained 

LLMs:
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• What is the right choice of tokenization for biological applications? 
Interpretations of explanations can be greatly impacted by the choice of 

tokenization scheme, the process that splits an input sequence into smaller 

units that are then encoded by the LLM. For example, for DNA sequences, 

commonly used tokenization techniques include single-nucleotide tokenization 

[69], fixed k-mer tokenization [65], and byte pair encoding tokenization [70], 

which could lead to hypotheses and explanations at different resolutions. There 

remain opportunities to develop schemes to handle other types of biological 

data and enable existing tokenization schemes to better represent the underlying 

biology of the input sequences by incorporating prior knowledge.

• How can LLM-specific IML methods be adapted to biological contexts? 
Recent techniques proposed for transformers are still in their infancy and may 

not be directly applicable in their current forms; we discuss two prominent 

approaches. Mechanistic interpretability techniques aim to translate complex 

transformer models into human-interpretable algorithms (e.g., circuits [45] 

and human-readable programs [46]). While applications of existing techniques 

have been limited to relatively simple functions, there are opportunities to 

apply and enhance mechanistic interpretability methods for more complex, 

biological contexts. Prompting LLMs is another common approach to explain 

LLM-generated output using natural language (e.g., via chain-of-thought [71]). 

Natural language explanations may not be directly applicable to computational 

biology, which often focuses on predictive rather than generative outputs, but 

future LLMs that are pre-trained on both natural language and biological 

corpora may allow computational biologists to leverage these explanations. We 

note that prompting-based explanations provide no guarantees with regard to 

the faithfulness to model internals [72], but we might consider this to be a 

feature, rather than a bug, when using these methods to identify novel, testable 

hypotheses in biological applications.

• How do we develop IML techniques to handle multi-modal applications? 
There is a recent boom in the integration and modeling of multi-modal data, 

enabling the understanding of cellular mechanisms from a more comprehensive 

point of view: Bichrom incorporates DNA sequence with epigenetic signals to 

predict TF binding [73], and Pathomic Fusion leverages both cancer histology 

images and genomic features for survival prediction [74]. Matilda [75] explores 

the integrative modeling of single-cell multi-omic data. While some of these 

prior works have considered IML methods for their proposed models, their 

applications of IML methods are limited to unimodal explanations. However, 

many biological data discussed above, such as sequence and epigenomic 

features, exhibit high levels of correlation, which can present challenges 

when assigning accurate importance scores and drawing meaningful biological 

conclusions. An open research question is defining evaluation techniques 

to check whether explanations properly attribute importance scores to each 

modality and building on early work from the ML literature for understanding 

multi-modal models [76].
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• What types of novel visualization tools can best facilitate interpretation? 
Novel IML techniques for LLMs or multi-modal data need to be accompanied 

by open-source visualization approaches and evaluation platforms. These 

visualization methods should be tailored to the various data types and 

applications that are common in computational biology [77]. For example, 

DNABERT-Viz [78], an attention-weight visualization module designed for 

DNA sequences, allows users to explore the important genomic regions and 

sequence motifs. While DNABERT-Viz serves as a good starting point for the 

development of visualization tools specific to analyzing the attention weights for 

DNA sequences, a suite of tools across different data types is necessary to enable 

a more standardized IML workflow across computational biology applications.

Finally, there are still areas within computational biology, such as genetic perturbation 

studies, sequence comparisons, cellular structure and function modeling, and bioimage 

analysis, where the application of ML methods is prevalent, but the adoption of IML 

methods remains relatively limited. Therefore, there are significant opportunities in these 

areas to consider applying existing methods or developing novel domain-specific IML 

methods (e.g., by integrating prior biological knowledge into neural network architectures) 

to improve the interpretability of the analyses.

Conclusion

As IML methods continue to gain traction in computational biology applications, the need 

for a standardized guideline detailing best practices for evaluating IML methods has become 

more apparent. In this article, we provided an overview of common IML methods and 

evaluation metrics, discussed three pitfalls of current evaluation practices when applying 

IML methods to computational biology applications, and highlighted the importance of 

engaging additional validations, including incorporating “human-in-the-loop” and “lab-in-

the-loop” approaches, to assess IML predictions and enhance their reliability. Nonetheless, 

we believe that these recommendations signify only the start of a set of contributions toward 

solidifying the foundations of IML usage and evaluation in computational biology.

There is a persistent demand for concerted efforts within the IML and computational biology 

communities to continuously improve the ways in which IML methods and evaluations 

can be tailored to suit diverse biological applications. This is particularly timely given the 

expected upcoming wave of LLM applications to molecular and cellular datasets. Through 

such collaborations, we aspire to facilitate the formulation of new IML problems in ways 

that are likely to significantly promote hypothesis generation and new discoveries across a 

broad spectrum of biological and biomedical contexts.
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Figure 1: 
The two main IML approaches used to explain prediction models are post-hoc explanations 

and by-design explanations. Each approach has its canonical workflows and popular types 

of IML methods: post-hoc explanations are model-agnostic and are applied after a model 

is trained while by-design explanations are typically built into or inherent to the model 

architecture.
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Figure 2: 
How do we assess explanations, which attribute importance scores to features of an input, 

generated by an IML method? IML methods are typically evaluated for the faithfulness of 

their computed feature importance scores as compared to a known ground truth mechanism 

and the stability of computed feature importance scores (e.g., as denoted by error bars) 

across varied input data.
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Figure 3: 
An overview of three common pitfalls of IML interpretation in biological contexts and how 

to avoid these pitfalls. 1) Only considering one IML method. Consideration of multiple 

IML methods can inform the downstream interpretation of the outputs. 2) IML output 
disconnected from biological interpretation. Oftentimes, a post-processing step is necessary 

to enable interpretation of the IML output, particularly when the method is applied to 

sequence or pixel-level data. 3) Cherry-picked presentation of results. Many prior works 

do not present a complete picture of the extent to which the IML output reflects known 

biological mechanisms.

Chen et al. Page 17

Nat Methods. Author manuscript; available in PMC 2024 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	IML Methods and Evaluations in Computational Biology
	Methods
	Post-hoc Explanations
	By-design Methods

	Evaluation Techniques

	Pitfalls of IML Usage in Computational Biology
	Pitfall #1: Only considering one IML method
	Pitfall #2: IML output disconnected from biological interpretation
	Pitfall #3: Cherry-picked presentation of results

	Opportunities for IML Developments in the Age of LLMs
	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:

