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Abstract: Background: Smoking during pregnancy has been linked to adverse health outcomes in offspring,
but the underlying mechanisms are not fully understood. To date, the effect of maternal smoking has been test-
ed in primary tissues and animal models, but the scarcity of human tissues limits experimental studies. Evi-
dence regarding smoking-related molecular alteration and gene expression profiles in stem cells is still lack-
ing.

Methods: We developed a cell culture model of human amniotic fluid stem cells (hAFSCs) of nicotine (NIC)
exposure to examine the impact of maternal smoking on epigenetic alterations of the fetus.

Results: NIC 0.1 µM (equivalent to “light” smoking, i.e., 5 cigarettes/day) did not significantly affect cell via-
bility; however, significant alterations in DNA methylation and N6-methyladenosine (m6A) RNA methylation
in hAFSCs occurred. These epigenetic changes may influence the gene expression and function of hAFSCs.
Furthermore, NIC exposure caused time-dependent alterations of the expression of pluripotency genes and cell
surface markers, suggesting enhanced cell stemness and impaired differentiation potential. Furthermore, NIC-
treated cells showed reduced mRNA levels of key adipogenic markers and hypomethylation of the promoter re-
gion of the imprinted gene H19 during adipogenic differentiation, potentially suppressing adipo/lipogenesis.
Differential expression of 16 miRNAs, with predicted target genes involved in various metabolic pathways
and linked to pathological conditions, including cognitive delay and fetal growth retardation, has been detect-
ed.

Conclusion: Our findings highlight multi-level effects of NIC on hAFSCs, including epigenetic modifications,
altered  gene  expression,  and  impaired  cellular  differentiation,  which  may  contribute  to  long-term  conse-
quences of smoking in pregnancy and its potential impact on offspring health and development.
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1. INTRODUCTION

Almost 20-30% of the world’s population over 15 years of age
smoke tobacco cigarettes [1, 2], including both men and women.
Among the female smokers, most of them are of reproductive age.
According to the Centers for Disease Control and Prevention (CD-
C) report, in 2016, 1 in 14 pregnant women smoked during preg-
nancy in the USA [3]. The amount of nicotine (NIC) in amniotic
fluid  depends  upon  factors  such  as  the  number  of  cigarettes
smoked per day, the strength of the cigarette, and NIC inhalation
mode, e.g., traditional cigarettes, roll-your-own cigarettes, electron-
ic cigarettes, cigars, and waterpipes [4, 5].

Several epidemiological studies suggest that prenatal tobacco
exposure  may  be  associated  with  various  complications  for  off-
spring, including obesity [6], birth defects [7], attention deficit hy-
peractivity disorder  (ADHD) [8],  chronic  obstructive pulmonary
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disease [9], asthma [10] and type-2 diabetes [11] during childhood
and later life. Recent evidence suggests that the detrimental effects
of maternal smoking are correlated with altered DNA methylation
[12-14]  and  dysregulated  expression  of  microRNAs  (miRNAs)
[15-17]. A large body of preclinical studies conducted on animal
models demonstrated smoking-related epigenetic alterations in rats
exposed to NIC [17-20]. In particular, recent works in rodents con-
firmed the direct  implication of perinatal  NIC exposure on early
adipogenesis and lipogenesis, resulting in increased offspring adi-
posity [21-23]. Furthermore, in the last few years, a growing num-
ber  of  studies  have  systematically  investigated  smoking-related
molecular  alteration  and  gene  expression  profiles  in  stem  cells
[24-26]. Stem cells and their capability to differentiate and repair
organs  damaged by  smoking  are  involved  in  diseases  associated
with tobacco use. Given this evidence, human amniotic fluid stem
cells (hAFSCs) provide an in vitro model for studying epigenetic
regulation in early human development [27]. Thus, hAFSCs could
represent  an  interesting  alternative  to  induced  pluripotent  stem
cells  (iPSCs)  for  identifying epigenetic  marks  in  diseased gesta-
tion. In our previous experiments, we obtained hAFSCs from the se-
cond trimester of the amniotic fluid [28, 29]. Given their charac-

1873-4286/24  

C
ur

re
nt

 P
ha

rm
ac

eu
tic

al
 D

es
ig

n
�������������	�
�������������	��

������
����	
�

�
�

Send Orders for Reprints to reprints@benthamscience.net
Current Pharmaceutical Design, 2024, 30, 1995-2006

1995

RESEARCH ARTICLE

Nicotine-induced Genetic  and  Epigenetic   Modifications  in  Primary Human
Amniotic Fluid Stem Cells

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode  

2024 Bentham Science Publishers

http://dx.doi.org/10.2174/0113816128305232240607084420
mailto:patrizia.ballerini@unich.it
http://crossmark.crossref.org/dialog/?doi=10.2174/0113816128305232240607084420&domain=pdf
https://creativecommons.org/licenses/by/4.0/


1996   Current Pharmaceutical Design, 2024, Vol. 30, No. 25 Upadhyaya et al.

teristic of fetal stem cells, hAFSCs are the ideal candidate for in
vitro studies concerning the effects of NIC on the fetus. In the pre-
sent study, we differentiated hAFSCs into adipogenic lineage to elu-
cidate the epigenetic effects of perinatal NIC exposure on early adi-
pogenesis. The clarification of molecular changes induced by ma-
ternal smoking may have important implications for identifying po-
tential biomarkers predictive of tobacco-related disorder develop-
ment during prenatal and postpartum periods.

2. MATERIALS AND METHODS

2.1. hAFSC Culture

The samples of human amniotic fluid (2-3 ml) were obtained
from  women  during  amniocentesis  (n=5)  for  prenatal  diagnosis
(16-18 weeks of pregnancy) at SS Annunziata Hospital, ASL Lan-
ciano-Chieti-Vasto, Chieti, Italy. The study was carried out follow-
ing  the  recommendations  of  the  Declaration  of  Helsinki.  An  in-
formed consent was obtained from each subject. After collection,
amniotic fluid samples were centrifuged at 1200 rpm for 5 minutes,
and the pellet was utilized to establish the cell line. hAFSCs were
cultured until the fifth passage as previously described [29, 30].

2.2. Nicotine Preparation

NIC was freshly prepared for each treatment. The liquid form
of NIC (≥ 99% (GC), liquid, N3876) was purchased from Sigma
Aldrich SRL (Milan, Italy). From the liquid NIC, a stock solution
of 100 mM was prepared by diluting 16 µL of NIC in 984 µL of
phosphate-buffered saline (PBS). From the stock, a NIC solution of
1000 µM was prepared by diluting 10 µL of stock solution in 990
µL of culture medium. With this solution, NIC 0.1μM for experi-
ments was obtained by serial dilution.

2.3. Cell Viability

The  3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-
phenyl)-2-(4-sulfophenyl)-2H-tetrazolium  (MTS)  assay  was  per-
formed to evaluate cell proliferation in response to NIC treatment
by using CellTiter 96®  AQueous One Solution Cell  Proliferation
Assay (Promega Italia s.r.l., Milan, Italy), following the manufac-
turer’s protocol, as previously described [31-34]. Briefly, the cells
were seeded at 3000 cells/well and incubated for 24 hours at 37°C
in a humidified atmosphere (95%) under 5% CO2. Furthermore, the
cells were treated with NIC 0.1 μM and incubated at 37°C with 5%
CO2 for 24, 48, and 72 hours, respectively. At each time point, the
cell viability was assessed as previously described [29].

2.4. Adipogenic Differentiation of hAFSCs

For adipogenic differentiation, once hAFSCs have reached the
confluence of 90%, the medium was replaced with the adipogenic
differentiation medium (AdipoMAX Differentiation Medium from
Sigma-Aldrich  by  Merck,  Darmstadt,  Germany).  The  cells  were
left to differentiate for 21 days in the absence or the presence of
NIC 0.1 μM for the same period.

2.5. Extraction of DNA and Total RNA

The extraction of total DNA was performed by using the Mag-
Purix Forensic DNA Extraction Kit (MagPurix®, Zinexts Life Sci-
ence,  Taiwan)  and  the  automatic  DNA  extractor  (MagPurix®,
Zinexts Life Science, Taiwan) according to the manufacturer’s pro-
tocol.  The  extracted  DNA  was  then  quantified  using  the  Qubit
DNA assay kit (Life Technologies, ThermoFisher Scientific). The
total RNA was extracted using acid guanidine thiocyanate phenol-

chloroform protocol and was quantified using the Qubit RNA as-
say  kit  (Life  Technologies,  ThermoFisher  Scientific).  DNA  and
RNA quantifications were obtained using a Qubit 3.0 fluorometer
(ThermoFisher Scientific).

2.6. Reverse Transcription and Real-time Quantitative PCR

Total RNA (100 ng) was reverse transcribed into cDNA using
RevertAid First Strand cDNA Synthesis Kit (ThermoFisher Scienti-
fic) and oligo (dT) primers, following the manufacturer's protocols,
obtaining 20 μL of cDNA for each sample. Moreover, to perform
real-time quantitative PCR, the primers for C-Kit (KIT proto-onco-
gene, receptor tyrosine kinase), Oct-4 (POU class 5 homeobox 1),
SOX2 (SRY-box transcription factor 2), NANOG (Nanog home-
obox),  LPL  (lipoprotein  lipase),  PPARG  (peroxisome  prolifera-
tor-activated receptor gamma), FABP4 (fatty acid binding protein
4),  and  GAPDH  (glyceraldehyde-3-phosphate  dehydrogenase)
were  purchased  from  Eurofins  Genomics  (Ebersberg,  Germany)
and  are  summarized  in  Table  S1.  The  real-time  qPCR  was  per-
formed as previously described [29].

2.7. Immunophenotyping with Flow Cytometry

Both primary conjugated and unconjugated anti-human mono-
clonal  antibodies  (IgG)  against  19  different  proteins  have  been
used  for  flow  cytometry.  Fluorescently  tagged  secondary  anti-
bodies were used to bind against  the primary unconjugated anti-
bodies (Table S2). hAFSCs immunophenotyping was performed as
previously described [29].

2.8. Analysis of Methylation Profiles

Global DNA methylation quantification was performed as pre-
viously described [29]. N6-methyladenosine (m6A) RNA methyla-
tion quantification was performed on total RNA (200 ng) with the
help of EpiQuik™ m6A RNA Methylation Quantification Kit (Epi-
gentek Group Inc.). The amount of m6A in the different samples
was calculated in terms of m6A% (m6A/A×100%).

2.9. Bisulfite Conversion and Pyrosequencing

Bisulfite  conversion  and  pyrosequencing  were  performed  as
previously described [29]. Primers and PCR conditions used in py-
rosequencing are described in Table S3. The results of pyrosequenc-
ing were displayed as a pyrogram. The methylation percentage was
expressed for each DNA locus as %5-mC divided by the sum of
methylated and unmethylated cytosines.

2.10. MicroRNA Profiling and Data Analysis

The cells were allowed to differentiate into Adipogenic lineage
for 20 days in two different dishes. During adipogenesis, one dish
was treated with NIC 0.1 µM (treatment), and another was left un-
treated (control). After 20 days of differentiation, total RNA was
extracted  from  both  the  control  and  treatment  using  the  acid
guanidine-thiocyanate-phenol-chloroform  protocol.  The  total
RNAs were sent for the next-generation sequencing experiments,
comprising  quality  control  samples,  and  were  performed  by
Genomix4life S.R.L. (Salerno, Italy). Indexed libraries were pre-
pared from 500 µg of total RNA purified with TruSeq SmallRNA
Sample Prep Kit (Illumina, San Diego, CA, USA) according to the
manufacturer’s instructions. The libraries were quantified using the
Agilent 4200 TapeStation (Agilent Technologies, Rome, Italy) and
pooled in such a way that each index-tagged sample was present in
equimolar amounts, with the final concentration of the pooled sam-
ples being 2 nM. The pooled samples were subject to cluster gener-
ation  and  sequencing  using  an  Illumina  NextSeq  500 System
(Illumina) in a 1x75 single read format at a final concentration of 3
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pM. The raw sequence files generated (fastq files) underwent quali-
ty control analysis using FastQC (http://www.bioinformatics.bab-
raham.ac.uk/projects/fastqc/).  Bioinformatics  analyses  were  per-
formed with iSmaRT. Starting from raw sequencing data, iSmaRT
first conducts quality control and filtering of the sequence reads us-
ing FastQC, while Cutadapt [35] or sRNAbench [36] is used to re-
move the adapter sequences and low-quality reads. The differential
expression analysis is performed in iSmaRT integrating three Bio-
conductor  statistical  packages:  DESeq2  [37],  edgeR  [38],  and
NOISeq [39]. The expression of a total of 1018 miRNAs was quan-
tified using this technique (Table S4). The miRNAs with more than
7 reads were considered expressed. We invented simple cut-offs to
classify the expression into four distinct categories. The miRNAs
with ≥ 10,000 reads were considered highly expressed,  miRNAs
with 9999-1000 reads were considered highly expressed, miRNAs
with  999-100  reads  were  considered  moderately  expressed,  and
miRNAs with 99-8 reads were considered low expressed.

2.11. Statistical Analysis

For  each  sample,  technical  duplicates  were  performed,  and
their averages were used for data interpretation. For each experi-
ment  averages  from  5  different  hAFSC  lines were obtained and
analyzed  using  Graph  Pad Prism V6 (California, USA). Multiple
t-tests were performed to assess statistical significance without cor-
rections for multiple comparisons. Data are presented as mean ±
SD, n=3-6, as specified in each figure legend. P-values were ex-
pressed as **** when P ≤ 0.0001, *** when P ≤ 0.001, ** when P
≤ 0.01, and * when P ≤ 0.05. The P value > 0.05 indicates no statis-
tical significance (ns).

3. RESULTS

3.1. Effect of Nicotine on hAFSC Viability

NIC concentration in the amniotic fluid of smoking pregnant
women (5 cigarettes/day) has been reported to be in the range of
7-31 ng/ml, with a median of 11 ng/ml (0.07 µM) [40, 41]. Thus,
hAFSCs were treated with NIC (0.1 μM) for 24, 48, and 72 hours,
and  cell  viability  was  assessed  by  MTS  assay.  Cell  exposure  to
NIC 0.1 μM only slightly and not significantly affect hAFSCs via-
bility up to 72 hours as shown in Fig. (1).

3.2. Nicotine Increases Global DNA Methylation and Induces
N6-methyladenine Modifications in hAFSCs

DNA methylation profiles play an important role during em-
bryogenesis and the early development of the fetus. Thus, we evalu-
ated the effect of NIC treatment on the extent of DNA methylation
at 6,  24, and 48 hours.  Our results indicate a time-dependent in-
crease of DNA methylation at the fifth position of cytosine (5 m-
C/C  %)  in  the  hAFSCs  exposed  to  NIC (0.1  µM).  As  expected,
DNA methylation  was  not  modified  over  time in  untreated  cells
(Fig.  2A).  The  highest  methylation  level  was  observed  after  48
hours of cell exposure to NIC (2.08 ± 0.09%, (mean ± SD) vs. 1.05
± 06% for NIC-treated and untreated hAFSCs, respectively).

N6-methyladenine (m6A) modification is increasingly recog-
nized  as  one  of  the  post-transcriptional  key  markers  in  different
types  of  RNAs as  well  as  one critical  factor  in  the  regulation of
RNA  splicing,  translation,  stability,  and  translocation  [42-44].
Therefore, we also evaluated the effect of NIC on m6A methyla-
tion level in RNA extracted from hAFSCs exposed to the drug for
6,  24,  and  48  hours.  Fig.  (2B)  shows  a  slight  but  significant  in-
crease  in  the  percentage of  m6A methylation in  hAFSCs treated
with NIC 0.1 µM at all time points compared to the untreated cells.
The rate of m6A methylation was significantly enhanced already at
6  hours  of  NIC  treatment  (0.22  ±  0.001%  vs.  0.199  ±  0.003%
(mean ± SD) for NIC-treated vs. untreated cells) and remained al-
most stable up to 48 hours.

3.3. Nicotine Alters the Expression of Pluripotency Genes and
Cell Surface Protein Markers in hAFSCs

Furthermore, to delineate the impact of NIC on the differentia-
tion  potential  of  hAFSCs,  we  assessed  the  expression  pattern  of
pluripotency genes, such as Oct-4, SOX2, NANOG, and C-Kit [45]
in NIC-treated hAFSCs,  compared with untreated cells.  NIC 0.1
µM significantly increased the expression levels of Oct-4, SOX2,
and NANOG, but not of C-Kit, after 48 hours of exposure (Fig. 3).
Only Oct-4 expression was significantly up-regulated as early as af-
ter 6 hours of drug exposure. These results support the hypothesis
that NIC exposure can also promote an enhancement of stemness
in hAFSCs with a potential negative impact on differentiation pro-
cesses.

Fig. (1). The evaluation of cell viability in hAFSCs after treatment with Nicotine (NIC). hAFSCs (3000 cells/well) were incubated for 24
hours at 37°C in a humidified atmosphere (95%) under 5% CO2. Then, cells were treated with NIC 0.1 μM and incubated at 37°C in a humidi-
fied atmosphere with 5% CO2 for 24, 48, and 72 hours respectively. At each time point, the cell viability was assessed. Background absor-
bance (490 nm) was subtracted from each data point using a set of wells containing only Iscove's Modified Dulbecco's Medium (IMDM). Da-
ta are reported as mean ± SD n = at least 6 (at each time point); “ns” indicates not significant (P > 0.05). (A higher resolution/colour version
of this figure is available in the electronic copy of the article).

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Fig. (2). (A) Effects of nicotine (NIC) treatment on global DNA methylation (5 m-C) of hAFSCs (undifferentiated). hAFSCs (3000 cells/well)
were incubated for 24 hours at 37°C in a humidified atmosphere (95%) under 5% CO2. Then, the cells were treated with Nicotine 0.1 μM and
incubated at 37°C in a humidified atmosphere with 5% CO2 for 6, 24, and 48 hours respectively. Global DNA methylation quantification was
assessed and reported, at each time point, as 5 mC/C ratios (%). At each time point, data are reported as mean ± SD, n=3 (each analyzed in
duplicate). *** ≤ 0.001 and **** ≤ 0.0001 vs. control (untreated cells) at the same time point. (B) The effects of Nicotine (NIC) treatment on
N6-methyladenine (m6A) modification of hAFSCs (undifferentiated). hAFSCs (3000 cells/well) were incubated for 24 hours at 37°C in a hu-
midified atmosphere (95%) under 5% CO2. Then, the cells were treated with NIC 0.1 μM and incubated at 37°C in a humidified atmosphere
with 5% CO2 for 6, 24, and 48 hours, respectively. m6A methylation was assessed as m6A/A ratios (%). Data are reported as mean ± SD, n =
3 (each analyzed in duplicate). ***P ≤ 0.001 and ****P ≤ 0.0001 vs. control (untreated cells) at the same time point. (A higher resolution/
colour version of this figure is available in the electronic copy of the article).

We also assessed the expression profile of the principal mes-
enchymal  markers  in  hAFSCs (Table  1).  As  previously  reported
[46-48],  the cells  were negative for hematopoietic markers (e.g.,
CD14, CD34, CD45) and positive for various mesenchymal mark-
ers (e.g., CD73, CD90, CD105), as well as for related surface adhe-
sion molecules (e.g., CD29, CD44, CD146, CD166) (Table 1). In-
terestingly, NIC treatment did not affect these markers except for
CD13 and CD146, which resulted in them being significantly up-
and down-regulated, respectively (Table 1).

3.4.  Nicotine  Reduced Adipogenic  Differentiation of  hAFSCs
and Alters the Methylation Status of Imprinted Gene H19 in
Differentiated hAFSCs

Moreover,  to  investigate  the  effect  of  NIC  on  adipogenesis,
hAFSCs were differentiated into adipogenic lineage in the absence
and the presence of NIC 0.1 µM, and the expression of key adipo-
genic markers such as LPL, PPARG and FABP4 was evaluated dur-
ing the terminal differentiation stage. Real-time qPCR analysis re-
vealed a significant decrease in the mRNA levels of LPL, PPARG,
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Fig. (3). The  effects  of  nicotine  (NIC)  treatment  on  the  expression of pluripotency markers of hAFSCs (undifferentiated). hAFSCs (3000
cells/well) were incubated for 24 hours at 37°C in a humidified atmosphere (95%) under 5% CO2. Then, the cells were treated with NIC 0.1
μM and incubated at 37°C in a humidified atmosphere with 5% CO2 for 6, 24, and 48 hours respectively. The gene expression of Oct-4 (POU
class 5 homeobox 1), SOX2 (SRY-box transcription factor 2), NANOG (Nanog homeobox), and C-Kit (KIT proto-oncogene, receptor tyro-
sine kinase) was evaluated by qPCR and normalized to those of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and reported as fold-
change vs. the gene expression detected in control samples. Data are reported as mean ± SD, n = 5 (each analyzed in duplicate) *P ≤ 0.05,
**P ≤ 0.01; and ****P ≤ 0.0001 vs. control (untreated cells) at the same time point. (A higher resolution/colour version of this figure is avail-
able in the electronic copy of the article).

Table 1. Protein markers used in flow cytometry.

Markers
Control (Untreated) Nicotine 0.1 µM

(Mean ± SD) Phenotype (Mean ± SD) Phenotype

CD29 63.7 ± 10.1 ++++ 81.3 ± 12.6 ++++

CD44 55.3 ± 11 ++++ 63.1 ± 11.2 ++++

HLA ABC 45.7 ± 9.9 ++++ 45.6 ± 9.2 ++++

CD73 16.8 ± 6.2 ++ 14.7 ± 7.1 ++

*CD146 35.8 ± 12.7 +++ 15.7 ± 7.6 ++

CD166 12.8 ± 3.9 ++ 12 ± 4.4 ++

CD90 6.5 ± 2.7 + 3.7 ± 1.1 +

*CD13 3.9 ± 1.8 + 17.4 ± 3.8 ++

CD105 2.2 ± 0.9 +/- 2 ± 1.2 -

CD144 1.4 ± 0.2 - 1 ± 0.3 -

HLA DR 1.2 ± 0.1 - 1.2 ± 0.1 -

CD14 1.2 ± 0.2 - 1.2 ± 0.1 -

CD34 1.1 ± 0.1 - 1.9 ± 0.2 -

CD45 1.1 ± 0.2 - 1.5 ± 0.3 -
Note: Phenotype: fluorescence intensity (MFI) ratio < 2: - (Negative); 2-2.2: +/- (Borderline); 2.2-10: + (Moderately Positive); 11-20: ++ (Sufficiently Positive); 21-40: +++ (Highly positive); > 41: ++++ (Strong-
ly positive). *Change in phenotype.

and FABP4 induced by NIC (Fig. 4A), with LPL showing the great-
est  reduction  (0.097  ±  0.071;  P  <  0.0001),  followed  by  FABP4
(0.202  ±  0.129;  P  <  0.0001)  and  PPARG  (0.331  ±  0.126;  P  <
0.0001), respectively (Fig. 4A).

It is widely recognized that H19, an imprinted long non-coding
RNA (lncRNA), plays a crucial role in lipid metabolism [49], and
recent data have indicated that maternal smoking has an important
impact on methylation levels of H19 in fetuses [50-52]. Thus, in
our study, we investigated the DNA methylation pattern of the H19
gene  in  NIC-treated  differentiated  hAFSCs.  Compared  with  the
control, we observed a marked hypomethylation in the promoter re-

gion of H19 of differentiated cells treated with NIC 0.1 µM (Fig.
4B).

3.5.  Change  in  the  Expression  of  miRNAs  During  Nicotine
Treatment

Moreover, to study the impact of NIC on miRNAs involved in
adipogenic differentiation, we employed the Next Generation ap-
proach utilizing the Illumina platform. The miRNA expression lev-
els  were  compared  between  NIC-treated  differentiated  hAFSCs
and untreated differentiated cells. In an initial analysis of 1018 miR-
NAs (Table S4), 442 were qualified for evaluation, with more than
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Fig. (4). (A) The effects of NIC treatment on the expression of adipogenic markers in hAFSCs (differentiated). In addition, to induce adipo-
genic differentiation, once hAFSCs have reached the confluence of 90%, the medium was replaced with the adipogenic differentiation medi-
um (AdipoMAX Differentiation Medium). The cells were left to differentiate for 21 days in the absence (control) or in the presence of Nico-
tine (NIC) 0.1 μM (treated) for the same time period. The gene expression of LPL (lipoprotein lipase), PPARG (peroxisome proliferator-acti-
vated receptor gamma), and FABP4 (fatty acid binding protein 4) was evaluated by qPCR and normalized to those of GAPDH and reported
as fold-change vs. the gene expression detected in control samples. Data are reported as mean ± SD, n=3 (each analyzed in duplicate). ****P
≤ 0.0001 vs. control (untreated cells). (B) Promoter-specific methylation change in control (untreated), differentiated nicotine (NIC) 0.1 µM
treated (21 days), and untreated cells (21 days). Data are reported as mean ± SD n = 3 (each analyzed in duplicate). ****P ≤ 0.0001 vs. hAF-
SCs (undifferentiated) and # P ≤ 0.0001 vs. hAFSCs (untreated). (A higher resolution/colour version of this figure is available in the electron-
ic copy of the article).

7 reads. Out of these, 28 had very high expression (≥ 10,000 reads)
(Table  S5),  64  were  highly  expressed  (9999-1000  reads)  (Table
S6), 131 were moderately expressed (999-100 reads) (Table S7),
and  219  were  lowly  expressed  (99-8  reads)  (Table  S8).  Using  a
fold change threshold of ≥ 2 and a P-value threshold of ≤ 0.05, we
found 16 differentially expressed miRNAs (Fig. 5A), with 7 being
down-regulated and 9 being up-regulated (Fig. 5B). As shown in
Fig. (5),  miR-210-3p (fold change = 42.10) and hsa-miR-483-3p
(fold change = 12.50) were the most highly up-and-down-regulated
miRNAs, respectively.

In addition, to identify the biological function of the differen-
tially expressed miRNAs, the DIANA software and miRNet were
used to predict the potential target pathways and genes for all up-
regulated and down-regulated miRNAs. In a total of 16 differential-

ly expressed miRNA, four (hsa-miR-133a-3p, hsa-miR-1197, hsa-
miR-370-5p, and hsa-miR-210-3p) were not recognized by Diana
Tools and were consequently removed from the analysis. The re-
maining 12 miRNAs were analyzed by KEGG analysis to predict
the signaling pathways with a criterion of P < 0.05 for selecting sig-
nificance. In total, 59 pathways were detected, and only 12 were in-
volved in fatty acid metabolism, fatty acid biosynthesis, fatty acid
elongation, fatty acid degradation, signaling pathways regulating
pluripotency  of  stem  cells,  pathways  in  cancer  and  sphingolipid
metabolism (Table 2), as illustrated by the heat map (Fig. 5C).

The  functional  enrichment  analysis  for  the  predicted  target
genes of 16 dysregulated miRNAs was performed using the bioin-
formatics tool miRNet at a P-value of 0.05. A total of 7758 target-
ed genes  were  identified,  including  6595  genes  for  upregulated
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Fig. (5). (A and B) Significant changes of miRNA expression in NIC 0.1 µM treated cells (differentiated) for 21 days by using Next Genera-
tion approach (Illumina platform). Fold change ≥ 2 are included in the study (n=5). (C) Pathway prediction of miRNAs differentially ex-
pressed between treated differentiated hAFSCs and untreated differentiated cells. Red colour shows the most significant pathway involving
each miRNA. (A higher resolution/colour version of this figure is available in the electronic copy of the article).
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Table 2. Top KEGG pathways regulated by 16 differentially expressed miRNAs in treated differentiated hAFSCs.

KEGG Pathway P-value Gene Count miRNAs Count

Fatty acid metabolism (hsa01212) 3.594x10-8 18 8

Fatty acid biosynthesis (hsa00061) 3.150x10-7 4 5

Cell cycle (hsa04110) 1.259x10-6 59 11

Fatty acid elongation (hsa00062) 1.389x10-6 10 3

Fatty acid degradation (hsa00071) 4.152x10-5 16 7

Adherens junction (hsa04520) 5.079x10-5 34 11

Pathways in cancer (hsa05200) 1.536x10-4 143 11

TGF-beta signaling pathway (hsa04350) 3.509x10-4 30 11

Signaling pathways regulating pluripotency of stem cells (hsa04550) 3.509x10-4 56 11

mTOR signaling pathway (hsa04150) 2.973x10-3 29 11

Sphingolipid metabolism (hsa00600) 0.0158 18 8

Sphingolipid signaling pathway (hsa04071) 0.0218 45 11

miRNAs  and  2944  genes  for  downregulated  miRNAs  (Fig.  S1).
The target genes of 16 miRNAs differentially expressed were par-
ticularly enriched in glycerophospholipid metabolism, mTOR sig-
naling pathway, sphingolipid metabolism, fatty acid metabolism,
and  glycerolipid  metabolism  (Figs.  S2A,  B).  Furthermore,  Dis-
GeNet analysis, a disease database, was used to predict diseases as-
sociated with miRNA-target gene. Several miRNAs were signifi-
cantly involved in cognitive delay, intrauterine retardation, infant
small for gestational age, fetal growth retardation, failure to gain
weight, and premature birth (Figs. S3A, B). Our findings pointed
out the important role of miRNAs in fatty acid biosynthesis and,
more  interestingly,  showed  that  their  predicted  target  genes  are
mainly involved in fetal growth and intrauterine retardation birth,
according to the DisGeNet database.

4. DISCUSSION

There is remarkable evidence confirming the harmful effects of
maternal smoking during pregnancy on the fetus, partly caused by
epigenetic alterations [53-55]. Research is ongoing to better unders-
tand the epigenetic machinery underlying diseases associated with
prenatal  NIC  exposure.  In  this  context,  stem  cells  represent  a
promising system for modeling fetal toxicology. In this study, we
investigated the epigenetic effect of NIC on the adipogenic differen-
tiation of hAFSCs as a cellular culture model of prenatal tobacco
exposure.  The advantages of  hAFSCs include their  properties  of
plasticity intermediate between embryonic and adult stem cells and
their capacity to differentiate into several cell lineages [30, 56-60].
It is well-recognized that cigarette smoking during pregnancy has
dose-dependent  perinatal  outcomes [61].  In  our  experiments,  we
used  NIC at  the  concentration  of  0.1  µM,  which  was  within  the
range of smoking pregnant women defined as “light” smokers (5 ci-
garettes/day) [40, 41]. We found that NIC 0.1 μM did not induce
significant changes in cell viability. This is consistent with previ-
ous studies reporting no significant effects on overall cell survival
for low concentrations of NIC (0.1-10 μM) [25, 62]. However, our
in vitro model with hAFSCs revealed that maternal smoking during
pregnancy may significantly alter fetal DNA methylation.

We measured the DNA methylation and m6A methylation lev-
els of hAFSCs exposed to NIC, and significant increases in both
types  of  methylation  compared  to  untreated  cells  were  found.
Emerging evidence has reported that the m6A modifications play a
critical role in the development of stem cells, including self-renew-
al and differentiation [63-65]. In particular, m6A modification is

highly involved in regulating adipogenesis and the progression of
human metabolic disease [66-68]. In addition, several studies have
described that increased m6A levels might alter the normal differen-
tiation  pathway,  resulting  in  overexpression  of  genes  associated
with pluripotency [69-71]. Thus, we monitored the expression pat-
tern of pluripotency genes and cell surface markers and found that
NIC altered their expression in a time-dependent manner. NIC in-
creased  the  expression  of  Oct-4,  SOX2,  and  NANOG  after  48
hours of exposure, indicating that NIC enhanced the stemness of
treated cells and, therefore, may impair their differentiation poten-
tial. Previous studies have also suggested that cigarette smoke can
affect the stemness of exposed cells [72, 73]. Moreover, the find-
ings that CD13 is upregulated, while CD146 is downregulated in
NIC-treated cells compared to the control cells provide additional
evidence of a significant role of NIC in the inflammatory process.
It has been previously reported that smoking is associated with sys-
temic inflammation and elevated levels of circulating CD13-posi-
tive immunosuppressive cells [74]. On the other hand, the expres-
sion  of  endothelial  adhesion  molecule  CD146  was  significantly
low in the treated cells. Accordingly, Kratzer and co-workers [75]
found that the treatment of rat pulmonary microvascular endothe-
lial cells with cigarette smoke extract decreased both the gene and
protein expression of CD146. Cigarette smoke extract contains a
complex  cigarette  mixture  of  over  7,000  chemicals  [76].  Our  in
vitro study suggests that NIC is at least one of the components that
could cause the downregulation of CD146.

It is well recognized that NIC exposure may significantly af-
fect the metabolic function of adipose tissue, however, results from
studies addressing the harmful effects of NIC on adipogenic differ-
entiation are controversial. Wahl and colleagues demonstrated that
cigarette smoking or nicotine did not affect the adipogenic differen-
tiation capacity of human mesenchymal stem cells [77]. Different-
ly, periodontal ligament-derived stem cells from cigarette smokers
produce higher lipid levels than non-smokers [78], while Zagoriti
et al. [79] found that cigarette smoking impaired the differentiation
of pre-adipocytes to beige adipocytes. In line with these recent find-
ings,  our  experiments  demonstrate  that  low  NIC  concentrations
down-regulated  expression  of  adipogenic-related  genes  (LPL,
PPARG, and FABP4) in treated hAFSCs, suggesting that NIC in-
hibited  adipogenic  differentiation  during  fetal  development.  The
great variability of results about the adipogenic response to smok-
ing could be related to  different  factors,  such as  NIC concentra-
tions, various cell sources, and culture conditions.
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Adipogenic  impairment  is  one  of  the  major  causes  of
metabolic syndrome, a class of medical disorders associated with
an increased risk for coronary heart disease, cardiovascular atheros-
clerotic diseases, and type 2 diabetes mellitus, and several crucial
aspects of adipogenesis are controlled by epigenetic events [80].
Our results demonstrate a significant hypomethylation in the pro-
moter region of H19 during adipogenic differentiation of the treat-
ed cells compared to the control, thus suggesting a role of H19 in
the suppression of adipo/lipogenesis. Several evidence support the
role of the H19 gene in lipid metabolism and growth regulation dur-
ing embryonic development, which is widely documented [81-84]
and, particularly, in the suppression of adipo/lipogenesis [85-87].
Recently, Zhu and colleagues [88] reported that depletion of hu-
man circular RNA H19 increased the expression levels of genes re-
lated to lipogenesis,  such as CEBPA (CCAAT enhancer binding
protein alpha), PPARG, SREBF1c (sterol regulatory element bind-
ing transcription factor 1c), FABP4, ACC-1 (acetyl-CoA carboxy-
lase 1), LPL and FAS. Accordingly, we observed hypomethylation
of the H19 gene associated with the downregulation of adipogenic
markers, including PPARG, FABP4, and LPL. Altogether, these re-
sults  suggest  that  NIC  could  alter  the  expression  levels  of  H19
through dysregulation of the DNA methylation status, with possi-
ble  clinical  implications  correlated  with  perturbation  of  fetal
growth  and  metabolic  disorders  in  adulthood.

Rapid advances in the epigenetic field in recent years have de-
monstrated the role of miRNAs in several diseases, particularly in
the prevention, early diagnosis, and prognosis [89]. In the present
investigation, a total of 16 differentially expressed miRNAs were
detected in treated differentiated hAFSCs, including 7 down-regu-
lated and 9 up-regulated ones. The most up-regulated miRNA was
hsa-miR-210-3p (fold change = 42.10), and the most down-regulat-
ed miRNA was hsa-miR-483-3p (fold change = 12.50). Recently,
Yang et al. [90] provided evidence that overexpression of miR-210
suppresses adipogenic differentiation with a significant reduction
of  adipogenic  marker  genes  PPARG  and  LPL.  Accordingly,  we
speculated that NIC increases the expression of hsa-miR-210-3p, re-
sulting  in  the  inhibition  of  adipogenic  differentiation  in  vitro  of
treated differentiated hAFSCs. On the other hand, it has been re-
ported that the downregulation of miR-483-3p inhibits adipogenic
differentiation  and promotes  the  proliferation  of  stem cells  [91].
Our  data  suggest  that  exposure  to  NIC induces  dysregulation  of
miRNA  involved  in  the  adipogenic  process  by  inhibiting  target
genes of differentiation. A limitation of this study is that experimen-
tal assays to confirm the deregulation and the functional role of the
identified miRNAs have not been performed due to the decreased
number of pregnant patients undergoing amniocentesis for prenatal
diagnosis. This invasive test has been progressively replaced by the
development of non-invasive methods of prenatal testing (NIPT) in-
volving the identification of fetal DNA from maternal blood [92].
In this context, testing in animal models resembling miRNA regula-
tion in humans should be required to translate miRNA profiling in-
to clinical relevance as biomarkers of long-term consequences of
smoking in pregnancy and its potential impact on offspring health
and development.

Finally, the KEGG analysis of the 16 dysregulated miRNAs re-
vealed  important  pathways  mainly  involved  in  fatty  acid
metabolism and biosynthesis,  pluripotency of  stem cells,  cancer,
and sphingolipid metabolism. Subsequently, the gene target analy-
sis showed that the selected miRNAs were able to modulate the ex-
pression  of  genes  directly  related  to  glycerophospholipid
metabolism, mTOR signaling pathway, sphingolipid metabolism,

fatty acid metabolism, and glycerolipid metabolism. Additionally,
we performed DisGeNet analyses to predict potential miRNA-dis-
ease associations. Interestingly, dysregulated miRNAs showed sig-
nificant associations with pathologies such as cognitive delay, in-
trauterine retardation, premature birth, fetal growth retardation, fail-
ure to gain weight, and premature birth.

CONCLUSION

In conclusion, by using a promising hAFSC culture model of
NIC exposure, this study showed that NIC alters the properties of
the cells at epigenetic, transcriptional, and cellular levels during fe-
tal  development.  Specifically,  NIC increases  the  DNA and m6A
methylation levels, enhances the stemness, and impairs the adipo-
genic differentiation of hAFSCs. These effects may involve NIC-in-
duced dysregulation of miRNAs inhibiting target genes of adipo-
genic differentiation. Although these findings need further valida-
tion,  they  provide  exploratory,  hypothesis-generating  results  for
studying the effects of aberrant epigenetic changes associated with
prenatal NIC exposure to improve the understanding of the impact
of perinatal maternal smoking on tobacco-related disorders and to
develop novel biomarkers for precise diagnosis and future thera-
pies.
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