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Abstract 

Background  The regulator of calcineurin 1 (RCAN1) is expressed in multiple organs, including the heart, liver, brain, 
and kidney, and is closely linked to the pathogenesis of cardiovascular diseases, Down syndrome, and Alzheimer’s 
disease. It is also implicated in the development of various organ tumors; however, its potential role in hepatocellular 
carcinoma (HCC) remains poorly understood. Therefore, the objective of this study was to investigate the potential 
mechanisms of RCAN1 in HCC through bioinformatics analysis.

Methods  We conducted a joint analysis based on the NCBI and TCGA databases, integrating both bulk transcriptome 
and single-cell analyses to examine the principal biological functions of RCAN1 in HCC, as well as its roles related 
to phenotype, metabolism, and cell communication. Subsequently, an RCAN1-overexpressing cell line was estab-
lished, and the effects of RCAN1 on tumor cells were validated through in vitro experiments. Moreover, we endeav-
ored to identify potential related drugs using molecular docking and molecular dynamics simulations.

Results  The expression of RCAN1 was found to be downregulated in 19 types of cancer tissues and upregulated 
in 11 types of cancer tissues. Higher levels of RCAN1 expression were associated with improved patient survival. 
RCAN1 was predominantly expressed in hepatocytes, macrophages, endothelial cells, and monocytes, and its high 
expression not only closely correlated with the distribution of cells related to the HCC phenotype but also with 
the distribution of HCC cells themselves. Additionally, Rcan1 may directly or indirectly participate in metabolic path-
ways such as alanine, aspartate, and glutamate metabolism, as well as butanoate metabolism, thereby influencing 
tumor cell proliferation and migration. In vitro experiments confirmed that RCAN1 overexpression promoted apop-
tosis while inhibiting proliferation and invasion of HCC cells. Through molecular docking of 1615 drugs, we screened 
brompheniramine as a potential target drug and verified our results by molecular dynamics.

Conclusion  In this study, we revealed the relationship between RCAN1 and HCC through bioinformatics methods, 
verified that RCAN1 can affect the progress of the disease through experiments, and finally identified potential thera-
peutic drugs through drug molecular docking and molecular dynamics.
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Introduction
Cancer Statistics (2023) indicates that liver cancer has 
experienced the most rapid increase in mortality rates 
in recent years. The incidence of liver cancer reached 
8.6/100,000 between 2015 and 2019, and the mortality 
reached 6.6/100,000 between 2016 and 2020. In 2023, 
it is estimated that there will be 41,210 new cases of 
liver cancer in the United States, with 29,380 deaths. 
The 5‐year survival rate for liver cancer has increased 
to 21% for the patients diagnosed during 2012 through 
2018 [1]. Hepatocellular carcinoma (HCC) accounts for 
around 90% of all instances of primary liver cancer and 
is the second most common cause of cancer-related 
fatalities worldwide [2]. Although the understanding of 
the molecular mechanisms underlying the development 
of HCC has deepened among researchers, the number 
of developed targeted drugs remains low, and their effi-
cacy is limited, which cannot meet the increasing treat-
ment expectations. Therefore, in order to discover more 
specific and sensitive biomarkers and lay a solid foun-
dation for the development of more targeted drugs, we 
need to further explore the mechanisms underlying the 
development and metastasis of HCC.

Calcineurin, a calcium and calmodulin-dependent 
serine/threonine protein phosphatase, is associated 
with multiple cellular and tissue physiological func-
tions [3]. As an inhibitor of calcineurin, regulator of 
calcineurin 1 (RCAN1) is expressed in multiple organs 
such as the heart, liver, brain, and kidneys, and is 
closely associated with the pathological mechanisms of 
cardiovascular diseases, Down syndrome, Alzheimer’s 
disease, etc. [4–6]. In the field of oncology, as research 
on RCAN1 deepens, it has been found to play a role in 
inhibiting tumor growth in many organ tumors, such as 
esophageal squamous cell carcinoma, lymphoma, oste-
osarcoma, thyroid cancer, liver cancer, etc. [7–11].

Current research indicates that in HCC, RCAN1 can 
inhibit tumor growth and metastasis by suppressing 
calcineurin activity and nuclear translocation of NFAT1 
[11, 12]. There is still limited research on the mecha-
nism of action of this gene. Here, in order to provide 
more insights into the mechanistic analysis of this gene, 
we attempted to utilize bioinformatics to investigate 
the internal connection between RCAN1 and HCC, 
starting from transcriptomics and single-cell analysis. 
Additionally, we conducted cellular functional experi-
ments to explore the role of RCAN1 in HCC cell pro-
liferation and invasion. This approach aims to provide a 
more comprehensive understanding of the association 
between RCAN1 and HCC.

Material and method
Data retrieval and download
We conducted a search on National Center for Biotech-
nology Information (NCBI, https://​www.​ncbi.​nlm.​nih.​
gov/), for hepatocellular carcinoma using the search 
terms “ Hepatocellular Carcinoma”, “Array expression 
analysis,” and “High-throughput sequencing expres-
sion analysis”. We ultimately selected two datasets, 
GSE149614 and GSE151530 for our analysis, the former 
comprises 10 tumor samples and 18 normal samples, 
while the latter includes 46 tumor samples. Additionally, 
employing the same search criteria, we sourced a sin-
gle-cell dataset, CNP0000650, from the China National 
Center for Bioinformation (CNCB, https://​www.​cncb.​ac.​
cn/), which consists of 18 tumor samples and 1 normal 
sample. The bulk RNA-Seq data was downloaded from 
the The Cancer Genome Atlas Program (TCGA https://​
www.​cancer.​gov/​ccg/​resea​rch/​genome-​seque​ncing/​tcga), 
comprising 50 normal samples and 374 tumor samples.

Pan‑cancer analysis
Pan-cancer analysis refers to the comprehensive study 
of multiple cancer types collectively, aiming to identify 
common molecular alterations and pathways across dif-
ferent cancers. To analyze the importance of RCAN1, 
we conducted a pancancer analysis using the TCGAplot 
R package [13].

Single‑cell sequencing data processing
We processed the GSE149614 data (There are 18 sam-
ples in total, including 10 tumor samples and 8 normal 
samples) using Seurat version 4.3 [14]. We selected cells 
based on the following criteria: features greater than 500, 
UMI counts less than 15,000, and mitochondrial percent-
age proportion below 25%, We standardize the dataset 
through ‘SCTransform’. Finally, we obtained 63,100 cells. 
For the data set GSE149614, we use the R package ‘Har-
mony’ [15] to process it in batches, the parameter is set to 
max.iter.harmony = 30, lambda = 1. Pc.num were set to 10 
and resolution to 0.5 for PCA dimensionality reduction 
and visualized the data using UMAP. For the annotation 
of single-cell datasets, we divided the entire dataset into 
nine types of cells, namely Hepatocyte, Macrophage, T/
NK, Endothelial, Monocyte, Fibroblast, Plasma B, Mature 
B, and DC. For the single-cell datasets GSE151530 and 
CNP0000650, the original authors had already processed 
the data. Therefore, we did not subject them to any addi-
tional processing.

Disease phenotype analysis
To analyze the relationship between cells, genes, and 
disease phenotypes, we used the Scissor R package 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.cncb.ac.cn/
https://www.cncb.ac.cn/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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to perform a joint analysis of the single-cell dataset 
GSE149614 and CNP0000650, respectively, and the 
Bulk dataset downloaded from TCGA with parameters 
of “family = binary, alpha = 0.01” [16].

Single‑cell metabolic analysis
To discern the metabolic difference between tumor and 
control in snRNA-seq datasets, we used the R package 
scMetabolism [17] to quantify the metabolic differences 
between normal and tumor samples, using the ‘VISON’ 
method and selecting the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) metabolic dataset,statistical anal-
yses of metabolic pathways across different groups are 
provided in Supplementary file 1.

Copykat
To further explore malignant cells in the overall single-
cell data, we used the copykat package to analyze and 
visualize all single-cell data [18]. The parameter is set 
as ngene.chr = 5, LOW.DR = 0.05, UP.DR = 0.1, win. 
size = 25, KS.cut = 0.1, distance set to ‘euclidean’, genome 
set to ‘hg20’.

Cellchat
To quantify and visualize cell signaling and communica-
tion networks between cells, we conducted analysis using 
the Cellchat package [19]. We choose secret signaling for 
analysis of cellchat’s database. All results of the cellular 
communication analysis can be found in Supplementary 
file 2.

Cell culture
The HepG2 cell line was purchased from the Chinese 
Academy of Sciences (Shanghai) and cultured in DMEM 
medium containing 10% FBS and 1% penicillin at 37 °C in 
5% CO2.

Construction of RCAN1 Overexpression cell lines
To investigate the role of RCAN1 in cellular processes, 
we generated cell lines that overexpressed RCAN1. We 
collaborated with Hao Yang Biotechnology (Xi’an, China) 
to synthesize the overexpression plasmid vector for 
RCAN1, denoted as OE-RCAN1. The detailed informa-
tion of the plasmid vector is provided in Supplementary 
file 3. Subsequently, the synthesized plasmid vector was 
transfected into HepG2 cells following the manufac-
turer’s protocol. The transfection was carried out using 
Lipofectamine 2000 reagent (11,668–019, Invitrogen). 
The infected cells were then selected with puromycin to 
establish stable cell lines that overexpressed RCAN1.

Quantitative RT–PCR
Total RNA was isolated following the recommended 
protocol provided by the manufacturer (Thermo Fisher, 
USA) using TRIzol reagent. Subsequently, cDNA syn-
thesis was performed using the HiScript® II Q Select 
RT SuperMix for qPCR (R233, VAZYME, China). The 
resulting cDNA served as the template for quantitative 
RT–PCR, which was carried out using the ABI (ViiA-
7) 7500 apparatus (Applied Biosystems). The primer 
sequences for RT–PCR can be found in Supplementary 
file 4.

Western blot
Total protein was extracted using SDS-PAGE, followed 
by transfer onto a PVDF membrane (Millipore, China). 
Subsequently, the membrane was incubated with pri-
mary antibodies, including β-actin (T0022, Affinity, 
China), Bcl2 (3498 T, CST, USA), Caspase3 (9665S, CST, 
USA), and Bax (ab32503, abcam, UK). To detect the tar-
get proteins, the membrane was further incubated with 
a 1:10,000 dilution of horseradish peroxidase-conjugated 
goat anti-rabbit (Beyotime, China) or goat anti-mouse 
(Proteintech, China) secondary antibodies.

Cell function assays
To examine the alterations in the biological behav-
iors and functions of liver cancer cells resulting from 
the overexpression of RCAN1, we conducted three 
experiments. In the CCK8 experiment, we specifically 
selected cells in logarithmic growth phase with robust 
growth status and seeded them at a density of 5 × 103 
cells/well in a 96-well cell culture plate. The plate was 
subsequently incubated overnight at 37 °C with 5% 
CO2. After the required culture time, we added 10 μl 
of enhanced CCK-8 reagent (QS-S321, Keycell, China) 
to each well and incubated them for 2 h at 37 °C. The 
absorbance of each well was measured at 450 nm using 
a microplate reader (C22.2NO.1010.1, BioTek, USA).

For the cell invasion experiment, we added 800 μl of 
pre-cooled 10% FBS MEM culture medium (containing 
double antibiotics) to a 24-well plate, which was then 
placed in a transwell chamber (353,097, Falcon, USA). 
Subsequently, 100 μl of 0.5 mg/ml Matrigel (356,234, 
Corning, USA) was added to the center of the bottom 
chamber of the transwell, and it was allowed to solidify at 
37 °C. Once the Matrigel had solidified, 200 μl of cell sus-
pension from each group was added to the upper cham-
ber of the transwell, and the plate was incubated at 37 
°C with 5% CO2. After a period of 3 days, the cells were 
fixed with 70% ice-cold ethanol for 1 h and stained with 
0.5% crystal violet staining solution (G1014, Servicebio, 
China), and scanned at × 200 magnification [20].
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To detect cell apoptosis, we employed the fluo-
rescence TUNEL assay [21]. Following the manu-
facturer’s instructions, we fixed the cells with 4% 
paraformaldehyde, permeabilized them with 0.2% 
Triton X-100 (diluted in 1 × PBS) (ST795, Beyotime, 
China), and allowed them to equilibrate at room tem-
perature for 5 min. Subsequently, we added 1 × Equi-
libration Buffer (diluted 1:10 with deionized water) to 
the permeabilized cells and incubated them at room 
temperature for 15 min. The excess Equilibration Buffer 
was removed using absorbent paper, and the reaction 
working solution was added to the cells, which were 
then incubated at 37 °C for 60 min. Following incuba-
tion of the coverslips in darkness for 5 min with DAPI, 
nuclear staining was performed and excess DAPI was 
washed away. Finally, the sealed slides were observed 
and images were captured using a fluorescence micro-
scope after applying an anti-fluorescence quenching 
mounting medium (0100–01, Southernbiotech, USA) 
on the slides.

Drug screen
We downloaded the protein structure of RCAN1 from 
the Alphafold [22] and predicted the active sites of the 
protein using deepSite [23]. Next, we downloaded 1615 
FDA-approved drugs from the ZINC database [24], 
and then converted the target drugs into three-dimen-
sional structures using ADFRsuite [25]. Based on the 
obtained three-dimensional structures of the drugs and 
the RCAN1 protein, we sequentially screened molecular 
docking using Autodock [26].

Following docking results, the drug with the low-
est binding energy was selected for molecular dynamics 
simulation with RCAN1 using Gromacs (v2022.3) [27, 
28]. The small molecule was pre-processed with Amber-
Tools22 to append the GAFF force field and subjected 
to hydrogen addition and RESP charge calculation using 
Gaussian 16W, with the resulting electrostatic poten-
tial data integrated into the molecular dynamics sys-
tem topology. Simulations were conducted at a constant 
temperature of 300 K and pressure of 1 Bar, utilizing the 
Amber99sb-ildn force field, with water molecules repre-
sented by the Tip3p model, and the system’s net charge 
was neutralized by the addition of Na + ions as neces-
sary. Energy minimization was initially performed using 
the steepest descent method, followed by equilibration in 
the canonical (NVT) ensemble for 100,000 steps and the 
isobaric-isothermal (NPT) ensemble for an equal num-
ber of steps, both with a coupling constant of 0.1 ps over 
a duration of 100 ps. The free molecular dynamics sim-
ulation was executed for a total of 5,000,000 steps with 
a time step of 2 fs, culminating in a 100 ns trajectory. 
The structures of the drugs used for molecular docking, 

the docking outcomes, and the results of the molecular 
dynamics simulations are available in the Supplementary 
file 5.

Statistical analysis
Statistical analysis was conducted using GraphPad 
Prism 7, Seurat (version 4.3), and R (version 4.2.3). Sur-
vival curves were generated using the Kaplan–Meier 
method. All experiments were independently performed 
at least three times. Quantitative data were presented as 
mean ± standard deviation. The t-test was employed to 
analyze differences between two groups, while analysis 
of variance (ANOVA) was utilized for differences among 
multiple groups. A significance level of P < 0.05 was con-
sidered statistically significant.

Results
Comprehensive pan‑cancer analysis
Utilizing the TCGAplot package, we have conducted an 
extensive pan-cancer analysis encompassing gene expres-
sion, immune infiltration, functional enrichment, and 
survival-related assessments.

We obtained pan-cancer data from the TCGA data-
base and compared the expression differences of RCAN1 
between tumor and normal groups using the R pack-
age. The results showed that among the 33 cancer types, 
RCAN1 expression was decreased in 14 cancer tissues, 
increased in 3, and showed no statistical significance in 
16. Specifically, the expression of RCAN1 in HCC cells 
is lower than normal tissue. The results were visualized 
using a grouped box plot (Fig. 1A). Utilizing the R pack-
age, we conducted a prognostic analysis on the acquired 
pan-cancer data. The K-M survival curve (Fig. 1B) shows 
that both the 2.5-year overall survival (OS) rate and the 
5-year OS rate are higher in the RCAN1 high-expression 
group compared to the low-expression group. The mOS 
was 6.8 years in the RCAN1 high-expression group, while 
3.8 years in the RCAN1 low-expression group. This indi-
cates that high expression of RCAN1 is associated with 
improved patient survival and reflects its excellent anti-
tumor effect.

There is a significant correlation between RCAN1 
expression and immune cell infiltration in most types 
of cancer, suggesting that RCAN1 may play a crucial 
role in these tumors (Fig.  2A). Based on the expres-
sion of RCAN1, tumor samples from the bulk RNA-Seq 
data were further divided into high-expression and low-
expression groups. We identified differentially expressed 
genes (DEGs) between these two groups. Subsequently, 
we performed Gene Ontology (GO) functional enrich-
ment analysis based on genes co-expressed with RCAN1 
(Fig.  2B). Additionally, we utilized Gene Set Enrich-
ment Analysis (GSEA), including GSEA-GO (Fig.  2C) 



Page 5 of 14Yang et al. BMC Cancer         (2024) 24:1056 	

and GSEA-KEGG (Kyoto Encyclopedia of Genes and 
Genomes) (Fig.  2D), for pathway enrichment. The top 
five pathways from each enrichment method are dis-
played in the figures.

Single‑cell sequencing results of RCAN1 expression
Based on the single-cell sequencing dataset GSE149614, 
we utilized the UMAP algorithm for data dimensional-
ity reduction, resulting in 9 cellular subtypes, namely 
Hepatocyte, Macrophage, T/NK, Endothelial, Monocyte, 

Fibroblast, Plasma B, Mature B, DC. The results are dis-
played in the dimensionality reduction plot (Fig. 3A). We 
then extracted the representative genes of these 9 cellu-
lar subtypes from the dataset and compared them with 
the well-established and traditional marker genes of these 
cellular subtypes, finding a high degree of concordance 
(Fig. 3B).

We observed that RCAN1 is predominantly expressed 
in Hepatocyte, Macrophage, Endothelial, and Monocyte 
(Fig.  3C). Subsequently, we used the scissors algorithm 

Fig. 1  RCAN1 expression and its association with LIHC survival time. A Differential expression of RCAN1 among different types of cancer; B Survival 
curve based on the expression level of RCAN1 in patients with liver cancer

Fig. 2  RCAN1 pan cancer analysis. A Analysis of the association and statistical differences between RCAN1 and 22 different immune cells in 33 
types of cancer. *P<0.05 ** P<0.001; B Enrichment analysis and differential gene heatmap drawing were performed separately by grouping RCAN1 
expression differences; C GSEA-GO analysis of the DEGs between RCAN1 high- and low-expression groups in HCC, and the top 5 GO pathways were 
shown;D GSEA-KEGG analysis of the DEGs between RCAN1 high- and low-expression groups in HCC, and the top 5 KEGG pathways were shown
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to accurately identify cells associated with HCC and 
normal cell phenotypes from the single-cell data, and 
we found that the distribution of cells with high expres-
sion of RCAN1 closely matched the distribution of cells 
associated with HCC phenotypes (Fig. 3D). Therefore, we 
have reason to believe that RCAN1 is closely associated 
with HCC phenotypes. By analyzing the dataset using the 
copycat algorithm, tumor cells are primarily distributed 
in liver cells and some lymphocytes (Fig. 3E). We found 
that the distribution of RCAN1 is also consistent with 
the distribution of tumor cells, indicating that Rcan1 is 
expressed in most liver tumor cells. Additionally, upon 
grouping the single-cell dataset GSE149614 according to 
cell cycle stages, we observed an upregulation of RCAN1 
expression during the G1 phase. This elevation in expres-
sion may suggest that RCAN1 predominantly exerts a 
suppressive effect on the onset of HCC during the G1 
phase (Fig. 3F).

To validate the results, the datasets GSE151530 and 
CNP0000650 were analyzed. Based on the GSE151530 
dataset and the malignant cells defined by the original 
authors, we found that the distribution of RCAN1 over-
lapped with the distribution of malignant cells, simi-
lar to the results we studied in the manuscript. The cell 
expression distribution, cell cycle distribution, and scis-
sor analysis results of RCAN1 in the single-cell dataset 
CNP0000650 were consistent with those in the single-
cell dataset GSE149614. Due to the quality differences 
between datasets, we have included the specific results in 
the Supplementary figure.

Differences in inter‑group metabolic pathways
Metabolic mechanisms play a crucial role in the mecha-
nism of tumor occurrence and development. In order to 
investigate the alterations in metabolic pathways between 
liver cancer and normal tissue, we utilized the R package 

Fig. 3  Visualization of single cell dataset GSE149614, malignant cell and disease phenotypic correlation analysis. A UMAP dimensionality reduction 
visualization of single-cell liver cancer; B Bubble plot for annotation of single-cell liver cancer data; C Visualization of RCAN1 expression distribution 
in different cells; D Scissor analysis to calculate cell types positively or negatively correlated with liver cancer phenotypes; E Malignant cell analysis 
in single-cell liver cancer data; F The expression difference of RCAN1 in different cell cycles
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“scMetabolism” to analyze the metabolic landscape. A 
total of 85 metabolic pathways were compared between 
groups, and significant differences were observed in 
multiple pathways: Alanine, Aspartate and glutamate 
metabolism, Butanoate metabolism, D-Glutamine and 
D-glutamate metabolism, Fatty acid degradation, Glyc-
erolipid metabolism, Glycine, serine and threonine 
metabolism, Nicotinate and nicotinamide metabolism, 
Nitrogen metabolism, One carbon pool by folate, Syn-
thesis and degradation of ketone bodies, Terpenoid back-
bone biosynthesis, Tyrosine metabolism, Valine, leucine 
and isoleucine degradation, etc. We present here a par-
tial display of representative findings in Fig. 4A. Through 
observation, we found that all the aforementioned meta-
bolic pathways were expressed as metabolically active in 

liver cancer tissues and their distribution is consistent 
with Rcan1, suggesting that the expression of Rcan1 may 
directly or indirectly associated with the activity of these 
metabolic pathways, thereby impacting tumor cell prolif-
eration and migration.

Interaction between hepatocytes and other cellular 
subtypes by cell‑chat analysis
The differential interaction number and strength among 
the 9 cell types were analysis by R package “CellChat”. 
We found strong interactions between hepatocytes and 
fibroblasts, endothelial cells, and macrophages (Fig.  4B, 
C). The overall strength and number of cell subpopula-
tion interactions in HCC tissue are significantly higher 
than in normal tissue (Fig.  4D), which further confirms 

Fig. 4  Single-cell cell metabolism and cell communication analysis. A Cellular metabolism analysis in single cell liver cancer data; B Network 
diagram of cell communication quantity difference; C Heat map of cell communication quantity and intensity; D Histogram of cell communication 
quantity difference; E Major differences in cell communication between liver cancer and normal tissue
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the complexity and diversity of HCC mechanisms [29]. 
Additionally, the analysis of ligand-receptor interactions 
provides further details on intercellular signaling, as 
shown in Fig. 4E. We found that the signaling pathways 
of SPP1, GDF, and PDGF are exclusively present in HCC 
tissue cells, which may be associated with the specificity 
of HCC cells. On the other hand, the signaling flow of the 
CXCL pathway in HCC tissue is significantly lower than 

in normal tissue, suggesting its potential inhibition by 
tumor cells. However, further exploration and validation 
are needed.

RCAN1 inhibits the proliferation and invasion of HCC cells 
and promotes apoptosis
To investigate the role of RCAN1 in tumor cells, we con-
structed a RCAN1-overexpressing cell line (OE-RCAN1) 

Fig. 5  Cell invasion and proliferation assay. A Representative images of cell invasion assay; B Average number of invading cells within each group; C 
Cell proliferation ability was detected using the CCK-8 assay in 3 groups
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(Fig. 5A, B, C). The expression level of Caspase3, Bax and 
Bcl2 in OE-RCAN1 group was confirmed by conduct-
ing Western blotting analysis (Fig.  6A). Full uncropped 
Gels and Blots images can be found in the Supplemen-
tary file 6. In order to evaluate the impact of RCAN1 
expression on cell proliferation and invasion in HepG2 
cells, the CCK-8 cell proliferation assay and cell invasion 
assay were employed. The findings demonstrated that the 
OE-RCAN1 group exhibited significantly diminished cell 
proliferation and invasion capabilities in comparison to 
the HepG2 group (Fig. 6B, C, D).

The results of our study revealed higher protein expres-
sion levels of Caspase3 and Bax in the OE-RCAN1 group 
compared to the HepG2 group. Conversely, the expres-
sion level of Bcl2 was lower in the OE-RCAN1 group. 
Caspase-3 is a crucial effector caspase involved in cell 
apoptosis, playing an essential role in various processes 

associated with cell disintegration and apoptotic body 
formation [30]. Bcl2, on the other hand, is a significant 
regulatory factor in the programmed cell death pathway 
that inhibits cell apoptosis [31]. Bax, a member of the 
Bcl-2 gene family, is the most prominent pro-apoptotic 
gene in the human body. By interacting with mitochon-
dria, Bax exerts an inhibitory effect on Bcl-2, thus regu-
lating cell death [32]. The observed increase in caspase-3 
and Bax expression levels, along with the decrease in Bcl2 
expression, provides evidence that RCAN1 promotes cell 
death in liver cancer cells. To provide a more tangible 
observation, the fluorescence TUNEL experiment was 
conducted, revealing that the proportion of TUNEL-pos-
itive cells significantly increased in the OE-RCAN1 group 
compared to the HepG2 group (Fig. 7).

Fig. 6  After overexpression of RCAN1, apoptosis in HepG2 cells can be induced. A The expression level of Caspase3, Bax and Bcl2 conducted 
by Western blotting; B The differential expression of Caspase-3 among different groups; C The differential expression of Bax among different groups; 
D The differential expression of Bcl2 among different groups
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Drug screening
We screened drugs based on molecular docking, and 
finally obtained brompheniramine as a potential binding 
drug, which has the lowest binding energy among 1615 
drugs: -10.2 kcal/mol. Brompheniramine has strong anti-
histamine effect, short duration, and sedative effect. The 
subunit that RCAN1 mainly binds to brompheniramine is 
Asn317 (a) (Fig. 8A, B). Molecular dynamics simulations 
were performed on RCAN1 in complex with Bromphe-
niramine, and the stability of the interaction was assessed 
by plotting the Root Mean Square Deviation (RMSD). 
The RMSD values for both the protein and the small mol-
ecule were observed to be higher during the initial 20 ns, 
after which they plateaued, indicating a stabilization of 
the complex overall (Fig. 8C).

Disscusion
HCC is a significant global health concern, with the 
incidence and mortality rates on the rise, necessitat-
ing the development of effective prevention strategies 
and improved treatment approaches [33]. The invasive 
nature of HCC often leads to rapid disease progression 
and metastasis, further complicating treatment [34]. The 
identification of tumor targets has emerged as a cru-
cial breakthrough in current HCC therapy [35]. Current 
research on RCAN1 in the context of cancer primar-
ily centers on the RCAN1.4 isoform. The other subtype, 
RCAN1.1, is relatively understudied in terms of its role in 
tumorigenesis. In previous research, RCAN1.2 has been 
primarily implicated in association with the prognosis of 
esophageal squamous cell carcinoma [7]. Therefore, we 
have also chosen to focus our investigations on RCAN1.4 
[36]. In this study, we employed bioinformatics analy-
sis to establish a correlation between the expression of 
RCAN1 and overall survival rates in patients, finding that 
higher RCAN1 expression is associated with improved 
overall survival. Single-cell analysis revealed a similar dis-
tribution pattern of RCAN1 expression as that of HCC 
cell phenotypes, malignant cell distribution, and related 
metabolic pathway distribution. Cell functional experi-
ments further validated the significant anti-cancer effect 
of RCAN1 overexpression, suggesting a strong intrinsic 

connection between RCAN1 and HCC. Based on our 
findings, RCAN1 expression prevalent in macrophages, 
hepatocytes, fibroblasts, and endothelial cells. The litera-
ture elucidates that RCAN1 orchestrates the proliferation 
and migration of malignant endothelial cells and hepato-
cytes while concurrently diminishing their invasive capa-
bilities [12, 37]. Nonetheless, the precise role of RCAN1 
in modulating fibroblast and macrophage function neces-
sitates further investigation [38–40].

RCAN1 is located in the critical region of human 
chromosome 21q22.12, which is known as the Down 
syndrome critical region. As an inhibitor of calcineu-
rin, RCAN1 and its isoforms have been found to exert 
antitumor effects in various organ tumors. Patients with 
Down syndrome have a lower incidence of breast can-
cer, and studies have demonstrated that overexpression 
of RCAN1.4 can block the calcineurin-NFATc1 pathway, 
thereby inhibiting tumor growth [41]. Wang et  al. con-
firmed that in thyroid cancer, NFE2L3 has been shown 
to increase cell invasiveness, and RCAN1, functioning as 
a growth and metastasis inhibitor, acts through NFE2L3 
[10]. Zhang et al. demonstrated that RCAN1 is a down-
stream molecule of miR-103a-3p, and the knockout of 
miR-103a-3p leads to tumor suppression, while silenc-
ing RCAN1 reverses this inhibitory effect [42]. It has 
been demonstrated by scholars that RCAN1.4 serves as 
the target of miR-619-5p. Suppression of RCAN1.4 has 
been shown to facilitate angiogenesis and induce prolif-
eration and metastasis of NSCLC cells [43]. In this study, 
CCK-8 and invasion assays confirmed that upregulation 
of RCAN1 inhibited proliferation and invasion of HCC 
cells.

Previous studies have established a strong correla-
tion between RCAN1 and apoptosis within the field of 
medicine. For instance, a study conducted on neuroblas-
toma demonstrated that the prolonged accumulation of 
RCAN1.1L in SH-SY5Y cells triggers apoptosis by acti-
vating caspase-3 [44]. Similarly, in the context of renal 
fibrosis, the overexpression of RCAN1.4 was observed 
to induce apoptosis in myofibroblasts through the inhi-
bition of the calcineurin/NFAT2 signaling pathway [45]. 
Additionally, numerous investigations have illustrated 

Fig. 7  Representative images of TUNEL stained cells. Blue represents cell nuclei, while red represents apoptotic cells
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that RCAN1 can impede cancer growth by inhibiting the 
NF-κB signaling pathway [8, 46, 47], a well-established 
pathway in cancer biology. Notably, the NF-κB signal-
ing pathway plays a pivotal role in the regulation of cell 

proliferation and apoptosis [48]. In this study, we vali-
dated the upregulation of RCAN1’s effect on apoptosis 
in liver cancer cells through Western blot and TUNEL 

Fig. 8  Visualization of docking results based on RCAN1 molecules. A The combination of RCAN1 and brompheniramine for 3D visualization; 
B The combination of RCAN1 and bromphe fniramine for two-dimensional visualization. C The RMSD graph depicting the dynamic interaction 
between RCAN1 and brompheniramine based on molecular dynamics simulations
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assays. All the assays suggested that RCAN1 may serve as 
a novel target for anticancer therapy in HCC.

In order to explore the potential interacting drugs of 
RCAN1, we screened drugs through molecular dock-
ing and selected brompheniramine as a potential bind-
ing drug. Brompheniramine, an antihistamine, has been 
commonly used in cardiovascular and respiratory dis-
eases in the past [49, 50], but little is known about its 
research in tumor diseases. What antihistamines can find 
in tumor research is that it can significantly reduce the 
probability of transformation from hepatitis patients to 
cancer [51]. In addition, antihistamines can significantly 
affect the survival cycle of the disease in a variety of can-
cers [52]. RCAN1 is a potential core gene in the progres-
sion of liver cancer disease. Antihistamines screened by 
molecular docking may be used as therapeutic drugs for 
liver cancer in the future. A study conducted by the Icahn 
School of Medicine at Mount Sinai has demonstrated 
the efficacy of anti-allergy drugs in anti-cancer therapy 
[53]. Its researchers discovered an allergic pathway in a 
mouse model of non-small cell lung cancer (NSCLC) that 
releases anti-tumor immunity when blocked. Infiltrat-
ing immune cells in lung cancer can exhibit character-
istics of “type 2” immune responses, which are typically 
associated with allergic diseases such as eczema and 
asthma, similar phenomena have also been observed in 
other cancer studies. What is more astonishing is that 
a lung cancer patient did not control the growth of his 
cancer after receiving PD1 inhibitor treatment, but his 
cancer was effectively controlled after receiving three 
doses of anti-allergy drugs. Furthermore, the blockade of 
IL-4 enhanced the response of mice and 6 patients with 
treatment-resistant lung cancer to checkpoint blockade. 
Whether brompheniramine has similar anti-tumor cell 
mechanisms in liver cancer remains to be further verified 
through in vivo and in vitro experiments.

Although we have identified an association between 
RCAN1 and HCC through bioinformatic methods and 
confirmed the antitumor effects of RCAN1 through 
in  vitro experiments, we must acknowledge the limi-
tations of this study. We have not yet delved into the 
specific mechanism of RCAN1’s action. In addition, con-
sidering the existence of multiple isomers of RCAN1, our 
verification was carried out in a relatively generalized 
manner, rather than experimentally verified from the 
perspective of isomers. Although we have successfully 
screened potential disease therapies through molecu-
lar docking and molecular dynamics, unfortunately we 
have not been able to verify them at the animal or cel-
lular level. Therefore, we urgently need to conduct fur-
ther comprehensive studies to fully elucidate the complex 
mechanism of action of RCAN1 in HCC.

Conclusions
This study focuses on the currently popular single-cell 
analysis methods to investigate the potential intrin-
sic association between RCAN1 and HCC. All analyses 
conducted in this study consistently indicate a signifi-
cant correlation between RCAN1 and HCC, as well as 
its association with patient prognosis. Furthermore, the 
inhibitory effect of RCAN1 on HCC tumor cells was fur-
ther validated through in vitro experiments. These find-
ings suggest that RCAN1 may serve as a novel prognostic 
marker and therapeutic target for HCC.
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