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Abstract

Leukodystrophies are a heterogeneous group of heritable disorders characterized by abnormal 

brain white matter signal on magnetic resonance imaging (MRI) and primary involvement of the 

cellular components of myelin. Previous estimates suggest the incidence of leukodystrophies as a 

whole to be 1 in 7,000 individuals, however the frequency of specific diagnoses relative to others 

has not been described. Next generation sequencing approaches offer the opportunity to redefine 

our understanding of the relative frequency of different leukodystrophies. We assessed the relative 

frequency of all 30 leukodystrophies (associated with 55 genes) in more than 49,000 exomes. We 

identified a relatively high frequency of disorders previously thought of as very rare, including 

Aicardi Goutières Syndrome, TUBB4A-related leukodystrophy, Peroxisomal biogenesis disorders, 

POLR3-related Leukodystrophy, Vanishing White Matter, and Pelizaeus-Merzbacher Disease. 

Despite the relative frequency of these conditions, carrier-screening laboratories regularly test only 

20 of the 55 leukodystrophy-related genes, and do not test at all, or test only one or a few, genes 

for some of the higher frequency disorders. Relative frequency of leukodystrophies previously 

considered very rare suggests these disorders may benefit from expanded carrier screening.
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1 ∣ INTRODUCTION

Leukodystrophies are a group of genetic disorders associated with molecular defects 

affecting primarily the structural components of the central nervous system white matter 

(van der Knaap & Bugiani, 2017). Molecular advances, in particular next-generation 
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sequencing (NGS), have increased the number of leukodystrophy diagnoses made (Kevelam 

et al., 2016; van der Knaap & Bugiani, 2017; Vanderver et al., 2015).

To better assess the frequency of leukodystrophy diagnoses and to understand the extent 

to which carrier screening laboratories are identifying carrier individuals, we obtained data 

from carrier-screening laboratories and commercial and university-hospital based diagnostic 

testing companies using NGS across the United States.

Our goal was to determine which leukodystrophies are diagnosed most frequently and to 

determine if carrier screening laboratories are offering screening for the most commonly 

seen conditions. To ascertain the most comprehensive relative frequency data, we included 

diagnostic results from single gene, panel, and exome sequencing (ES) from clinical 

laboratories in the United States. From carrier screening laboratories, we obtained data 

on the leukodystrophy genes that are regularly screened in those laboratories to determine 

which conditions are included and how frequently carriers are identified using carrier 

screening methods. We report our findings of this national study over a 5-year period.

2 ∣ METHODS

2.1 ∣ Laboratory inclusion

The study received approval from the Institutional Review Board at the Children’s Hospital 

of Philadelphia (IRB#14-011236). We identified the largest (volume and number of genes) 

carrier screening laboratories that included at least one leukodystrophy gene in their carrier 

screening panel. By surveying of members of the Global Leukodystrophy Initiative, a 

consortium including clinician scientists focused on the leukodystrophies, we identified 

molecular diagnostic laboratories that have been performing ES and/or using NGS for 

specific leukodystrophy/neurology genes between September 30, 2012 and September 30, 

2017.

2.2 ∣ Molecular diagnostic laboratory data and availability

Eight molecular testing laboratories elected to participate: six provided data from ES 

and targeted sequencing across the time period of the study or from when they began 

implementing ES in their testing options, and two provided data from single gene or panel-

based testing. We provided each diagnostic laboratory with a list of 55 leukodystrophy-

associated genes, causing 30 disorders, according to an established case description 

(Vanderver et al., 2015). Laboratories were asked to provide data on any pathogenic, likely 

pathogenic, or variants of unknown significance (VUS) reported in a clinical setting, by 

methodology used (single gene, panel-based testing, or ES). We obtained variant level 

data (position, coding sequence change, amino acid/protein change, transcript ID, and 

zygosity), number of patients identified with variant(s) in those genes, and how those 

variants were classified/reported. Variants were evaluated against the American College 

of Medical Genetics and Genomics criteria for variant classification, and variants with a 

benign/likely benign classification were removed (Richards et al., 2015).

Schmidt et al. Page 3

Am J Med Genet A. Author manuscript; available in PMC 2024 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3 ∣ Relative frequency determination

Aggregate data for each gene were combined from clinical diagnostic testing laboratories. 

The relative frequency of different leukodystrophies identified by exome sequencing was 

calculated by dividing the sum of diagnosed individuals with each diagnosis by the total 

number of exomes sequenced. We expanded data collection to include singlegene testing 

or gene panels including our target list of genes to generate an overall diagnosis and 

calculated overall relative frequency by all methods of data collection (Vanderver et al., 

2015). A true incidence rate of individual leukodystrophies could not be calculated due to 

the ascertainment bias in the genetic screening cohort, which does not represent the entire 

population from which these cases were derived.

2.4 ∣ Carrier frequency determination

Data from five carrier screening laboratories were included in this study. Aggregate 

data for each gene were combined from all testing laboratories to determine carrier 

frequency. Ethnicity data were not available, so analysis both excluding and including 

the presence of known founder mutations in ARSA, ASPA, CYP27A1, SAMHD1, and 
SUMF1 was performed (Wallace & Lora, 2018). This approach was intended to limit 

the bias of populations with known founder mutations more likely to seek out carrier 

testing (Kraft, Duenas, Wilfond, & Goddard, 2019). To derive the carrier frequency from 

commercial carrier screening laboratories, the total number of heterozygous individuals with 

a pathogenic variant as defined above was divided by the number of individuals for whom 

that gene was screened.

3 ∣ RESULTS

3.1 ∣ Relative frequency determination

From laboratories testing via ES, we found 332 cases of leukodystrophy were diagnosed 

with pathogenic/likely pathogenic variants out of 49,805 total exome sequencing tests for 

any indication (1/150 individuals tested). Aicardi Goutières Syndrome (AGS) (18.07%), 

TUBB4A-related leukodystrophy (9.04%), Peroxisomal biogenesis disorders (Zellweger) 

(7.23%), POLR3-related Leukodystrophy (6.93%), vanishing white matter (VWM) (6.63%), 

and Pelizaeus-Merzbacher Disease (PMD) (6.02%) represent the most frequently diagnosed 

leukodystrophies by ES (Table 1, Figure 1a).

Using an ES-based ascertainment generally excludes disorders which are predominantly 

tested for by biochemical testing or single gene sequencing performed on affected 

individuals due to highly recognizable phenotypes. These include conditions such as X-

linked Adrenoleukodystrophy (X-ALD), Cerebrotendinous Xanthomatosis, Metachromatic 

Leukodystrophy (MLD), and Krabbe disease. These conditions are typically diagnosed 

through the use of testing of very long chain fatty acids, cholestanol levels, or lysosomal 

enzyme screening, respectively. When a biochemical diagnosis is made, clinicians often 

obtain molecular testing as well, usually via single gene or targeted panel, to confirm 

the diagnosis and/or to provide this molecular information to families. While not every 

case diagnosed by biochemical testing also receives a molecular diagnosis, we wanted to 

include those cases that did. Therefore, to calculate the overall relative burden of molecular 
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diagnoses during the study time period, we combined data from single gene, targeted panel 

and ES testing. This identified 664 leukodystrophy diagnoses among 52,648 (1/79) tests, 

identifying X-ALD (14.61%), MLD (10.24%), and AGS (9.79%) as the most frequently 

diagnosed leukodystrophies (Table 1, Figure 1b).

3.2 ∣ Carrier frequency determination

We then queried testing rates for the 55 leukodystrophy associated genes in carrier screening 

laboratories. Across all five carrier screening laboratories, only 20 of the 55 leukodystrophy-

related genes were tested (Table 2). Data were available from approximately 116,000 to 

more than 200,000 screened individuals, depending on the gene. The remaining 28 genes in 

our case description were not assessed in any laboratories.

Results from carrier screening predict high carrier frequencies for Globoid cell 

leukodystrophy, also known as Krabbe disease (GALC; 1/105), Polyglucosan Body disease 

and its biochemical variants (GBE1; 1/152) and Peroxisomal biogenesis disorder caused by 

PEX6 (PEX6; 1/153) (Table 2). Of note, GBE1 is also associated with glycogen branching 

disorder, however imperfect genotype–phenotype correlation precluded exclusion of cases 

not predicted to present with a leukodystrophy phenotype. Excluding founder variants 

commonly seen in the Ashkenazi population reduced the numbers of carriers for Canavan 

disease (ASPA; from 1/173 to 1/867) and Polyglucosan Body disease (GBE1, from 1/152 

to 1/225), as well as disease due to PEX2 variants (from 1/794 to 1/2,343), and multiple 

sulfatase deficiency (SUMF1; from 1/838 to 1/1,359).

4 ∣ DISCUSSION

In this study, we use an established case description for leukodystrophies (Vanderver et 

al., 2015) and modern sequencing data to assess the relative burden of leukodystrophy 

diagnoses. We also assess current carrier screening approaches as they relate to 

leukodystrophy carrier identification.

We were able to identify the conditions with the highest relative molecular diagnostic 

frequency in the US. Using ES only, these included AGS (most often RNASEH2B variants), 

TUBB4A-related leukodystrophy, and VWM (EIF2B5). Across all types of molecular 

diagnostic testing, including single gene testing, the most common leukodystrophies 

included X-ALD, MLD, and AGS. The relatively high frequency of AGS may be, in part, 

due to the existence of the recurring p.Ala177Thr variant (19/38 alleles in this cohort). 

However, the fact that 70% of affected individuals had mutations in one of the six other 

known genes causative this disorder suggests that this may also be related to the number of 

overall genes associated with AGS. AGS has previously been considered to be a very rare 

condition; however, these findings support that it is more common than previously known.

Carrier screening has been rapidly expanding with improvements in genomics. Importantly, 

fewer than 50% of genes classically associated with recessive leukodystrophies are screened 

at the time of this study. Screening for VWM (EIF2B5) was being done at three out of the 

five participating laboratories. It is important to note that some autosomal recessive disorders 

with the highest frequency in our study were not included in carrier screening panels at 
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the time of analysis. In particular, RNASEH2B, associated with AGS (2.86%) was seen at 

a high rate in this cohort. Indeed, the only AGS-related gene screened by any laboratory 

was SAMHD1, which was screened at two laboratories. Similarly, POLR3A, associated 

with a hypomyelinating leukodystrophy known as 4H Syndrome (Hypomyelination with 

hypodontia and hypogonadotropic hypogonadism) (3.16%) (Table 3), was absent from 

carrier screening panels and yet seen at relatively high frequency in this cohort. Based 

on their relative frequency in this cohort of diagnosed cases, these disorders may warrant 

inclusion in carrier screening panels.

However, decisions around inclusion of disorders in carrier screening are also dependent 

on their pattern of inheritance. Conditions caused predominantly by de novo variants such 

as Alexander Disease or TUBB4A-related leukodystrophy would not be included in carrier 

screening panels (Vanderver et al., 2015). Of note, ADAR1 and IFIH1, associated with 

Aicardi Goutieres syndrome, were also seen at relatively high frequency (2.56 and 1.36% 

respectively), but, their inclusion in carrier screening would be complicated by autosomal 

dominant inheritance.

4.1 ∣ Limitations

There are several limitations to our methods. The phenotypic spectrum of many of these 

disorders is still incompletely understood, and predictions of disease incidence from 

molecular diagnoses is challenging. For example, upon closer examination of these variants 

through routine screening, previously discovered pathogenic variants may have incomplete 

penetrance. An individual with pathogenic variants may not present with disease until 

adulthood or may never present with classic disease features. This may partially explain 

the difference between disorders predicted to be most frequent based on carrier frequency 

and the relative frequency seen in our cohort, an example being Krabbe disease, which has 

an adult-onset form. Some genes (GBE1, POLR1C, and CSF1R) have allelic conditions 

that do not typically present as a leukodystrophy. Some disorders may be underrepresented, 

such as PMD, where gene dosage changes are common and are not analyzed on clinical ES 

(Inoue, 2005). Our case definition may also be too narrow as more gene-disease associations 

are established (Vanderver et al., 2016). Finally, our analysis was based only on clearly 

pathogenic or likely pathogenic variants as identified in clinical testing, thus, not taking into 

account private variants considered to be VUS when applying ACMG guidelines.

4.2 ∣ Conclusion

In conclusion, we determined the relative frequency of the various leukodystrophies in 

clinical practice. Using ES frequency rates, the following leukodystrophies may be more 

common than previously understood: AGS, VWM, POLR3-related Leukodystrophy, and 

PMD. As expanded carrier screening becomes more commonplace, inclusion of more 

leukodystrophy-related genes will become more feasible, and our data support the addition 

of more leukodystrophy disorders in carrier screening panels.
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FIGURE 1. 
(a) Relative frequency of cases identified in exome sequencing cohorts. The remainder 

of the genes (SLC17A5, CYP27A1, SUMF1, PSAP, DARS2, HEPACAM, MLC1, PSAP, 

RNASET2, ALDH3A2, ASPA, FUCA1, DARS, FAM126A, ACOX1, LMNB1, CLCN2, 

SCP2 in decreasing order of frequency) each represented less than 2% of the total 

population. (b) Relative frequency of cases identified in exome, gene panel and single 

gene sequencing cohorts. The remainder of the genes (LMNB1, GBE1, HSD17B4, 

EARS2, CYP27A1, SUMF1, SOX10, CSF1R, SLC17A5, HEPACAM, DARS2, MLC1, 

ALDH3A2, PSAP, FUCA1, FAM126A, PSAP, RNASET2, DARS, ACOX1, CLCN2, SCP2 
in decreasing order of frequency) each represented less than 2% of the total population
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