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Normal differentiation and induced reprogramming require the activation of target cell programs
and silencing of donor cell programs®-2. In reprogramming, the same factors are often used

to reprogram many different donor cell types3. As most developmental repressors, such as RE1-
silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-
specific repressors*®, it remains unclear how identical combinations of transcription factors can
silence so many different donor programs. Distinct lineage repressors would have to be induced
in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to
neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt11)8 exerts

its pro-neuronal function by direct repression of many different somatic lineage programs
except the neuronal program. The repressive function of Myt1l is mediated via recruitment of

a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain.

In agreement with its repressive function, the genomic binding sites of Myt1l are similar in
neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch
signalling pathway is repressed by Myt1l through silencing of several members, including

Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-
function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation
during normal development. Depletion of Mytll in primary postmitotic neurons de-repressed
non-neuronal programs and impaired neuronal gene expression and function, indicating that many
somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal
identity. It is now tempting to speculate that similar ‘many-but-one’ lineage repressors exist for
other cell fates; such repressors, in combination with lineage-specific activators, would be prime
candidates for use in reprogramming additional cell types.

The combination of Ascl1, Brn2, and Myt1l has been shown to reprogram fibroblasts

and other somatic cells to induced neuronal (iN) cells’. Ascl1 acts as an “on target”
pioneer factor to activate the neuronal program, whereas chromatin access of Brn2 is
context-dependent and facilitates reprogramming later on8. While Ascl1 alone is sufficient
to generate iN cells, endogenous Myt1l is induced during reprogramming and exogenous
Myt1l greatly improves the efficiency and quality of the resulting iN cells®19, To investigate
Mytll’s role in reprogramming we first raised an antibody specific for mouse and human
Mytll (Fig. ED1). Chromatin-immunoprecipitation followed by DNA sequencing (ChIP-
Seq) of endogenous Myt1l in fetal neurons (E13.5) and ectopic Myt1l in mouse embryonic
fibroblasts (MEFs) two days after induction identified 3325 high-confidence Myt1l peaks
that overlapped remarkably well between neurons and MEFs (Fig. 1a, ED2, Table S1).
Thus, similar to the pioneer factor Ascll, Mytl1l can access the majority of its cognate
DNA binding sites even in a distantly related cell type. However, unlike Ascl1 targets®,

the chromatin at Myt1l targets is preferentially open (nucleosomal-free) in fibroblasts (Fig.
1b). Hence, Myt1l appears to possess no pioneer factor activity, raising the question why
the targets of a neuron-specific transcription factor are easily accessible in fibroblasts. As
expected, there was little overlap between Mytll and Ascll target sites and the chromatin
binding of Mytll was not strongly affected by Ascll and Brn2, indicating that both factors
bind and function independent from another (Fig. 1c, ED2d). Conversely, Brn2 targets
were co-enriched for both Ascll and Mytll, confirming that chromatin access of Brn2 in
fibroblasts is strongly directed by other factors® (Fig. ED2d). De novo motif discovery
identified an AAGTT-motif significantly enriched in all Myt1l ChIP-seq experiments (Fig.
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1d), which is similar to a previously proposed motifl1:12, Remarkably, almost half of the
Mytll peaks were located in gene promoters, enabling likely association to actual target
genes (Fig. 1e). Accordingly, we found histone marks associated with active promoters such
as H3K27ac and H3K4me3 enriched at Myt1l bound regions in MEFs (Fig. ED2e).

We next assessed the transcriptional effects of Myt1l by RNA sequencing (RNA-Seq)8

(Fig. 2a, ED3, Table S2). On average, Myt1l targets were significantly down regulated

in reprogramming fibroblasts, indicating Myt1l may be a transcriptional repressor and
functions to silence the fibroblast program during reprogramming. Indeed, gene set
enrichment analysis (GSEA) showed a significant enrichment of MEF signature genes
among the repressed Myt1l target genes (Fig. 2b, Table S3). To functionally evaluate
whether repressive or activating properties of Myt1l drive iN cell reprogramming, we fused
activating (VP64) or repressing (engrailed repressor; EnR) domains to a putative DNA-
binding fragment of Myt1l (410-623). While the VP64-Myt1l fusion had a strong dominant-
negative effect on Ascl1l-mediated neuronal conversion, the EnR-fusion significantly
increased induction of TUJ1 and TauEGFP-positive cells compared to the inactive Mytil
fragment (410-623) (Fig. 2d—e). Thus, transcriptional repression is the predominant function
of Myt1l during neuronal reprogramming.

We then asked, whether Myt1l’s role might go beyond repressing the fibroblast identity.
Indeed, we found many Mytll target genes with prominent non-neuronal developmental
roles and most were down-regulated or remained silent during reprogramming (Fig. 2c).
Among the repressed targets were negative regulators of neurogenesis (Notch & Wnt
pathway members, as well as /a3), key effectors of proliferation (like Jak/Stat, Hippo,
TGF, and Shh signaling), and transcriptional regulators of several non-neuronal lineages.
Strikingly, GO analysis of Myt1l repressed targets enriched terms associated with several
non-neuronal processes (such as cartilage, heart and lung development), suggesting that
Myt1l is able to repress not only the fibroblast program but also additional non-neuronal
programs (Fig. ED3e). Indeed, we found the gene expression signatures of MEFs, myocytes,
hepatocytes, and keratinocytes but not the neuronal to be strongly associated (odds ratio >
2) with repressed Myt1l target genes (Fig. ED3d, Table S3). In addition, Myt1l strongly
inhibited the formation of myocytes when overexpressed in primary myoblasts during
differentiation or together with MyoD in fibroblasts (Fig. 2f-h, ED4). These data suggest
that the main physiological function of Myt1l is to repress many non-neuronal programs in
neurons.

Next, we explored how Mytll accomplishes transcriptional repression. To identify critical
domains of Mytll we tested a collection of systematic Myt1l truncations in our iN
reprogramming assay (Fig. 3a, Table S4). After ensuring nuclear localisation and protein
stability our studies revealed that a short, 423 amino acid-long fragment was sufficient to
generate mouse and human iN cells molecularly and functionally indistinguishable from

full length Myt1l (Fig. 3a—d, Fig. ED5-6). This Myt1l 200-623 fragment contained a
previously uncharacterised N-terminal domain and two zinc fingers (ZF 2-3), presumably
responsible for DNA interaction. Surprisingly, the conserved MYT1 domain was dispensable
for reprogramming and only one of the three putative DNA-binding zinc finger domain
clusters was required. The presence of three zinc finger clusters could imply a complex
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DNA interaction with multiple DNA sites simultaneously bound by different areas of the
protein. However, mutating the central zinc finger cluster to abolish sequence specific
DNA-binding had no effect on Myt1l function!? (Fig. 3a, ED7). In a fragment devoid of
additional zinc fingers the same mutations completely abolished Myt1l function, suggesting
that the zinc finger clusters are functionally redundant. Indeed, /n7 vitro DNA binding
studies (SELEX) revealed that zinc finger clusters 2—-3 and 4-6 enriched the same AAGTT-
motif and ChlP-Seq experiments showed that full length and Myt1l 200-623 bound the
same genomic sites during reprogramming (Fig. 3e, ED2, Table S1,5). Thus, multiple
DNA interacting zinc fingers are not required to engage DNA simultaneously but might
simply increase the binding probability of Myt1l to its targets. Strikingly, down-regulated
Mytll targets harbor significantly more AAGTT-motifs compared to up-regulated targets,
suggesting that indeed binding affinity affects transcriptional output (Fig. ED3a).

The N-terminal domain preceding the central zinc finger cluster was also critical for Myt1l
function, because increased truncation resulted in progressive loss of reprogramming activity
(Fig. 3a—d, ED5). Since Myt1 family members have been reported to interact with Sin3b to
mediate gene repression we tested if Myt1l can bind this repressive chromatin remodeling
complex during neuronal reprogramming4. We found that both full length and minimal
Mytll 200-623, but not Ascll or Brn2, could enrich Sin3b by immunoprecipitation (Fig.

3f). Sequence analysis revealed four highly conserved hydrophobic helical peptides within
Mytll 410-623 that are similar to reported Sin3 interacting domains (SID) known to bind
the paired amphipathic helix (PAH) of Sin3b!® (Fig. ED8). To identify the actual SID

of Myt1l we performed GST pull down experiments and found that the most N-terminal
predicted SIDs were necessary and sufficient to bind Sin3b, while no fragment bound

the p300 co-activator (Fig. 3g, ED8). ChIP-seq experiments showed that 80% of Mytll
targets, including Hes1, were co-bound by the repressive Sin3/HDAC1 complex early

during reprogramming (Fig. 3h, ED8c). As expected shRNA-mediated knock-down of Sin3b
completely abolished iN cell formation, but this could also be due to additional roles of
Sin3b16 (Fig. ED8e—q).

One of the pathways targeted by Myt1l on multiple levels is Notch, in line with observations
made with its family member Myt11718 (Fig. 2c). Notch signaling inhibits differentiation
of neural progenitor cells via Hes1 by repressing proneuronal factors like Ascll, but it
remains unclear how newborn neurons escape this inhibition19:20, We found that Myt1I
largely inhibited the negative effect of Notch intracellular domain (M/CD) on neuronal
reprogramming and repressed Hes1 protein levels (Fig. 4a—b, ED9a). Chemical Notch
inhibition using DAPT enhanced Ascl1-mediated TauEGFP induction, but did not further
enhance reprogramming of Asc/Z and Myt1/(Fig. ED9b). Combined overexpression of
Ascl1 and Hesin MEFs did not only counteract neuronal reprogramming, but also
decreased Ascll levels without inducing neural stem cell markers (Fig. ED9b—c). Very
surprisingly, HesI overexpression decreased not only Ascll protein but also the transgenic
AsclI mRNA, suggesting a previously unrecognized post-transcriptional regulation (Fig.
ED9d). Myt1l addition could not rescue the reprogramming block by HesI overexpression
whereas it could rescue the N/CD-mediated reprogramming block, demonstrating that
Mytll-mediated Notch-inactivation is primarily caused by direct repression of Hes1
transcription.
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To explore the physiological function of Mytl1l during normal neurogenesis we performed
in utero electroporation of Myt1FshRNA-GFP constructs into E13.5 mouse forebrains.
Myt1l depletion led to a substantial reduction of electroporated cells in the cortical plate
two days later, with a corresponding increase in GFP-positive cells in the ventricular and
subventricular zones (Fig. 4e). Moreover, we found a reduced fraction of MAP2* mature
neuronal cells among GFP* cells with a compensatory increase of GFP* apical (Sox2™*)

and basal (Thr2*) progenitors, indicating that acute Myt1l depletion impairs neurogenesis /7
vivo (Fig. 4f-h). Neural stem cells (NSC) exhibit oscillatory Hes1 expression that triggers
anti-phasic expression of proneural factors like Asc/719. To test if Myt1l could repress Hesl
to trigger Ascll induction and neuronal differentiation we overexpressed Myt1l 200-623

in mouse NSCs and indeed observed increased neuronal differentiation (Fig. 4c, ED9f).
Western blot analysis of NSCs maintained in proliferating conditions with FGF and EGF
showed that Myt1l 200-623 overexpression strongly decreased Hes1 and slightly increased
Ascll protein levels (Fig. 4d). Remarkably, even exogenous Ascll protein became stabilised
upon Mytll overexpression in MEFs during reprogramming, further suggesting that Hes1
blocks Ascll also post-transcriptionally (Fig. ED9e). In summary, these findings show that
Mytll can render cells insensitive to Notch signaling and provide a molecular explanation
how newborn neurons can overcome the Notch anti-differentiation stimulus.

Finally, we sought to address if Myt1l represses many non-neuronal programs also in
neurons. RNA-seq of cultured hippocampal neurons upon shRNA-mediated Myt1l depletion
led to a striking de-repression of Myt1l target genes like Notch and Wnt pathway members
and overall induced GO terms characteristic of non-neuronal tissues including cartilage, lung
and heart (Fig. ED10i—j). Fibroblast, keratinocyte and hepatocyte-specific gene signatures
were more highly enriched among induced than repressed genes (Fig. ED10g). Importantly,
the de-repression of non-neuronal programs was associated with loss of neuronal gene
expression and functional properties (Fig. ED10a—f). Moreover, sequence analysis showed
that in contrast to REST, Myt1l motifs are substantially depleted at neuronal gene promoters,
further supporting the “many-but-neuronal” repressive function of Myt1l (Fig. ED10h).

In this study we discovered a new kind of transcriptional repressor. Unlike conventional
repressors that inhibit specific lineages, such as REST and Groucho, Myt1l appears

to blocks a multitude of differentiation programs and lineage identities except the

neuronal lineage. In combination with activating lineage master regulators such as Ascl1,
the molecular repressor Mytll acts in a perfect complementary fashion to enable cell

fate determination. Similar pairs of activating and repressing transcription factors may
yield optimal reprogramming also for other lineages. Finally, our data suggest that the
physiological function of Myt1l is to establish and maintain the identity of neurons.

To date, Mytll is the only known transcription factor that is specifically expressed in

all neurons throughout life indicating that active repression of non-neuronal programs

is critical for maintaining the neuronal identity®. It is possible that the various Myz1/
mutations recently identified in schizophrenia, major depression, intellectual disability, and
psychomotor retardation may affect the neuronal maintenance function of Myt1l rather than
neurogenesis?1=24, This would provide an opportunity of curative interventions even in adult
patients.
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Fig. ED1: Myt1l antibody design and characterisation

a, Schematic of mouse MYT1 family members mmMYT1 (Q8CFC2), mmMytll (P97500)
and mmST18 (A5LFV3) as well as human hsMyt1l homologue (Q9UL68). Highlighted
are the nuclear localisation signals (NLS), aspartic acid/ glutamic acid-rich (Asp/Glu-rich),
serine-rich (Ser-rich), MYTL. coiled-coil domains and the CCHC-type zinc fingers (ZF).
Also shown is the predicted antigenicity and the conservation between the proteins
generated using EpiC and T-Coffee, respectively. Based on this a fragment of mmMyt1l
171-420 was used as antigen for antibody induction in rabbits. The sequence identities
among the antigen regions and the full-length proteins, as well as the molecular weights
are shown (right). b-d, Western blot of; b MEF cells upon induction of FLAG-tagged
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mmMyt1l, c HEK293 cells upon transfection of FLAG-tagged mmMyt1, mmMyt1l, St18,
and untagged hsMyt1/, and d E13.5 embryonic mouse whole brain lysate using preimmune
serum, antibodies against Myt1l, FLAG, and Tubulin. e, Microscopy images of HEK293
cells upon transfection of FLAG-tagged mmMyt1/followed by immunofluorescence using
antibodies against FLAG (red) and Myt1l (green). f, Microscopy images of a section from
adult mouse cortex upon immunofluorescence using antibodies against NeuN (red), Myt1l
(green), and DAPI staining (blue). Scale bar 10 um. g, Myt1l antibody specifically marks
mouse brain neurons /n vivo. Immunofluorescence microscopy images of adult mouse
brain cortex sections using antibodies against neurons; NeuN and MAP2. Oligodendrocytes;
OLIG2 and APC. As well as astrocytes (GFAP) and microglia (IBA1) all shown in red
together with Mytll (green) and DAPI staining (blue). Note that Myt1l only overlaps with
neuronal markers. Scale bar 20 pm.
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a-b, Chromatin immunoprecipitation (ChIP) of endogenous Myt1l from a E13.5 mouse
brain or b of Myt1/ wt (left) and 200-623 (right) transgenes from MEF cell lysates 2

days upon induction with or without Asc/1 and Brn2. Chromatin immunoprecipitates were
analysed by Western blotting with Myt1l, BRN2, and ASCL1 antibodies. Input = 0.3% of
ChIP input, unbound = 0.3% of ChIP flow-through, ChlP = 3% of ChIP eluates. ¢, ChlP-seq
genome-wide occupancy of endogenous Mytll in E13.5 mouse brains (n = 2) or Mytll and
Mytll 200-623 in MEFs two days after induction with (n = 3) or without (n = 2) Asc/1

and Brn2. 6911 total peaks are sorted based on intensity and corresponding genomic regions
are displayed across all data sets, signal is displayed + 2 kb from summits. (See also Fig.

1). d, Chromatin reads for Myt1l, ASCL1, and BRN2 at ASCL1 (top), and BRN2 peaks
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(bottom)8. e, Chromatin reads of indicated histone marks in uninfected MEFs at the sites at
which Mytll is bound during reprogramming. Signal is displayed +2 kb from peak summit.
f, Pearson correlation and clustering analysis of ChlP-seq samples highlight high binding
overlap between different conditions. g, MA plots from DiffBind and corresponding Venn
diagrams showing the distribution of Myt1l ChIP-seq peak intensities between indicated
conditions; endogenous Myt1l in mouse brain versus overexpressed Myt1/in BAM MEFs
(top), Myt1/overexpression alone versus in combination with Asc/Z and Brn2 (BAM) in
MEFs (bottom left), and Myt1/wt versus Myt1/200-623 overexpression in MEFs (bottom
right). Significantly different peaks are shown in color and numbers are annotated. Peaks

that are significantly changed due to experimental setup are highlighted red.
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histone modification (GO:0016570) 2.89 1.17e-02
chromosome organization (GO:0051276) 223 1.68e-04
RNA metabolic process (GO:0016070) 221 7.57e-21
protein transport (GO:0015031) 1.89 1.90e-02
positive regulation of nitrogen compound metabolic process (GO:0051173) 1.86 1.49e-05
organelle organization (GO:0006996) 1.73 1.58e-07
cellular macromolecule metabolic process (GO:0044260) 1.72 7.13e-20
cellular protein modification process (GO:0006464) 1.70 1.26e-04
regulation of cell communication (GO:0010646, 152 9.06e-03
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Fig. ED3: Myt1l represses many but the neuronal transcriptional network
a, Heatmap of gene expression changes at promoter bound Myt1l target genes during iN

cell conversion in MEFs at the indicated time points based on RNA-seq show significant
enrichment of Myt1l motifs at repressed genes (p = 6.85x1076), n = 28 (left) and inverse
transcriptional effects upon Mytll knock-down in primary hippocampal neurons (right). b,
Mean expression levels of selected Myt1l target genes in MEFs upon induction of Myt1/ wt
together with Asc/1 for two days determined by quantitative real time PCR show significant
repression of canonical inhibitors of neurogenesis by Mytll. Names and annotated functions
of tested genes are indicated, expression levels were normalised to Asc/Z only induction

and GAPDH expression, n = 4 biological replicates (with 2 technical replicates each), error
bars = SE, pair wise fixed reallocation randomisation test * p < 0.00126. ¢, Myt1l ChIP-seq
profile at the HesZ and Ncam1 promoter shows strong binding of endogenous Mytll in
E13.5 mouse brain and overexpressed Myt1/ wtin MEFs two days after reprogramming,

red bars mark multiple Mytll AAGTTT-motifs present in repressed Hes1 promoter and gene
body. d, Overlap of Myt1l bound target genes that are induced or repressed during MEF-iN
formation upon overexpression of Myt1/with or without Asc/Z and Brn2and indicated cell
type specific expression signatures determined by GeneOverlap?’. Odds ratio > 2 represents
strong association, p-values are shown in brackets, n.s. = not significant. e, Selected top gene
ontology (GO) terms of Myt1l targeted genes that are repressed (top) or induced (bottom)
during reprogramming determined by PANTHER28. Enrichment scores and p-values are
shown. Highlighted are the terms “negative regulation of neuron differentiation” (green) in
the repressed cluster and “generation of neurons” (red) in the induced cluster. Both analyses
show a striking enrichment of repressed Myt1l target genes within several non-neuronal
programs. Of note several metabolic GO terms are among the upregulated target genes.
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Fig. ED4: Myt1l blocks muscle differentiation in primary myoblasts
a, Representative micrographs of muscle cells derived from primary myoblasts upon

differentiation for 4 days with with r£7A alone (mock) or in combination with Myt1/ wit
followed by immunofluorescence using antibodies against MYH (green), MYTLL (red) and
DAPI staining (blue), scale bar 100 um. b, Muscle differentiation efficiency of cells shown
in A highlight the repressive effect of MYTLL expression (+) on MYH-induction compared
to MYTLL negative cells (=). n = 3, error bars = SE, t-test * p < 0.005. ¢, Western blot

of muscle cells shown in A using indicated antibodies show reduction of several muscle
markers upon MYT1L overexpression.
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Fig. ED5: Truncation screen identifies minimal neurogenic domains of Myt1l
a, Schematic of FLAG and NLS-tagged Myt1l truncation proteins including amino acid

positions. Ability to enhance neurogenic conversion together with Asc/Z is indicated by
(+), minimal active truncation Myt1/ 200-623is boxed red (see also Fig. 3). Myt1/
truncations with partial or without enhanced conversion activity are indicated with (+/-)
and (-), respectively. b, Representative micrographs of iN cells derived from MEFs upon
reprogramming for 14 days with Asc/I together with the indicated transgenes followed
by immunofluorescence using antibodies against TUJ1 (red) and DAPI staining (blue),
scale bar 50 um. c-g, Electrophysiological characterisation of iN cells derived in B upon
maturation for 21 days on mouse glia. ¢, Representative action potential (APs) traces of
iN cells upon reprogramming with Asc/I together with indicated Myt1l truncation. Pie
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charts indicate fraction of cells firing single (grey), multiple (white), or no (black) APs. d,
Mean number of APs fired plotted with respect to pulse amplitude measured at —60 mV
holding potential. e, Mean resting membrane-potential (Vrest). f, Mean membrane resistance
(Rm) and g capacitance (Cm) measured at =70 mV holding potential. Dotted line indicates
intrinsic properties of Asc/I+GFP, n = 3 biological replicates (total number of individual
cells measured indicated), error bars = SE, t-test * p < 0.05. h, Microscopy images showing
nuclear localisation of all tested Myt1l truncations two days after induction in MEFs by
immunofluorescence using antibodies against FLAG (grey) and DAPI staining (blue), scale
bar 10 um. i, Western blot analysis of HEK293 cells two days after transfection with the
indicated transgenes confirms protein integrity using antibodies against FLAG and Tubulin.

a e
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Fig. ED6: Characterization of mouse and human iN cells generated with ASCL 1 and Myt1l
a, Microscopy images of iN cells derived from MEFs upon reprogramming for 21 days on

mouse glia by overexpression of Asc/I together with either Myt1/ wtor Myt1] 200-623
followed by immunofluorescence using antibodies against MAP2 (red) and Synapsin (green)
or NeuN (red) and TauEGFP (green), scale bar 10 um. b, Synaptic recordings of TauEGFP-
positive mouse iN cells shown in A. c-d, Spontaneous and evoked excitatory postsynaptic
currents (EPSCs) were recorded at a holding potential of =70 mV (blue) and blocked by

the addition of CNQX (red), indicating that the excitatory nature of the resulting induced
neurons is mediated through AMPA-type receptors (AMPAR). e, Immunofluorescence

Nature. Author manuscript; available in PMC 2024 August 27.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Mall et al.

Page 14

images of iN cells derived from human embryonic fibroblasts upon reprogramming for 6
weeks by overexpression of GFP, Ascl1, NgnZ2, Brn2together with either Myt1/ wtor
Myt1l 200-623 and co-culture with primary cortical mouse neurons using antibodies against
Synapsin (red) and GFP (green), scale bar 10 um. f, Synaptic recordings of GFP-positive
human iN cells shown in E. g-h, Spontaneous and evoked excitatory postsynaptic currents
(EPSCs) were recorded at a holding potential of =70 mV, indicating synaptic competence of
the resulting induced human neurons. n = 4 cells (fraction of active cells indicated).
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Fig. ED7: Zinc fingersare essential or neurogenic function of Mytll
a, Schematic of Mytll zinc finger 2—-3 point and deletion mutants and their ability to

enhance neurogenic conversion together with Asc/Z is indicated by (+), non-functional
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mutants are indicated with (=)(see also Fig. 3). b, Sequence alignments and conservation

of CCHC-type zinc fingers from Mytll; cysteine and histidine residues that can coordinate
Zn(11) are highlighted in purple, non-coordinating mutated histidines are shown in green. c,
Representative immunofluorescence of iN cells derived from MEFs upon reprogramming for
14 days with Asc/Z and the indicated transgenes; TUJ1 (red), DAPI staining (blue), scale bar
50 um. d-h, Electrophysiological characterisation of iN cells derived in C upon maturation
for 21 days on mouse glia. d, Representative action potential (AP) traces of iN cells
generated with indicated transgenes, pie charts indicate fraction of cells firing single (grey),
multiple (white), or no (black) APs. e, Mean number of APs fired plotted with respect to
pulse amplitude measured at =60 mV holding potential. f, Mean resting membrane-potential
(Vrest). g, Mean membrane resistance (Rm) and h capacitance (Cm) measured at —=70

mV holding potential. Dotted line indicates intrinsic properties of Ascl1+Myt1] wt or
Ascl1+Myt1l 200-912, n = 3 biological replicates (total number of individual cells measured
indicated), error bars = SE, t-test * p < 0.05.
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Fig. ED8: SIN3b binds Myt1l via N-terminal SID domainsand is essential for reprogramming
a, Schematic of FLAG and NLS-tagged Myt1l truncations and glutathione S-transferase

(GST)-tagged Mytll fusion proteins, highlighted are putative SIN3 interactions domains
(SID)(See also Fig. 3). Ability to biochemically interact with SIN3b is indicated by (+) and
(=), respectively. b, GST bait loading after pull down was controlled by Ponceau staining

of the Western blot membrane. Input =

0.2% of pull down (PD) input, PD lanes = 20% of

PD eluates. c, ChIP-seq tracks of SIN3b, HDAC1, and Myt1l shows binding at the HesZ
promoter two days after MEF reprogramming with Asc/1, BrnZ2, and Myt1/ wt. Vertical
bars mark Mytll AAGTT-motifs. d, Multiple sequence alignments of the highly conserved
putative SIN3 interaction domains (SID) within minimal functional region of Myt1l from
selected eukaryotic species. The alignment was generated using T-Coffee and putative SID
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regions are shown above the alignment. e, Western blot of iN cells derived from MEFs
upon reprogramming for 2 days with Asc/1, Myt1l wttogether with either control or Sin3b-
targeting shRNA constructs using indicated antibodies. f, Representative micrographs of iN
cells derived in D upon reprogramming for 14 days followed by immunofluorescence using
antibodies against TUJ1 (red) and DAPI staining (blue), scale bar 50 pum. g, Conversion
efficiency of cells shown in D based on TUJ1-positive cells with neuronal morphology
highlight the deleterious effect of Sin3b knock-down on iN formation. n = 3, error bars =
SE, t-test * p < 0.005.
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Fig. ED9: Myt1l acts upstream of HESL to repress Notch signaling and stabilise ASCL 1
a, Immunofluorescence of iN cells quantified in Fig. 4a derived from MEFs upon

reprogramming for 7 days with Asc/ and either Myt1/ wt, notch intracellular domain
(+ NICD) or a combination; TUJ1 (red), tauEGFP (green), DAPI staining (blue), scale
bar 50 um. b, Neurogenic conversion efficiency of MEFs cells upon reprogramming for
7 days with Asc/1 together with either Myt1/ wt (n = 6), Hes 1 (+ Hes1) (n = 3) or
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a combination of indicated transgenes or upon treatment with DAPT (10 uM) (n = 3)

based on TauEGFP induction determined by flow cytometry. Dotted line indicates mean
conversion efficiency of Asc/1+Myt1/, error bars = SD, t-test * p < 0.05. ¢, Western blot
analysis of cells shown in A-B after two days of reprogramming and mouse neural stem
cells (NSCs) using indicated antibodies shows no striking induction of the neural stem cell
markers NESTIN, PAX6 (arrowhead) or SOX1 in any condition but strong reduction of
ASCL1 upon HesI overexpression. d, Mean expression levels of endogenous and exogenous
(overexpressed) Asc/1 transcript in MEFs upon overexpression of Asc/Z and HesI with or
without Myt1/ wifor two days determined by quantitative real time PCR show significant
repression of both endogenous and exogenous Asc/1 by Hes1 overexpression independent of
Myt1l. Expression levels were normalised to Asc/Z only induction and GAPDH expression,
n = 4 biological replicates (with 4 technical replicates each), error bars = SE, pair wise
fixed reallocation randomisation test * p < 0.0012%. e, Western blot analysis of MEF cells
upon induction of Asc/I together with either GFF, Myt1l wr, or Myt1l 200-623 after 0, 2,
5, and 7 days upon reprogramming using antibodies against MYT1L, ASCL1, GFP, and
Tubulin shows no striking induction of full length Myt1l upon overexpression of minimal
fragment but stabilisation of ASCL1 levels. f, Immunofluorescence of neurons quantified
in Fig. 4c derived from mouse neural stem cells (NSCs) upon differentiation for 7 days
with r¢TA alone (mock) or in combination with Myt1/ 200-623, TUJ1 (red), Mytll (green),
DAPI staining (blue), scale bar 50 pm. Of note, all neurons formed in the control condition
expressed endogenous Myt1l.
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Fig. ED10: Myt1l maintains neuronal identity by repression of non-neuronal programs

a, Myt1l knock-down in PO mouse primary hippocampal neuronal cultures impairs neuronal
maturation and maintenance. Cells were infected with shRNA-expressing lentivirus on third
day of /n vitro culture and analysed 11 days later by quantitative Western blot using
indicated antibodies. While Tubulin served as loading control several neuronal markers are
severely down-regulated by Mytll depletion. Representative Western blot images are shown,
n =5, error bars = SEM, t-test * p < 0.05. b-f, Electrophysiological characterisation of
Myt1l knock-down neurons derived in A. b, Representative action potential (AP) traces of
hippocampal neurons upon indicated knock-down, pie charts indicate fraction of cells firing
single (grey), multiple (white), or no (black) APs at the 90 pA pulse. ¢, Mean number of
APs fired plotted with respect to pulse amplitude measured at =60 mV holding potential.
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d, Mean resting membrane-potential (\Vrest). e, Mean membrane resistance (Rm) and f
capacitance (Cm) measured at =70 mV holding potential. Dotted line indicates intrinsic
properties upon shControl treatment, n = 5 biological replicates (total number of individual
cells measured indicated), error bars = SE, t-test * p < 0.05. g, Myt1l knock-down in

PO mouse primary hippocampal neuronal cultures induces non-neuronal gene expression
programs. Overlap of Mytll bound target genes that are induced or repressed upon knock
down of Myt1l in primary hippocampal neurons and indicated cell type specific expression
signatures determined by GeneOverlap2’. Odds ratio > 2 represents strong association,
p-values are shown, n.s. = not significant. h, Relative number of Myt1l and REST DNA
binding motifs at cell type specific genes highlight depletion of Myt1l and enrichment of
REST motifs at neuronal genes, respectively (t-test * p < 0.005). i, RNA-seq analysis of
genes shown in A, confirm decreased expression of neuronal genes upon Myt1l depletion.
In addition several Notch and Wnt signaling factors that are direct targets of Myt1l are
de-repressed (see also Fig. 2c). In addition transcription of several non-neuronal lineage
specifiers is induced compared to the control. Shown are gene expression values of

cells treated as in A based on RNA-seq, fold change is represented in logarithmic scale
normalised to the shControl sample, n = 2. j, Selected top gene ontology (GO) terms of
Mytll targeted genes that are repressed (top) or induced (bottom) upon knock-down in
primary hippocampal neurons determined by PANTHERZ8. Enrichment scores and p-values
are shown. Highlighted are the terms “generation of neurons™ (green) in the repressed cluster
and “negative regulation of neurogenesis” (red) and in the induced cluster. In addition this
analysis highlights induction of several non-neuronal gene expression programs upon Myt1l
depletion.
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Fig. 1: Context independent on target chromatin access of Myt1l
a, Genome-wide occupancy profiles of endogenous Myt1l in E13.5 mouse brains (n = 2)

or overexpressed Myt1l with (n = 3) or without (n = 2) Asc/Zand Brn2in MEFs two days
after reprogramming. Corresponding regions are displayed across all data sets + 2 kb from
summits. b, Chromatin accessibility based on MNase-seq signal in MEFs2® shows binding
enrichment of Myt1l in open and ASCL1 in closed regions. ¢, Read densities of ASCL1
and BRN2 chromatin binding® shows minor overlap at Myt1l bound regions. d, The Mytil
AAGTT-core motif (green arrow) is significantly enriched at bound sites across data sets.
P-value reported, E-value is 9.6e-3. e, Pie chart indicates enrichment of high confidence
Myt1l bound sites at gene promoters.
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Fig. 2: Myt1l target generepression dominatesinduced neurogenesis
a, Repression of promoter bound (TSS -5,+2kb) Myt1l targets (n = 1798) dominates

genome wide expression changes (n = 33459) upon two days of reprogramming (p =
2.78x10712), two biological replicates each8. b, GSEA identified MEF signature among
repressed Myt1l targets. Normalised enrichment score (NES) and false discovery rate
(FDR). ¢, RNA-seq expression values of selected Myt1l targets at indicated time points
during reprogramming, normalised to the mock sample, n = 28. Myt1l represses several
Notch, Wnt, and proliferation factors. Many lineage specifiers are bound and repressed (ON-
>OFF) or remain repressed (OFF->OFF). d, Immunofluorescence of iN cells derived from
MEFs upon reprogramming for 14 days with Asc/Z and Myt1/ wtor a non-functional zinc
finger fragment fused to a repressor (EnR) and activator (VP64); TUJ1 (red), DAPI staining
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(blue). e, Conversion efficiency of cells shown in D based on TUJ1-positive cells with
neuronal morphology (black) or TaUEGFP expression (grey) show partial reprogramming
using repressor fusion, with many TauEGFP-positive cells without neuronal morphologies.
f, Immunofluorescence of MEFs upon reprogramming for 14 days with Asc/1 or MyoD
without (mock) or with Myt1/ wt, DESMIN (green), DAPI staining (blue). g, Induced
muscle (iM) conversion efficiency of cells shown in F based on either DESMIN (black)

or MYH expression (grey) show decreased muscle marker-positive cells upon Myt1/ wt
addition. h, Western blot analysis of cells shown in F after two days of reprogramming using
indicated antibodies (gel source data Fig. S1). d-g, Scale bar 50 pum, n = 3, error bars = SD,
t-test * p < 0.05.
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Fig. 3: Characterisation of neurogenic and repressive Myt1l domains
a, Truncation and mutation screen identifies Myt1l domains essential for induced

neurogenesis from MEFs upon reprogramming for 14 days with Asc/1. Highlighted are
nuclear localisation signals (NLS), aspartic acid/glutamic acid-rich (Asp/Glu-rich), serine-
rich (Ser-rich), MYTZ1, coiled-coil domains, CCHC-type zinc fingers (ZF) and mutants
(mtZF). b, Conversion activity compared to Myt1l wt based on number of TUJ1-positive
cells with neuronal morphology (black) or TaUEGFP expression (grey). n = 3, error bars

= SD, t-test * p < 0.005. ¢, Representative immunofluorescence of iN cells in A; TUJ1
(red), DAPI staining (blue), scale bar 50 um. d, Representative action potential (AP) traces
of iN cells in A upon maturation for 21 days on mouse glia. e, SELEX DNA binding
experiments of Mytll ZF fragments enrich same Mytll AAGTT-core motif (green arrows).
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f, Immunoprecipitation show binding of SIN3b to full length and minimal Myt1l in DNase-
treated MEF cell lysates two days after transgene overexpression. g, GST pull down from
MEF cell lysates identify minimal SIN3b interaction region within functional Mytl1l domain.
h, Overlapping ChlIP-seq chromatin occupancy profiles of overexpressed Mytll (left, blue),
endogenous SIN3b (middle, violet) and HDAC1 (right, green) at Myt1l promoter target sites
in MEFs two days after reprogramming induction. n = 2.
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Fig. 4: Myt1l represses Notch/Hesl activity to promote neurogenesis
a, Fraction of TauEGFP-positive iN cells derived from MEFs upon reprogramming for 7

days with Asc/1 and either Myt1/ wt, notch intracellular domain (+ NICD) or a combination
determined by flow cytometry, n = 6, error bars = SD, t-test * p < 0.05. b, Western

blot analysis of cells shown in A using indicated antibodies. ¢, Neuronal differentiation
efficiency of mouse neural stem cells (NSCs) upon overexpression of rt7A (mock) or rtTA
and Myt1/ 200-623for 7 days based on TUJ1-positive cells with neuronal morphology. n =
3, error bars = SD, t-test * p < 0.05. d, Western blot analysis of proliferating NSCs 7 days
upon induction of rtTA (mock) alone or with Myt1/ 200-623 using indicated antibodies. e,
Myt1l knock-down cells exhibit cell positioning defects /n utero. Control or Mytl1l-shRNA
constructs co-expressing GFP were electroporated into E13.5 embryonic mouse brains, and
the mice were analysed at E15.5. The percentage of GFP-positive cells in each region is
shown. CP, cortical plate; 1Z, intermediate zone; VZ/SVZ, ventricular zone/subventricular
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zone (n = 8). f-h, Mytl1l knock-down leads to /n vivo neurogenesis defects. Cortices
electroporated in A were examined at E15.5 by staining with antibodies against MAP2,
TBR2, or SOX2 and the percentage of the GFP-positive cells that were also positive for the
corresponding markers are shown. (source data Fig. 4, n = 5 for shControl and shMyt1l #2, n
= 4 for shMytll #1). Scale bar 25 um, error bars = SEM, t-test * p < 0.05, ** p < 0.005, ***
p < 0.0005.
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