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Abstract

Genome-wide association studies (GWAS) implicate broad genomic loci containing clusters

of highly correlated genetic variants. Finemapping techniques can select and prioritize vari-

ants within each GWAS locus which are more likely to have a functional influence on the

trait. Here, we present a novel method, Finemap-MiXeR, for finemapping causal variants

from GWAS summary statistics, controlling for correlation among variants due to linkage

disequilibrium. Our method is based on a variational Bayesian approach and direct optimiza-

tion of the Evidence Lower Bound (ELBO) of the likelihood function derived from the MiXeR

model. After obtaining the analytical expression for ELBO’s gradient, we apply Adaptive

Moment Estimation (ADAM) algorithm for optimization, allowing us to obtain the posterior

causal probability of each variant. Using these posterior causal probabilities, we validated

Finemap-MiXeR across a wide range of scenarios using both synthetic data, and real data

on height from the UK Biobank. Comparison of Finemap-MiXeR with two existing methods,

FINEMAP and SuSiE RSS, demonstrated similar or improved accuracy. Furthermore, our

method is computationally efficient in several aspects. For example, unlike many other

methods in the literature, its computational complexity does not increase with the number of

true causal variants in a locus and it does not require any matrix inversion operation. The

mathematical framework of Finemap-MiXeR is flexible and may also be applied to other

problems including cross-trait and cross-ancestry finemapping.

Author summary

Genome-Wide Association Studies report the effect size of each genomic variant as sum-

mary statistics. Due to the correlated structure of the genomic variants, it may not be

straightforward to determine the actual causal genomic variants from these summary sta-

tistics. Finemapping studies aim to identify these causal SNPs using different approaches.

Here, we presented a novel finemapping method, called Finemap-MiXeR, to determine

the actual causal variants using summary statistics data and weighted linkage
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disequilibrium matrix as input. Our method is based on Variational Bayesian inference

on MiXeR model and Evidence Lower Bound of the model is determined to obtain a trac-

table optimization function. Afterwards, we determined the first derivatives of this Evi-

dence Lower Bound, and finally, Adaptive Moment Estimation is applied to perform

optimization. Our method has been validated on synthetic and real data, and similar or

better performance than the existing finemapping tools has been observed.

Introduction

Genome-wide association studies (GWAS) have discovered hundreds of genomic loci associ-

ated with complex human traits and disorders [1]. GWAS test for association between geno-

mic variants called single nucleotide polymorphisms (SNPs) and the corresponding traits of

interest. The results of a GWAS are available as summary statistics including association effect

size, standard error, and statistical significance (z-scores or p-values) for each SNP. While

many SNPs may show a significant association, most of them are likely to be driven by linkage

disequilibrium (LD), i.e. through correlation with a neighboring causal variant rather than

through having a direct functional influence on the trait [2]. Causal SNPs may also be missed

in GWAS due to insufficient statistical power, unmeasured or unimputed SNPs [3]. Statistical

finemapping methods aim to identify causal SNPs within a given locus after controlling for

LD.

There are some existing finemapping methods in the literature. Bayesian methods offer

important advantages in finemapping causal SNPs compared to other heuristic and penalized

regression methods, especially in situations where the true number of causal SNPs per locus is

high [4]. Having multiple causal SNPs in a locus is a plausible situation that is often observed

in complex human traits. For instance, it is shown that number of causal SNPs for prostate

cancer ranges from 1 to 5 in different loci [5]. Similarly, for Alzheimer’s disease (ALZ), recent

studies provide evidence that a large number of variants on chromosome 19 around the APOE

region modify ALZ risk [6]. Most of the early finemapping methods such as BIMBAM [7],

CAVIAR [8], CAVIARBF [9], and PAINTOR [10] rely on exhaustive searches of the possible

causal configurations for a given locus and calculating corresponding posterior causal proba-

bilities of each SNP. Despite the accuracy of these methods, they are computationally ineffi-

cient, especially if the number of causal variants (k) or the total number of SNPs per locus (M)

is high, precluding exhaustive search across all M
k

� �
causal configurations.

Benner et. al. developed a computationally efficient method called FINEMAP [11] that cal-

culates the likelihood function using Cholesky Decomposition, and then searches possible

causal configurations via the Shotgun Stochastic Search [12]. Thanks to these improvements,

the computational complexity has been reduced, while preserving the same accuracy as the

previous Bayesian exhaustive search methods like CAVIARBF. An extension of the FINEMAP

method [13] can also estimate the effect sizes of causal variants, and heritability attributed to

the locus being analysed.

Another recent approach to finemapping is based on applying a modified version of Single

Effect Regression model [7], called the Sum of Single effects (SuSiE) [14]. The main idea

behind this method is optimizing the proposed model by eliminating the effect of each causal

SNP using Iterative Bayesian stepwise selection (IBSS). Compared to the other Bayesian vari-

able selection methods [15,16], SuSiE has lower computational complexity, and is more suit-

able for inference on highly correlated variables. It was demonstrated that SuSiE had better

accuracy than the previously published finemapping methods [14]. While the original SuSiE
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algorithm requires individual-level genotype and phenotype data as input, it has been

expanded to SuSiE Regression Summary Statistics (RSS) method which only requires sum-

mary statistics-level data [17]. SuSiE-RSS yields a similar accuracy as the original SuSiE algo-

rithm, and at the same time reduces the computational complexity.

Despite the effectiveness of currently available finemapping methods, they can still be

improved in terms of both accuracy and computational aspects. Here, we present a novel Fine-

map-MiXeR method, based on variational Bayesian approach leveraging the MiXeR model

[2]. The MiXeR model assumes a biologically plausible prior distribution of SNPs and can esti-

mate the heritability, polygenicity and discoverability of a given trait, and the polygenic overlap

between two traits [18]. In Finemap-MiXeR, following variational Bayesian approach, the like-

lihood function of observing GWAS z-scores is replaced with its Evidence Lower Bound

(ELBO). We analytically determined the derivatives of the ELBO function and optimized it

with the Adaptive Moment Estimation (ADAM) algorithm [19]. This method requires sum-

mary statistics and scaled LD-matrix, and outputs the posteriors of SNPs being causal namely

posterior causal probabilities.
Our proposed finemapping method has several advantages over existing tools. First, we

show increased accuracy of Finemap-MiXeR over FINEMAP and SuSiE in detecting causal

SNPs in simulation, across a broad range of scenarios. Furthermore, despite the increase in per-

formance is limited compared to other methods, our method can also detect different causal

variants that other methods did not identify in some scenarios. We also validated our method

in height, Alzheimer’s disease (ALZ) and Parkinson’s disease (PD) applications. The computa-

tional complexity of Finemap-MiXeR is only increasing with respect to the number of SNPs per

locus (M) and unlike other methods it is not increasing as the number of causals (k) or locus’s

heritability (h2) increases. Furthermore, unlike many existing finemapping methods, Finemap-

MiXeR does not require to compute the inverse of the LD matrix, which is an important aspect

and is broadly considered in various studies, such as [20,21]. Finally, the flexibility of our mathe-

matical framework provides possibilities to extend the current approach in various directions,

such as finemapping in multiple traits or across ancestries (For details see Discussion section).

Taken together these advantages of Finemap-MiXeR represent an important step forward in

our ability to disentangle biological insights from the associations observed in GWAS.

Description of the method

Ethics statement

The UK Biobank was granted ethical approval by the North West Multi-centre Research Ethics

Committee (MREC) to collect and distribute data and samples from the participants (http://

www.ukbiobank.ac.uk/ethics/) and covers the work in this study, which was performed under

UK Biobank application numbers 27412. All participants included in these analyses gave writ-

ten consent to participate.

Variational Bayesian inference on the MiXeR model

The Finemap-MiXeR method takes summary statistics and a scaled LD matrix (A) as input

and, using the MiXeR model, it outputs the posterior causal probability of each SNP (qi),
alongside with the expectancy of effect size of the SNP (μi) and uncertainty (s2

i ) of the effect

size estimate. This is achieved by applying variational Bayesian inference on the MiXeR model.

For more details of mathematical aspects, see S1 Notes.

In the MiXeR model [2], we can write the z-score of j-th SNP (zj) as a linear combination of

the ground-truth effect sizes of all SNPs, and the coefficients comes from the scaled version of
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the LD matrix, namely A. Given aij as the element of matrix A for i-th row and j-th column, it

can be written as derived in [22]:

aij ¼
XM

i¼1

ffiffiffiffiffiffiffiffiffi

NĤi

q

r̂ ji

where N is sample size, Ĥ i is estimated SNP’s heterozygosity (Ĥ i ¼ 2fið1 � fiÞ where fi is

minor allele frequency of i-th SNP) and r̂ ji is estimated correlation coefficient between SNPs i

and j. Having obtained A matrix, we can write zj as:

zj ¼
XM

i¼1

aijbi þ ej;

where ej is error term and typically modelled as a Gaussian distribution as Nðejj0; s2
0
Þ.

The MiXeR model assumes only a fraction of all SNPs (π1) in a locus are causal (i.e., have a

non-zero ground-truth effect size βi) for a given phenotype, and can be postulated using a

spike and slab prior as:

pðbiÞ ¼ ð1 � p1ÞNðbij0; d
2
Þ þ p1Nðbij0; s

2

b
Þ;

where π12[0,1] indicates the weight in the Gaussian mixture, N(.|,) denotes a normal distribu-

tion (N(.|0,δ2) is a normal distribution with sufficiently small variance δ2 to represent spike

distribution), and s2
b

is a parameter of MiXeR model to represent the variance of non-zero

effects and these parameters can be written as

h2 ¼ s2

b
p1

XM

i¼1

Ĥ i:

In this work, we assume that parameters y ¼ ðp1; s
2
b
; s2

0
Þ are the same across all SNPs, i.e.,

do not depend on i. It is also possible to expand our proposed approach for SNPs with individ-

ual priors in future work on the model.

To determine the likelihood of the MiXeR model, we introduce the latent variables ui2{0,1}

following Bernoulli distribution, p(ui) = Bern(ui|π1). Then the full probabilistic model is

pðz; b; ujyÞ ¼ pðzjb; yÞ � pðbju; yÞ � pðujyÞÞ; explicitly written as

pðzjjb1; . . . ; bM; yÞ ¼ Nðzjj
XM

i¼1

aij bi; s
2
0
Þ;

pðbijui ¼ 0; yÞ ¼ Nðbij0; d
2
Þ; pðbijui ¼ 1; yÞ ¼ Nðbij0; s

2
b
Þ;

pðuijyÞ ¼ Bernðuijp1Þ:

After observing z = (z1,. . .,zM)T, we can do inference on θ by maximum likelihood as

pðzjyÞ ¼
Z

u

Z

b

pðz; b; ujyÞdudb:

Note that numeric optimization of the above p(z|θ) expression is not tractable, however it

can be replaced with its Variational Lower Bound:

log pðzjyÞ ¼ Eqðb;uÞ½log pðz; b; ujyÞ � log qðb; uÞ� þ KLðqðb; uÞjjpðb; ujz; yÞÞ �

� Eqðb;uÞ½log pðz; b; uyÞ � log qðb; uÞ� ¼ Lðq; yÞ;
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where L(q,θ) is the variational lower bound of log p(z|θ), q(β,u) is a distribution function from

any parametric family and KL(.||.) is Kullback-Leibler divergence operator. Choosing q(β,u) to

be close to the p(β,u|z,θ) distribution leads to low values of the KLðqðb; uÞjjpðb; ujz; yÞ term,

thus making L(q,θ) a tight lower bound. In this situation the optimization of p(z|θ) will be

almost equivalent to the optimization of L(q,θ) (in a sense that any local maximum of the sec-

ond problem will also yield local maximum of the original optimization problem).

We will search q(β,u) from the following parametric family:

qðb; uÞ ¼
YM

i¼1

BernðuijqiÞNðbijmi; s
2

i Þ:

Using this model and parametric family, we can optimize L(q,θ) and obtain the parameters

of the q(β,u) which corresponds to the posterior causal probability of each SNP (qi), and

parameter (μi) indicating corresponding effect size. Note that we use the same parametric fam-

ily q(β,u) as proposed in [23], that applied variational Bayesian approach for Polygenic Risk

Score (PRS) analysis. Our method is different in that we proceed with derive derivatives of the

ELBO function using its derivatives, as an alternative to variational EM algorithm used in [23].

Also, our application specifically focused on accuracy of finemapping causal variants and

developed accordingly, rather than genome-wide polygenic risk prediction.

Derivation of derivatives of ELBO function

In order to perform the optimization of L(q,θ), we will be using the Adaptive moment estima-

tion (ADAM) algorithm, which computes the adaptive learning rate for each parameter using

the first derivatives of L(q,θ). Therefore, we need to calculate the corresponding derivatives

with respect to μi, σi and qi analytically.

For this aim, we expanded L(q,θ) and then perform various mathematical treatments

including the Reparameterization trick [24]. Firstly, we may expand ELBO function, L(q,θ), as

L q; yð Þ ¼ Eqðb;uÞlogp zjb; yð Þ þ Eqðb;uÞlog
pðbju; yÞpðujyÞ

qðb; uÞ
¼

¼ EqðbÞlogpðzjb; yÞ � EqðuÞ

XM

i¼1

KLðqðbiÞjjpðbijui; yÞÞ �
XM

i¼1

KLðqðuiÞjjpðuijyÞÞ:

We, then define these three terms of L(q,θ) as L(q,θ) = T1−T2−T3, where T1, T2 and T3 are

defined as follows:

T1 ¼ EqðbÞ

XM

j¼1

logpðzjjb; yÞ;

T2 ¼ EqðuÞ

XM

i¼1

KLðqðbiÞjjpðbijui; yÞÞ;

T3 ¼
XM

i¼1

KLðqðuiÞjjpðuijyÞÞ:

Then we applied various mathematical techniques to calculate the derivatives of T1, T2 and

T3. These approaches are presented in S1 Notes. In the end we obtained the derivatives of the

L(q,θ),
@Lq;y
@mi

;
@Lq;y
@s2

i
;
@Lq;y
@qi

and also derivative of hyperparameters, y ¼ ðp1; s
2
b
; s2

0
Þ as given in
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Table 1. We will use these derivatives with ADAM algorithm to optimize ELBO. (For the

details of the implementation of ADAM algorithm see S1 Notes.)

Hyperparameters

As stated before, we assumed that all hyperparameters of the MiXeR model y ¼ ðp1; s
2
b
; s2

0
Þ

are the same across all SNPs. Those parameters can either be selected by user if the ground

truth values of them are known (s2
0

can be obtained from (2), π1 is defined by user and s2
b

is

estimated via using h2 ¼ s2
b
p1

PM
i¼1

Ĥ i.) or can also be optimized during the ADAM algorithm

using the derivatives presented in Table 1. In Fig A in S1 Text, we refer to the latter option as

“Finemap-MiXeR with optimizing hyperparameters”, and to the former option as Finemap-

MiXeR. As shown in Fig A in S1 Text, both methods give almost identical results. In the fol-

lowing experiments and simulations, we used Finemap-MiXeR with optimizing hyperpara-

meters but recall it as Finemap-MiXeR for the sake of simplicity.

Credible sets

Credible sets are frequently used in finemapping literature to define a set of SNPs that includes

a causal SNP with a given probability [25]. Since many loci have complex LD structure, it is

also important to report such credible sets in order not to miss possible causal SNPs. For

instance, a finemap method may report two SNPs as causal with non-negligible posterior

causal probabilities and if the correlation among these SNPs is high, it is beneficial to report

both of these SNPs in a credible set. Our method is also capable of reporting such credible sets.

A credible set namely CSU(Qu,qthr, η), can be constructed using the SNPs listed by U and satis-

fies the following two constraints:

iÞ Pk ¼
X

i�U
qi > qthr

iiÞ mini;j�U ri;j > Z

where QU = {qi, such that i � U} and η is the purity threshold, i.e. the smallest allowed absolute

correlation threshold among variants within a credible set. For loci with multiple possible

causal SNPs, it is expected to report multiple credible sets where each set includes one causal

SNP as suggested in SuSiE. In our method, these credible sets can be constructed considering

corresponding correlations among SNPs. In other words, SNPs with highest posterior causal

probabilities construct a credible set based on desired smallest allowed absolute correlation

Table 1. All partial derivatives of Lq,θ. TA is a function of aij and zj. For details see S1 Notes.

@Lq;y
@mi

1

s2
0

PM
j¼1

aij zj �
PM

k¼1
akjmk

� �
�
ð1� qiÞmi

d2 �
ðqiÞmi
s2
b

@Lq;y
@s2

i
� 1

4s2
0

PM
j¼1

2a2
ij �

1

2

ð1� qiÞ
d2 þ

ðqiÞ
s2
b

� 1

s2
i

� �

@Lq;y
@qi � log sb

d

� �
�

s2
i þm

2
i

2d2 þ
s2
i þm

2
i

2s2
b

þ log qi
p1
� log 1� qi

1� p1

� �

@Lq;y
@p1

XM

i¼1

p1 � qi
p1 � p

2
1

@Lq;y
@s2

b

XM

i¼1

qi
2s4
b

s2
i þ m

2
i � s

2
b

� �

@Lq;y
@s2

0

TA � Ms2
0

2s4
0

https://doi.org/10.1371/journal.pgen.1011372.t001
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threshold (purity). For a given purity threshold within a credible set, η, L candidate credible

sets can be constructed using posterior causal probabilities as:

Step 1. Sort obtained posterior causal probabilities (qi) in descending order. Let Q be the list

of these sorted variants.

Step 2. Assign L candidate credible sets by choosing L variants that have highest qi and their

pairwise absolute correlation is lower than η
Step 3. Add more variants to these sets from the list of Q whose pairwise absolute correla-

tion is higher than η. Remove these added variant from the list of Q.

Step 4. Repeat Step 3 for each set until it satisfies Pk> qthr

Step 5. Discard sets who do not satisfy Pk> qthr, and report the resulting L* credible sets

where L*�L.

Following this procedure, we can report multiple credible sets that include variants whose

absolute correlation is greater than η and satisfy Pk> qthr. The choice of the initial number of

credible sets (L) is not required to be determined by the user. Since hyperparameters can be

optimized during the finemapping procedure, we can obtain an optimized π1, which implies

that the number of causal variants would be M π1. Therefore, having a higher number of L

than this number (in our simulations, we chose L = dM π1e, where d.e is the ceiling operator)

will be sufficient to be able to capture all possible credible sets. Furthermore, L could also be

chosen as any number bigger than M π1, and it is observed that the results are not sensitive to

the choice of L for the 0.95 credible set threshold, given that it is bigger than the number of

causals (See Fig E in S1 Text for details). This is expected, since having a bigger L may initially

construct a larger number of credible sets. However, eventually the redundant credible sets

would be eliminated at step 5. Having a lower number of L than M π1 may however lead to

missing some possible credible sets.

The choice of qthr and η also affect the number of possible credible sets. Therefore, if qthr is

chosen as lower than the conventional threshold (0.95), we may expect a higher number of

credible sets (in such cases, L can be internally and automatically adjusted to a higher number

(higher than L = dM π1e), depending on the chosen qthr). Similarly, if η is chosen too low, it

may lead to encompassing two true causal variants in the same credible set if their absolute

correlation is greater than η. This may result in having a credible set with two (or more) true

causals, thus reducing the number of credible sets.

Computational complexity of Finemap-MiXeR

In Finemap-MiXeR, ADAM Algorithm is used to optimize ELBO. As mentioned before, in

ADAM algorithm, it is required to calculate the first derivatives of the parameters of interest

for each iteration. Therefore, computational complexity of Finemap-MiXeR depends on the

computational cost of the calculation of these derivatives per iteration. To calculate this, we

will examine the derivatives one by one, starting with
@Lq;y
@mi

:

@Lq;y

@mi
¼

1

s2
0

XM

j¼1

aijðzj �
XM

k¼1

akjmkÞ

 !

�
ð1 � qiÞmi

d
2

�
ðqiÞmi

s2
b

:

Note that
@Lq;y
@mi

can be written in more compact from as

@Lq;y

@μ
¼

1

s2
0

A1 þ A2μÞ
T
�
ð1 � qÞ � μ

d
2

�
q� μ
s2
b

;

�

where A1 = Az and A2 = −AAT,� is Hadamard product (element-wise multiplication), and q

PLOS GENETICS Finemap-MiXeR

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011372 August 15, 2024 7 / 21

https://doi.org/10.1371/journal.pgen.1011372


and μ are the vectors that have all qi and μi elements, respectively. Since A1 and A2 can be pre-

computed, the required computation per iteration is O(M2) which comes from A2μ term (the

Hadamard product operations require O(M) hence can be neglected). From Table 1, one can

also observe that the computational complexity of calculating
@Lq;y
@s2

i
and

@Lq;y
@qi

are both O(M).

Therefore total computational complexity of the algorithm per iteration is O(M2).

Reducing computational complexity with Finemap-MiXeR-PCA

As discussed above, the computational complexities of calculating
@Lq;y
@mi

;
@Lq;y
@s2

i
;
@Lq;y
@qi

derivatives

are O(M2), O(M) and O(M) respectively. Hence, if we can somehow reduce the computational

complexity of
@Lq;y
@mi

, we will also reduce the computational complexity of the whole algorithm.

We present a Principal Component Analysis (PCA) based approach, namely Finemap-MiXeR

PCA, to reduce the computational complexity as presented in S1 Notes. For calculating
@Lq;y
@mi

;

there is only one term that requires O(M2) and it is A2μ which is a MxM matrix and Mx1 vec-

tor product where A2 = −AAT. Using PCA, it is possible to calculate this term with O(pc M)

where pc is mostly pc<<M, the required operations to compute gradients can be reduced

importantly by preserving accuracy. Although PCA itself requires some computations to be

done before implementing ADAM algorithm, this is calculated one time and there is not any

need to recalculate it during the optimization. Also, it is possible to reduce PCA calculation

cost with some efficient algorithms such as Lanczos algorithm [26].

Verification and comparison

We compared Finemap-MiXeR method with FINEMAP (FINEMAP 1.4) and SuSiE RSS in

terms of their accuracy and runtime performance. Using synthetic data with known location

of causal variants the accuracy of the methods was measured using the area under Receiver

Operating Characteristic (ROC). When comparing the methods using real data on height

from UK Biobank (UKB), the true location of causal variants are unknown, and we therefore

used a proxy measure of finemapping accuracy, evaluating how well we could predict the phe-

notype from SNPs selected as causal by each of the methods. For the runtime performance we

also compared Finemap-MiXeR-PCA and SuSiE in the “Runtime Performance and Computa-

tional Complexity” section below, but omitted their performances on accuracy, since their per-

formances in terms of accuracy were almost identical with Finemap-MiXeR and SuSiE RSS

respectively (See Fig A in S1 Text). Note that for all experiments, exactly same data is used for

all methods for the sake of fair comparison. We also applied our Finemap-MiXeR method to

Alzheimer’s disease and Parkinson’s disease. Note that, for synthetic data, we have assigned

the causal variants and simulate the phenotype accordingly, while for height, Alzheimer’s dis-

ease (ALZ) and Parkinson’s disease (PD), we have chosen loci with at least one SNP strongly

associated with a trait, and then applied these loci to finemapping as defined elsewhere [4].

Simulation with synthetic data

The first scheme is evaluation of the performances with synthetic genotype data with realistic

LD structure, created using the Hapgen2 tool [27], and simulating the phenotypes by arbi-

trarily choosing the actual causal SNPs with pre-defined true heritability in a given locus.

Given an NxM genome matrix (G) for N “subjects” and M SNPs, a phenotype vector with a

desired heritability within the locus (h2) was obtained by randomly pre-assigning the causal
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SNPs with a vector β (where βi = 1 if the SNP is causal and 0 otherwise) as

y ¼ c1 Gbþ c2�

where c1 ¼
ffiffiffiffiffiffiffiffiffiffi

h2

varðGbÞ

q
and c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � h2Þ

p
and � is a residual following standard normal

distribution.

Using the procedure described above and sketched in Fig 1, we randomly chose a locus

from this synthetic genome data and obtained the corresponding G matrix and then deter-

mined the artificial phenotype vector y for different values of M and h2 for N = 10 000. This

procedure is repeated 50 times in each scenario particularly for different numbers of causals.

We have also repeated same simulation procedure by randomly pre-assigning the causal SNPs

with a vector β with normal distribution where βi = N(0,1) if the SNP is causal and 0 otherwise.

Using posterior causal probabilities of each SNP to be causal (qi), we evaluated the power of

detecting the actual causal variants and obtained the corresponding Receiver Operating Char-

acteristic (ROC) curve for three methods, and finally calculated area under these curves

(AUC) for comparison. The AUC values of these methods are presented in Fig 2A (simulations

where βi = 1 for causal SNPs) and Fig 2B (simulations where βi = N(0,1) for causal SNPs). Note

that these values in the figures are the averaged values of 50 different experiments. As can be

seen in Fig 2, Finemap-MiXeR either outperforms the other methods in different scenarios

especially for lower heritability/higher polygenicity or has similar performance as other meth-

ods. The mean of the AUC values of all those experiments in Fig 2A (mean of the 5x3x3 = 45

different configurations presented in Fig 2A) for Finemap-MiXeR, SuSiE RSS and FINEMAP

are 0.870, 0.851 and 0.856, respectively. These values for Fig 2B are 0.819, 0.802 and 0.808,

respectively. The corresponding Area Under Precision Recall Curves (AUPRC) are also pre-

sented in Figs C and D in S1 Text.

The performance of the variation of our method (Finemap-MiXeR-PCA) was plotted in Fig

A in S1 Text. As can be observed from this figure, its performance is quite similar to Finemap-

MiXeR’s. Furthermore, in this figure, we also compared the performance of our method when

Fig 1. Overview of the steps used for validation of the Finemap-MiXeR method with synthetic data. Firstly, we randomly selected a locus containing pre-

defined number (M) of adjacent SNPs, randomly selected “k” causal variants within the loci, and draw their effect sizes (vector β). Then, we used synthetic

genotype data (G) with realistic LD structure, as generated by hapgen2 tool, to calculate the phenotypic values (y) for all individuals using additive genetic

model (y = c1Gβ+c2�), where scaling constants c1 and c2 were chosen to yield Var(y) = 1 and Var(c1Gβ) = h2 (pre-defined value indicating true heritability of the

loci). Using G and y we calculated z-scores by applying GWAS, and then used them as inputs for the tools to obtain posterior causal probabilities of each SNP.

Since we know ground truth (the location of causal variants), we then determined Receiver Operating Characteristic (ROC) curves for Finemap-MiXeR and

the comparison methods (SuSiE RSS and FINEMAP 1.4) and calculated corresponding Area Under the Curve (AUC).

https://doi.org/10.1371/journal.pgen.1011372.g001
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Fig 2. (A) Area Under the ROC Curve (AUC) comparison of Finamep-MiXeR with SuSiE RSS and FINEMAP across

different scenarios, varying: the size of the locus being analyzed (M = 200, 1000, 2000, 4000, or 8000 SNPs per locus,

shown in rows); the true number of causal variants (k = 1, 5, or 10, shown in columns), and the true heritability within

the locus (h2 = 0.001, 0.005, or 0.01, shown on the horizontal axis of each panel). Effect size of causal SNPs are

randomly assigned as βi = 1 and then adjusted based on given heritability. The curves represent Receiver Operating

Characteristic (ROC) curve averaged across 50 different simulations with corresponding standard error. (B) Area
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the hyperparameters are known and given by the user or when these hyperparameters are opti-

mized using the corresponding derivatives. As given in this figure, the performance of our

methods (Finemap-MiXeR and Finemap-MiXeR-PCA) is almost same if the hyperparameters

are also optimized within the algorithm.

We also plotted one to one comparison of the posterior causal probabilities obtained from

Finemap-MiXeR and SuSiE RSS using scatter plots presented in Fig B in S1 Text. As seen from

this figure, SuSiE RSS and Finemap-MiXeR may have different posterior causal probabilities for

several SNPs. On the other hand, as can be seen the histogram of causal and non-causal SNPs in

Fig B in S1 Text, their distributions are similar. More importantly, Finemap-MiXeR was able to

detect some causal SNPs that are not detected by SuSiE RSS (or other methods which provides

similar posteriors as SuSiE RSS). Given the fact that Finemap-MiXeR, SuSiE RSS and FINE-

MAP have similar accuracy in terms of detecting causal SNPs, it is valuable to identify causal

SNPs that may not been detected by other methods. In particular, in these experiments, 7.2 per-

cent of causal SNPs is only detected by Finemap-MiXeR (and not by SuSiE RSS) while 4.2 per-

cent is only detected by SuSiE RSS (and not by Finemap-MiXeR). These numbers for SuSiE RSS

and FINEMAP are relatively low, 1.2 and 1.1 percent respectively. Therefore, having such diver-

sity in posterior causal probabilities might suggest using Finemap-MiXeR and SuSiE RSS (or

other methods) together to detect more possible causal SNPs.

We have also examined the performance of credible sets and compared it with SuSiE RSS’s

credible sets in different metrics. One metric is coverage which is the probability of a credible

set includes at least one causal SNP. Other metric is power which is the total proportion of

causal SNPs detected by all reported credible sets. Using the similar simulation procedure

described in this section, we have examined these metrics in different regimes that are chang-

ing by heritability and polygenicity. As can be seen in Fig 3, SuSiE RSS has slightly better cov-

erage results than Finemap-MiXeR in some scenarios. On the other hand, Finemap-MiXeR

mostly detect more causal SNPs and thus have higher power values compared to SuSiE RSS.

Furthermore, one can observe from Fig 3 that as the heritability (h2) decreases and/or the

number of causal (k) increases, the power and the coverage performance of both methods

decrease. This is an expected behavior and can also be observed from the AUC performance in

Fig 2. When heritability is lower or the number of causals is higher, the signal per causal vari-

ant is reduced, and this makes it harder to detect causal variants. We can illustrate this by the

scenarios in the second row of Fig 3 (h2 = 0.01): When k = 10, the power of the Finemap-

MiXeR and SuSiE are 0.21 and 0.17, respectively, and corresponding coverage are 0.50 and

0.51, respectively. This implies that each method was able to detect around 20% of the causal

variants in credible sets (which is equivalent to detecting 2 causal variants out of k = 10) with a

coverage 0.5. On the other hand, as can be seen in the fourth row of the Fig 3, when the herita-

bility is higher (h2 = 0.04), the power for k = 10 increases to 0.53 and 0.51 and coverage

increases to 0.76 and 0.79, respectively.

Application to UKB height data

We used UK Biobank (UKB) genome data (Ntotal = 337 145 after QC) and standing height as

phenotype to evaluate the performance of the Finemap-MiXeR method using real data. UK

Under the ROC Curve (AUC) comparison of Finamep-MiXeR with SuSiE RSS and FINEMAP across different

scenarios, varying: the size of the locus being analyzed (M = 200, 1000, 2000, 4000, or 8000 SNPs per locus, shown in

rows); the true number of causal variants (k = 1, 5, or 10, shown in columns), and the true heritability within the locus

(h2 = 0.001, 0.005, or 0.01, shown on the horizontal axis of each panel). Effect size of causal SNPs are randomly

assigned by βi = N(0,1) and then adjusted based on given heritability. The curves represent Receiver Operating

Characteristic (ROC) curve averaged across 50 different simulations with corresponding standard error.

https://doi.org/10.1371/journal.pgen.1011372.g002
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Biobank data was obtained under accession number 27412. Our UKB data included

12,926,669 SNPs and 337,145 subjects, derived from the UKB imputed v3 dataset. During sam-

ple QC, we selected unrelated individuals with white British ancestry, removed sex chromo-

some aneuploidy, and excluded participants who withdrew their consent. SNP-based QC was

applied as follows: “plink–maf 0.001–hwe 1e-10–geno 0.1”, in addition to filtering SNPs with

imputation INFO score below 0.8 and excluding SNPs with duplicated RS IDs. Since the

ground truth causal variants for height are not known, we compared the three methods by pre-

dicting height using the SNPs finemapped by each of the algorithms, and then evaluating the

correlation between the predicted height and the actual height.

Since the main purpose of finemapping is not phenotype prediction, corresponding predic-

tion performance may not be considered as an ultimate metric to compare the accuracy of

finemapping methods. On the other hand, for highly polygenic and heritable phenotypes such

as height, ground truth causals may not be well known and thus it can still be interesting and

useful to compare methods with respect to the predicted performance of finemapped SNPs.

To achieve this, we split the individual-level UKB data into 80% for training, and 20% for

testing. Training set was used to perform finemapping and estimate corresponding weight of

finemapped SNP in a linear predictor estimating the height; testing set was used to estimate

the height and evaluate the correlation with measured height.

Fig 3. Credible Sets coverage and power comparison of Finamep-MiXeR and SuSiE across different scenarios, varying

the true number of causal variants (k = 1, 5, or 10, shown in columns), and the true heritability within the locus

(h2 = 0.005, 0.01, 0.02 or 0.04, shown on the horizontal axis of each panel) with M = 4000 SNPs (the size of the locus

being analyzed). The effect sizes of causal SNPs are randomly assigned by βi = N(0,1) and then adjusted based on the given

heritability. The first column corresponds to coverage, which is the probability of a credible set to include at least one causal

SNP (and it is equivalent to 1-False Coverage Rate), while the second column gives the corresponding power, i.e. the total

proportion of causal SNPs detected by all reported credible sets. The third column gives the average size (number of variants)

in credible sets. η is chosen as 0.5 and qthr = 0.95, both as suggested in SuSiE.

https://doi.org/10.1371/journal.pgen.1011372.g003
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We conducted this procedure for multiple loci associated with height. In particular, we

chose the loci that are strongly associated with height based on their corresponding p-value of

lead SNPs using recent height GWAS [28]. We examined 31 loci whose lead SNPs’ p-value was

lower than 10−60 and locus size was lower than 10,000. Note that those loci vary in h2 and M

(for details see Table A in S1 Text). In order to get input data for the methods, we applied

GWAS to those loci using training set and obtained corresponding z-scores. Then using these

z-scores, we ran the 3 algorithms (Finemap-MiXeR, SuSiE RSS and FINEMAP) and obtained

the posterior causal probability for each SNP.

Afterwards, for each method, we used the SNP with highest posterior causal probability to

estimate height using Multiple Linear Regression (MLR). Basically, we estimated the effect size

coefficient of this finemapped SNP, using train data and then applied this coefficient to test

data to evaluate the performance.

For applying the procedure defined above to UKB data, firstly we excluded covariates that

are effective on height. Once we extracted genotype (G) and phenotype data (y) from UKB, we

eliminated the effects of covariates (C) such as age, sex, and first 40 principal components. To

achieve this, we first fit C and y using MLR and reduce the effect of C from phenotype as

b̂ ¼ ðCTCÞ� 1CTy � Cþy

yres ¼ y � Cb̂

where yres corresponds to a Covariates-free residual phenotype vector. In this real analysis, we

used this vector and corresponding G matrix and applied GWAS to obtain z-scores to run

these three finemap methods.

As stated above, we examined the loci whose lead SNPs have the lowest p-values. We ran

these three algorithms for these loci and get corresponding posterior causal probability (q) for

each SNP. Afterwards, we picked the column of G matrix that corresponds to the SNP priori-

tized by each method, namely G1 to calculate the effect size of the finemapped SNPs as

w ¼ Gþ
1
yres:

where Gþ
1

is the pseudoinverse of G1. We already split the actual data, using N = 0.8 x Ntotal for

training, and the rest for testing. In other words, w was calculated using training data, and

then it was used to estimate the covariate-free test phenotype data, ytest, by w x Gtest, followed

by a comparison of the performance on estimation of the phenotypes by 3 methods. We calcu-

lated R2 of this estimation, and actual phenotype, as:

R2 ¼ ½corrðytest;wGtestÞ�
2
;

and used R2 metric to compare the performance of the methods. The results are presented in

Fig 4. As seen from this figure, Finemap-MiXeR was able to detect more predictive SNPs in

many loci. In particular, among these 31 loci, there were 9 loci that Finemap-MiXeR obtained

substantially higher R2 than both the other methods. For 16 loci, Finemap-MiXeR still provide

superior results similar as one or both of the other methods. There were only 6 loci that either

of other methods outperformed Finemap-MiXeR significantly, with 1 locus for FINEMAP and

2 loci for SuSiE RSS and 3 loci for both.

Application to Alzheimer’s disease in 19p13.3/ABCA7

The apolipoprotein E (APOE) gene on chromosome 19q13.32, was the first, and by far the

strongest, genetic risk factor for ALZ. Additional signals associated with ALZ have been
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located in chromosome 19, such as ABCA7 gene in 19p13.3 [29]. Here, we examined this locus

to check if our Finemap-MiXeR method is able to detect ALZ associated rs4147929 variant in

this locus. For this aim, we are using summary statistics presented in [30]. We have used the

corresponding z-scores in locus 19p13.3. Specifically, we extracted z-scores of this locus in 1

megabase region centered by rs4147929 variant. We also need to have A matrix (which is the

weighted version LD matrix as defined before). For A matrix we are using UKB data presented

in “Application UKB Data” section. Using this A matrix and z-scores we have run Finemap-

MiXeR and obtained the posterior causal probabilities of the locus as presented in Fig 5A. As

shown in this figure, our method was able to detect causal variant rs4147929 successfully.

Application to Parkinson’s Disease in 4q22, detection of rs356220 and

rs11931074

Previous association studies showed that there is a strong association with Parkinson’s disease

(PD) in the 4q22 region [31]. Strongest association in this locus has been detected as rs356220

in many studies [32]. This locus has also been used as an application in FINEMAP paper and it

was aimed to finemap rs356220 with an additional SNP (rs7687945) that had been detected

significant after a conditional analysis done by authors. Here we are aiming to finemap same

locus using summary statistics obtained from [33]. We have examined a 1 megabase region

centered by rs356220 and used the same procedure to obtain A matrix.

As can be seen from Fig 5B, our method was able to detect variant rs356220 as FINEMAP

did. On the other hand, our method did not detect rs7687945 as FINEMAP did but detected

another variant rs11931074. Note that the association of variant rs11931074 has also been

Fig 4. R2 comparison of Finemap-MiXeR with SuSiE and FINEMAP for 31 different loci for UKB height analysis. The details of loci are given in

Table A in S1 Text. R2 values corresponds to the correlation between estimated phenotype of test data using the three methods and actual test data. Tools

are applied on training data and SNP with highest posterior causal probability were obtained. Then this SNPs is used to estimate test phenotype data. There

were 9 loci (29%) [2,7–9,12,13,17,23,29] where Finemap-MiXeR obtained substantially higher R2 than both of the other methods. For 16 loci (51%) [1,3–

5,7,10,11,14–16,19–22,27,30], Finemap-MiXeR obtained best (or quite close to the best) R2 results as one or both of the other methods. There were only 6

loci [6,18,24–26,28] where one of the other methods were better than Finemap-MiXeR, with two loci (6%) [25,28] for SuSiE and one locus (3%) [24] for

FINEMAP and three locus for both [6,18,26].

https://doi.org/10.1371/journal.pgen.1011372.g004
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Fig 5. (A) Posterior causal probabilities of the variants in 19q13.32 around rs4147929 variant for ALZ. We used z-

scores of this locus in 1 megabase region centered by rs4147929 variant using summary statistics given in [30]. For A

matrix we are using UKB data presented in “Application UKB Data” section. (B) Posterior causal probabilities of the

variants in 19q13.32 around rs356220 variant for PD. We used z-scores of this locus in 1 megabase region centered by

rs356220 variant using summary statistics given in [33]. For A matrix we are using UKB data presented in “Application

UKB Data” section.

https://doi.org/10.1371/journal.pgen.1011372.g005
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identified recently in some studies [34]. Therefore, our method detects two variants (with

highest posterior causal probabilities) that have already been validated in independent studies.

Runtime performance and computational complexity

We examined the computational complexity of our methods with FINEMAP, SuSiE and SuS-

iE-RSS using runtime performance of the methods. As presented before, our Finemap-MiXeR

method requires O(M2) computations per iteration. We also showed that we can reduce the

complexity from O(M2) to O(pcM) by preserving accuracy, where pc << M. In SuSiE, the

number of computations per iteration is O(kMN), and in its extension SuSiE-RSS, it is O

(kM2). In FINEMAP, the worst-case computation required per iteration is O(k2M). However,

the algorithm was optimized to perform the search only among the SNPs with non-negligible

posterior probabilities of being causal, using a hash table in order not to recalculate the same

configurations. Thus, the complexity is expected to be reduced when the signal (heritability) is

low.

We examined the runtime performance of Finemap-MiXeR, SuSiE and FINEMAP using

the same data with different parameters. It is important to note that runtimes may largely dif-

fer due to different implementation (FINEMAP 1.4 software used C++ code and is distributed

as pre-compiled executable, SuSiE is an R package, Finemap-MiXeR is implemented using

MATLAB). On the other hand, we can still compare how the runtime scales with respect to k,

M, and h2 parameters. It is worth noting that the the computational performance of the meth-

ods Finemap-MiXeR, FINEMAP and SuSiE RSS are independent of N, since they use sum-

mary statistics, while SuSiE requires individual-level data, hence its computational complexity

depends on N. For comparison, previously defined synthetic data created by hapgen2 (N = 10

000) are used. All tools are run in HPC with Intel Xeon CPU E5-2698 v4 @2.20GHZ.

As can be seen in Fig 6, for Finemap-MiXeR, the required running time increased as the

square of M. Similarly, for SuSiE-RSS, it increased as the square of M, but it also scaled linearly

with k. In SuSiE, the runtime was proportional to M and N and higher compared to SuSiE-RSS

when N<M, but when M increased, SuSiE was faster than SuSiE-RSS as expected. On the

other hand, the FINEMAP runtime increased directly proportional with M, but was more sen-

sitive to the increase in h2 (which is an expected behavior as explained above). Furthermore, in

SuSiE, SuSiE-RSS and FINEMAP, the runtime increased as the number of causal variants

increased, while in Finemap-MiXeR, the number of causal variants did not affect runtime per-

formance. Finally, our extended version of Finemap-MiXeR, Finemap-MiXeR-PCA, reduced

the rate of increase of runtime as M increases. This is expected, since computation per iteration

is proportional with pcM, where pc is typically on the order of 100 and this is generally much

lower than the size of a locus, M. Although this method consumes some time to determine

eigenvalues and eigenvectors before starting the iteration, it is still much faster than the Fine-

map-MiXeR and it reduced the rate of increase with M.

Discussion

Variational Bayesian approach is becoming increasingly popular in statistical genetics due to

its flexibility, improved accuracy and computational efficiency compared to other Bayesian

methods. In the present study, we used this approach for finemapping, and developed the

novel Finemap-MiXeR method.

The Finemap-MiXeR method performs better in terms of accuracy compared to other

methods when we conduct comprehensive experiments on synthetic genetic data with differ-

ent parameters (heritability, number of causal SNPs, loci length). The performance improve-

ments were also observed in applications with real genetic data. To this end, we applied the
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methods on height, using samples from the UKB. We evaluated multiple loci associated with

height, varying in their heritability, loci length and observed that our method outperformed

the other methods in most scenarios, yielding better accuracy in predicting the phenotype.

Furhermore, we have validated our method on ALZ and PD applications.

One of the main reasons of these improvements in accuracy is MiXeR model’s flexibility in

obtaining Bayesian inference for finemapping which leads to more accurate detection of causal

variants. While the improvement in terms of accuracy compared to existing methods can be

regarded as marginal, we believe that future extensions of the method will yield further

improvements in the method’s accuracy. In this paper, we assumed that all SNPs have equal

Fig 6. Runtime comparison (in seconds) of the three methods (Finemap-MiXeR, SuSiE, FINEMAP) and two

modifications (Finemap-MiXeR-PCA and SuSiE-RSS). Note that these figures are obtained using the synthetic data

described in “Simulation with Synthetic data” section. First row of figures: varying size of number of causals from 1 to 10

while keeping constant M and h2. Second row of figures: varying size of the locus M from 1000 to 16000 while keeping

constant true heritability (h2 = 0.04) and true number of causals (k = 10). Third row of figures: varying size of the true h2

while keeping M = 16000 and k = 10 as constant. (A) Computational performance on varying size of number of causals(k)

from 1 to 10 while keeping M and h2 as constant. (B) Computational performance on varying size of the locus (M) from

1000 to 16000 while keeping h2 and k as constant. (C) Computational performance on varying size of the true h2 from 0.01

to 0.08 while keeping M and k as constant.

https://doi.org/10.1371/journal.pgen.1011372.g006
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priors and hyperparameters are constant across all SNPs. On the other hand, this assumption

would be relaxed, and it is also possible to apply enriched priors to improve method’s

accuracy.

Another benefit of Finemap-MiXeR is its computational effectiveness. Thanks to the

MiXeR model with our tractable optimization function, our method’s complexity only

depends on the size of the locus (M) and does not increase as the number of causals and/or

locus’s heritability increase, unlike the other methods do. In particular, although our meth-

od’s complexity is increased by O(M2) and thus is comparable with SuSiE (O(kMN)) and

SuSiE-RSS (O(kM2)), our method’s complexity is independent of the number of causals.

Furthermore, unlike FINEMAP method, our method´s computational complexity is inde-

pendent from the heritability. Finally, using Finemap-MiXeR-PCA, it is possible to reduce

the complexity of our method to O(pc M) hence to make it linearly scalable with M. Fur-

thermore, unlike many other methods, our method does not require to compute the

inverse of the LD matrix, which can be problematic due to dimensionality and rank

deficiency.

Variational Bayesian approach has been used to improve the accuracy of the polygenic

risk scores (PRS), optimizing Evidence Lower Bound (ELBO) using variational Expected

Maximization (EM) algorithm [23]. Here, we optimized ELBO using ADAM algorithm

instead of the variational EM [23], leading to better accuracy and better computational

complexity compared to the existing finemapping methods. Applying variational Bayesian

inference in the context of the MiXeR model to estimate posterior effect size distribution of

individual SNPs provides broad opportunities for novel applications of this model in statis-

tical genetics. Beyond finemapping, it can be used together with gene set enrichment analy-

sis thus improving functional interpretation of the GWAS findings. Furthermore, our

model can be also extended to cross-ancestry and cross-trait finemapping. Particularly,

thanks to the flexibility of our optimization procedure, we can use the same framework for

further improvements in Finemap-MiXeR tool, increasing its accuracy by leveraging differ-

ential enrichment in functional annotations [35], and extending it to other applications, e.g.

finemapping causal variants underlying multiple traits [36], or performing cross-ancestry

analysis for a single trait. We may utilize our mathematical framework with the existing

bivariate-MiXeR model to optimize the corresponding ELBO and to perform finemapping

in cross-traits [18], or we may incorporate enriched priors by combining our method with

another extension of MiXeR model for the gene-set enrichment called GSA-MiXeR [37].

Furthermore, trying different parametric families for derivation of ELBO might potentially

improve the performance further.

Despite of these advantages and promising results, our method has certain limitations.

Although our method is computationally efficient and is shown to scale better than other

methods with respect to various parameters, the wall runtime is generally slower than SuSiE

RSS, due to the difference in implementation and software optimization of the tools. Another

point is that our method constructs credible sets after obtaining the posterior causal probabili-

ties. In future studies, we may also use the credible sets concept during the inference such as

incorporation of priors with respect to possible credible sets. This, as a future work, would be

able to improve the performance and address some existing challenges. For instance, in the

current approach, two true causal SNPs may be assigned to the same credible set if they are in

high LD. These limitations, however, do not preclude real-world application of our method

and its software implementation.

In conclusion, Finemap-MiXeR is a novel and accurate method for finemapping analysis of

GWAS data from complex human traits and has strong potential for further extensions.
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