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Abstract

Background and objectives

Severe pneumonia is the leading cause of death among young children worldwide, dispro-

portionately impacting children who lack access to advanced diagnostic imaging. Here our

objectives were to develop and test the accuracy of an artificial intelligence algorithm for

detecting features of pulmonary consolidation on point-of-care lung ultrasounds among hos-

pitalized children.

Methods

This was a prospective, multicenter center study conducted at academic Emergency

Department and Pediatric inpatient or intensive care units between 2018–2020. Pediatric

participants from 18 months to 17 years old with suspicion of lower respiratory tract infection

were enrolled. Bedside lung ultrasounds were performed using a Philips handheld Lumify

C5-2 transducer and standardized protocol to collect video loops from twelve lung zones,

and lung features at both the video and frame levels annotated. Data from both affected and

unaffected lung fields were split at the participant level into training, tuning, and holdout sets

used to train, tune hyperparameters, and test an algorithm for detection of consolidation fea-

tures. Data collected from adults with lower respiratory tract disease were added to enrich

the training set. Algorithm performance at the video level to detect consolidation on lung

ultrasound was determined using reference standard diagnosis of positive or negative pneu-

monia derived from clinical data.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0309109 August 27, 2024 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kessler D, Zhu M, Gregory CR, Mehanian

C, Avila J, Avitable N, et al. (2024) Development

and testing of a deep learning algorithm to detect

lung consolidation among children with pneumonia

using hand-held ultrasound. PLoS ONE 19(8):

e0309109. https://doi.org/10.1371/journal.

pone.0309109

Editor: Tai-Heng Chen, Kaohsuing Medical

University Hospital, TAIWAN

Received: December 19, 2023

Accepted: August 6, 2024

Published: August 27, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0309109

Copyright: © 2024 Kessler et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: the data underlying

the findings described within this manuscript are

freely available in a public repository: (https://

https://orcid.org/0000-0002-1736-7090
https://orcid.org/0000-0002-0821-1211
https://doi.org/10.1371/journal.pone.0309109
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309109&domain=pdf&date_stamp=2024-08-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309109&domain=pdf&date_stamp=2024-08-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309109&domain=pdf&date_stamp=2024-08-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309109&domain=pdf&date_stamp=2024-08-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309109&domain=pdf&date_stamp=2024-08-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309109&domain=pdf&date_stamp=2024-08-27
https://doi.org/10.1371/journal.pone.0309109
https://doi.org/10.1371/journal.pone.0309109
https://doi.org/10.1371/journal.pone.0309109
http://creativecommons.org/licenses/by/4.0/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3HP1RD


Results

Data from 107 pediatric participants yielded 117 unique exams and contributed 604 positive

and 589 negative videos for consolidation that were utilized for the algorithm development

process. Overall accuracy for the model for identification and localization of consolidation

was 88.5%, with sensitivity 88%, specificity 89%, positive predictive value 89%, and nega-

tive predictive value 87%.

Conclusions

Our algorithm demonstrated high accuracy for identification of consolidation features on

pediatric chest ultrasound in children with pneumonia. Automated diagnostic support on an

ultraportable point-of-care device has important implications for global health, particularly in

austere settings.

Introduction

Pneumonia is a leading cause of global pediatric morbidity and mortality, accounting for 14%

of all deaths of children under five in 2019 [1]. Deaths from pediatric pneumonia are dispro-

portionately seen in South Asia and Sub-Saharan Africa and represent the single largest infec-

tious cause of death in children worldwide [1–3]. Consequently, the World Health

Organization offers guidelines for hospital admission and empiric antibiotic treatment for pre-

sumptive bacterial pneumonia based solely on clinical examination that have led to decreased

mortality in resource limited settings [4]. However, chest imaging is still optimal for improving

diagnostic accuracy and delivering precision care [5, 6]. Specifically, clinical features such as

tachypnea, chest retractions, and hypoxemia, are shared among distinct etiologies of respira-

tory tract infections in young children, such as viral bronchiolitis and lobar pneumonia, and

have different treatment strategies. There is growing concern that antibiotics are overused in

the treatment of children presenting with signs and symptoms of lower respiratory tract infec-

tion (LRTI), and this may facilitate emergence of antibiotic-resistance [7]. Moreover, lack of

access to chest imaging may overlook key severity features of bacterial LRTI, such as the pres-

ence of loculated pleural effusions, that require distinct treatment approaches.

Chest radiograph (CXR) is the current gold standard for evaluation of suspected pneumo-

nia or its complications [8–10]. However, cost, access to technology, lack of timely availability

of physicians for image interpretation, and exposure to radiation make CXR a less ideal imag-

ing modality, especially for children in low resource settings. Lack of portable CXR equipment,

as well as the inferior quality when available, also limits access to quality chest imaging for chil-

dren with critical illness who cannot be transported to imaging facilities in low resource set-

tings [11]. Ultrasound is a non-ionizing and less expensive imaging modality that provides

comparable or even superior diagnostic accuracy for pneumonia in children [12–16]. Several

recent meta-analysis demonstrate that lung ultrasound is reliable for identification of pneumo-

nia in both children and adults [17–19]. In addition, portability of the equipment, battery-

power, quick operation, and ease of serial examinations makes this an ideal technology for aus-

tere settings or anywhere that diagnostic imaging at the point-of-care would be beneficial [20].

The primary limitation of ultrasound relates to dependency on operator experience for both

acquiring and interpreting the images. However, use of simple standardized imaging protocols
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to collect data, and artificial intelligence (AI) for image interpretation, offers the potential to

close these gaps [21].

Our overall goal is to optimize a pediatric-specific deep-learning algorithm that can be

embedded in a point-of-care, hand-held ultrasound device, in order to provide bedside identi-

fication of lobar pneumonia, pleural effusion, and empyema among young children presenting

with signs and symptoms of LRTI in low resource settings. High sensitivity and specificity,

accurate feature localization, and rapid processing time are required attributes of an AI-

enabled point-of-care device in order to gain widespread clinical acceptance. Algorithm devel-

opment is a supervised iterative process of design, training, and fine-tuning to meet these

requirements. Our team previously published data on the development and accuracy of a

deep-learning algorithm to automatically detect sonographic lung pathology using training

data from a swine model, however the model was not transferable to pediatric patient images

[22]. In the current study, our primary aim was to develop and test the accuracy of an AI algo-

rithm to detect features of pulmonary consolidation on point-of-care ultrasounds among pedi-

atric patients.

Methods

Study population

Data for design and testing of the algorithm was collected from prospectively enrolled pediat-

ric participants (age 18 months to 17 years old) with suspicion of LRTI or associated complica-

tions (e.g., pneumonia, pleural effusion, empyema) between 2018–2020, at two major US

pediatric academic centers. Patients were excluded if they were intubated, could not tolerate a

lung ultrasound (LUS) due to stress or anxiety of child or parent, or if unable to access chest

wall to perform a LUS due to surgical dressing or open wound. To identify potentially eligible

patients for study inclusion, the study team screened the current inpatient or Emergency

Department census for patients with suspected LRTI and following informed consent (and

assent when appropriate) had a study LUS performed. Subsequently, data from the medical

records from each participant’s relevant hospitalization were reviewed to obtain demographic

and clinical data and to identify individuals diagnosed with and treated for pneumonia. Specif-

ically, data detailing admission and discharge diagnoses, results of any microbiologic testing

(respiratory viral panel results were available for 77% of participants), treatment course, per-

formance of pulmonary procedures (eg, chest tube placement; bronchoscopy), and clinical

radiologists’ interpretation of chest imaging (available for 89% of participants), were collected.

Using this approach, participants with diagnostic studies, clinical course, and documentation

supporting a diagnosis of bacterial pneumonia were systematically delineated from partici-

pants with other disease processes who were not diagnosed with pneumonia for inclusion in

the final training dataset. Adults 18–80 years old with a clinical diagnosis of pneumonia and

CXR and/or chest CT evidence of consolidation were enrolled separately, following provision

of written informed consent. Adult participants were excluded if they were intubated, had

active sepsis, cardiogenic pulmonary edema, known lung cancer, pulmonary embolus, chronic

bronchiectasis or cystic fibrosis, or could not tolerate the LUS procedure.

Ethics approval and consent to participate

Written, informed consent was provided by the parent or legal guardian for each participant

with assent from children seven years or older in accordance with approval from each sites’

Institutional Review Board. All adult participants also provided written informed consent in

accordance with recruitment site Institutional Review Boards.
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Scanning protocol and imaging data

All imaging was performed with Philips handheld C5-2 transducers using the Lumify system

(Philips, Amsterdam, Netherlands), equipped with an Android tablet (S4, Samsung, Seoul,

Korea). LUS exams were collected prospectively during each participant’s hospital visit at the

bedside by study investigators, including both research coordinators and clinician-scientists. A

standardized protocol that required minimal training was used for bedside image acquisition

[23]; prior experience with performance of LUS ranged from none to well-experienced. Bilat-

eral ultrasound scanning of 12 chest-wall areas (zones) was performed on participants in a

supine, upright or semi-recumbent position. Each hemi-thorax was divided into 6 zones

(upper and lower anterior, upper and lower lateral, upper and lower posterior) using the para-

sternal, anterior, and posterior axillary lines as anatomical landmarks (see S1 Fig). The Lumify

system software “Lung” preset was selected with a default 12 cm image depth and gain of 36.

Depending on the body habitus and age of the child, the depth could be adjusted by the opera-

tor to between 6 and 12 cm. Three-second video loops were acquired in each zone while hold-

ing the probe still in the sagittal plane (long axis) with the transducer marker pointed towards

the participant’s head. The acquired video loops were exported as .mp4 video files.

To develop the algorithm, positive consolidation videos were curated from participants

enrolled with suspicion of pneumonia or associated complications. The clinical diagnosis of

pneumonia was corroborated by the participant’s discharge diagnosis supplemented with

either CXR or CT scan findings (89% of participants) and respiratory viral panel results (77%

of participants). Negative (no consolidation) videos were taken from the unaffected lung zones

of participants with pneumonia as well as from participants without a diagnosis of pneumonia.

Videos previously collected from adults with lower respiratory tract disease were added to

enrich algorithm training. Clinical data to confirm the diagnosis of pneumonia was derived

from a chart review conducted by research coordinators asynchronously from LUS image

acquisition.

Annotation

The annotation workflow (Fig 1), was a multi-step process with several quality control (QC)

steps. Each participant’s clinical data and lung ultrasound videos were reviewed by two physi-

cians to confirm their merit for annotation. Annotation occurred at two levels: (i) at the entire

video level for the lung features present; and (ii) at the frame level for localization of the lung

features within each frame.

Fig 1. Lung ultrasound annotation workflow. Multi-step workflow for review and annotation of lung ultrasound videos is depicted.

QC = quality control, VA = video annotator, FA = frame annotator.

https://doi.org/10.1371/journal.pone.0309109.g001
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Video annotation. The Lumify was operated at 20 frames/second. Every frame of every

video containing relevant lung features was annotated. Video annotators (two physician LUS

experts) labeled videos according to what features they exhibited using a standardized digital

annotation platform. Labels included the normal features of non-diseased lungs (pleural line,

A-lines) as well as potentially pathologic features of diseased lungs (consolidation, pleural effu-

sion, sub-pleural changes, atelectasis, B-line, or merged B-line). Video annotators could reject

a video for quality issues or exclusion criteria that may have been missed at the initial QC step.

If the two annotators disagreed on the feature content, the video was passed to a third video

annotator to arbitrate the video labeling. The arbitration of disagreements between video

annotators was an iterative process. If a video was accepted, and if all annotators agreed on the

feature content of the video, it was passed to frame annotators. For this study, only videos that

contained consolidation confirmed by two video annotators were included in the positive con-

solidation set. The presence of air bronchograms was used to distinguish between consolida-

tion resulting from infection (pneumonia), and suspected atelectasis, with the latter feature

excluded from model training.

Frame annotation. Frame annotators had educational backgrounds in anatomy and

physiology and were trained by physician LUS experts to recognize the specific LUS features of

interest. Frame annotators assessed every frame of a video for lung features indicated by the

video annotators and marked them with bounding boxes. Frames without any of the pre-

defined pathologic features were included as examples of non-diseased (normal) areas of the

lung. Frame annotation and bounding boxes were reviewed first by a video annotator and

then verified by the algorithm team to ensure they were of sufficient quality and that the anno-

tations were consistent and suitable for machine learning. Frame annotation was the most-

labor intensive step of the process and was necessary to enable explainable outputs from the

algorithm that localize features, distinguish between diseased and non-diseased tissues, and

inspire clinician confidence in the algorithm.

Machine learning protocol

Data distribution. The data were split into training, tuning, and holdout sets at the partic-

ipant level. The training set was used to learn model weights, the tuning set was used to set

model hyperparameters, and the holdout set was used to evaluate algorithm performance (see

Table 1).

Algorithm architecture. The algorithm’s architecture was designed to be capable of both

video-level analysis and frame level localization. The primary goal was to identify whether a

video was positive or negative for consolidation; additional goals were to pinpoint the exact

frames within those videos, and the locations within those frames, where the consolidation

was present. To achieve these dual requirements, a cascade architecture was adopted, meaning

that the algorithm passed the input video through multiple processing steps.

Table 1. Source and utilization of ultrasound data.

Subset Hospitals Participants Exams –Videos +Videos

Training 1 56 63 372 323

Tuning 2 24 24 71 122

Holdout 2 27 30 146 159

Adult training 6 44 102 843 498

–Videos = consolidation feature not present; +Videos = consolidation feature present

https://doi.org/10.1371/journal.pone.0309109.t001
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The first processing step was to classify each frame of the input video as either positive or

negative for consolidation. The algorithm did this by employing a frame classifier that has a

binary yes/no output to assess every frame within the video, categorizing them as either posi-

tive or negative for the presence of a consolidation. The convolutional neural network (CNN)

architecture for the frame classifier was a VGG-like network trained on all frames in the train-

ing subset (using the frame labels, but ignoring bounding boxes that were drawn by annotators

around the specific features of the consolidation) [24].

The second step was to classify the whole video as either exhibiting consolidation or not.

Video classification was determined by applying a threshold to the number of positively-classi-

fied frames. For videos that were classified as positive in the second step, the algorithm exe-

cuted a third processing step in which frames that were classified as positive were passed to an

object detector to localize the consolidation with a bounding box. This third object detection

step employed a single-shot architecture using a MobileNet V3 CNN as the base network [25,

26]. It was trained with the frame-level bounding boxes drawn by annotators around the con-

solidation in the training set. Once the model was trained, the total processing time of the

three-step cascade on the ultrasound transducer’s native tablet device was under ten seconds

per video.

The net effect of the automated processing is to determine if a lung ultrasound video (taken

from one of the different lung zones) exhibits a consolidation or not. When a video is labeled

as showing a consolidation, the tablet replays the video with boxes drawn around the areas of

consolidation that the algorithm identified in each frame. These boxes help the user to under-

stand why the algorithm made its decision about a video classification. This creates transpar-

ency and builds trust in the automated algorithm. Users can then use their own medical

expertise to confirm if the algorithm was accurate and make medical decisions.

Sample size and analysis plan

The main study outcome was test performance of the algorithm at the video level to detect

consolidation on lung ultrasound. Reference standard diagnosis of positive or negative pneu-

monia was derived from chart data confirming a clinical diagnosis of pneumonia along with

consistent findings on radiologic imaging. Deep learning algorithms require a sufficient num-

ber of training samples to learn a viable model, but it is not always possible to predict in

advance how many samples will be needed. Our goal was to achieve at least 90% accuracy

which was considered on par with CXR as the current standard of care diagnostic imaging test

for pneumonia. Model localization performance was analyzed using Intersection-over-Union

(IoU) measuring the amount of overlap between the algorithm detected bounding boxes and

expert-annotated bounding boxes outlining areas of consolidation. Diagnostic performance of

the model was analyzed using Pearson Chi Square 2x2 contingency tables to calculate test char-

acteristics (sensitivity, specificity, positive and negative predictive value) of the model in iden-

tifying videos with features of pulmonary consolidation as compared to our reference

standard.

Results

Participant recruitment and characteristics

107 pediatric participants were enrolled, yielding 1,193 pediatric videos (approximately 10 vid-

eos per participant) for the algorithm development process. From these 1193 videos, 159 posi-

tive consolidation videos and 146 negative videos were utilized for algorithm testing (see

Table 1). Low quality videos were excluded, with the main issues compromising quality related

to poor transducer contact, bad transducer angle, transducer motion, or other organs
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obstructing visualization of the lungs. Median age of participants in the pediatric testing set

was 6 years old (range 18 months to 17 years old, IQR = 61.2 months). LUS data from 44 adults

hospitalized with pneumonia was added to the training data set. The addition of adult data

served the dual purposes of increasing the amount of data (as deep learning networks require

large amounts of training data) and adding more diversity. Specifically, the addition of adult

data was felt to enhance representation of data from pediatric participants between 14–18

years old in the training data set. Table 2 shows additional characteristics of the pediatric pop-

ulation included in the algorithm testing.

Table 3 summarizes the performance metrics of the pediatric consolidation algorithm

described above. Video level sensitivity was 88% and specificity was 89% for detecting consoli-

dation. Average localization accuracy, as measured by the IoU between algorithm LUS

detected and consolidation localized by expert assessment was 0.62.

False negatives and positives

Of 159 positive videos, 19 were falsely classified by the algorithm as negative for consolidation.

Over three quarters of the missed consolidations were due to the algorithm failing to detect

Table 2. Population characteristics of pediatric participants contributing videos to algorithm development.

Median age in months, (IQR) 72 (61.2)

Median weight in kilograms, (IQR) 24.1 (19.35)

Positive respiratory pathogen test, n (%) 57 (53%)

Influenza A 4

Influenza B 6

Human MPV 12

Rhinovirus/Enterovirus 20

Adenovirus 3

Parainfluenza 4

Respiratory syncytial virus 6

Mycoplasma pneumoniae 6

Bordetella Parapertussis 1

Coronavirus 2

Multiple pathogens* 6

Negative respiratory pathogen test, n 28 (26%)

No respiratory pathogen testing completed, n 22 (21%)

*Specific frequency of each respiratory pathogen already displayed in table

https://doi.org/10.1371/journal.pone.0309109.t002

Table 3. Two by two table illustrating sensitivity, specificity, positive predictive value, and negative predictive value of the pediatric consolidation feature algorithm

to detect pneumonia.

Reference standard (ground truth) Sensitivity

(95% CI)

88%

(82–93%)

Positive pneumonia Negative pneumonia Specificity

(95% CI)

89%

(83–94%)

Ultrasound Algorithm

Positive consolidation 140 16 Positive Predictive Value

(95% CI)

89%

(85–93%)

Negative consolidation 19 130 Negative Predictive Value

(95% CI)

87%

(82–91%)

CI = confidence interval

https://doi.org/10.1371/journal.pone.0309109.t003
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transiently visible consolidations that moved behind a rib shadow intermittently as the partici-

pant respires. The remaining missed consolidations were smaller in size (<5 mm), at the

boundary between actionable consolidations and clinically insignificant ones [16].

Of 146 negative videos, 16 were falsely classified by the algorithm as positive for a consoli-

dation. Over half of the false positives (9/16) were triggered by abnormal pleural lines that

were either thickened, irregular, or interrupted. The remaining false positives were triggered

by atelectasis or B-lines emanating from a thickened or irregular pleural line.

An example of the algorithm output overlying the consolidation localized by conventional

CXR, can be seen in Fig 2.

Red and yellow rectangles indicate the algorithm output for detecting consolidation and

normal pleural line features, respectively, with the numbers above the rectangles representing

the algorithm output confidence scores. Purple and green rectangles indicate the expert anno-

tated bounding boxes for consolidation and normal pleural line features, respectively.

Discussion

Severe pneumonia remains the leading cause of death among young children worldwide [1].

Current international guidelines that base diagnosis of pneumonia on history and clinical

exam are intended to identify young children who would benefit from empiric antibiotics and

do not offer high diagnostic accuracy [20, 27]. This inaccuracy places young children at risk

for a missed diagnosis of bacterial pneumonia and its complications such as empyema, while

also increasing exposure to inappropriate antibiotics among children with viral upper-respira-

tory tract infections and/or bronchiolitis that mimic the clinical presentation of bacterial pneu-

monia [6]. LUS has emerged as a highly accurate imaging modality to identify pulmonary

Fig 2. Sample algorithm output for consolidation and normal pleural line features overlaid on expert-defined bounding boxes for the same features.

https://doi.org/10.1371/journal.pone.0309109.g002
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consolidation as well as complications of severe pneumonia, such as pleural effusions and

empyema, in well-resourced settings [12–16, 20]. However, in low resource settings where the

need for improved diagnostics is most urgent, equipment to perform lung ultrasound (and

even conventional CXR) and the expertise to interpret imaging are rarely available. To address

this need, we developed and tested a point-of-care algorithm that detects LUS features of pul-

monary consolidation in children. Our results demonstrated promising diagnostic accuracy

for this feature interpretation algorithm, with performance near expert level of 90% sensitivity

and specificity. We also demonstrated a strong IoU (0.62) that corresponds to roughly 79% lin-

ear dimension overlap between the algorithm’s feature detection and expert annotation. This

provides a powerful proof-of-concept that an AI algorithm applied to point-of-care LUS videos

can be deployed to improve diagnosis of pneumonia in children, and may be particularly

impactful in low resource settings.

There has been a tremendous expansion of research into the development and testing of AI

to diagnose lung features [21, 22, 28, 29]. However, ours is one of the only studies validated on

a point-of-care device specifically detecting features of pediatric pneumonia across entire vid-

eos. Correa et al. developed a model for analysis of pediatric LUS videos based on a neural net-

work classifying small feature vectors that are distilled from a few frames of each video [30].

They achieved a sensitivity of 90.9% and specificity of 100% to correctly identify regions of

ultrasound that contained a consolidation. However, the combined design and test dataset was

very small: the total number of participants was 21, and the total number of video frames was

60. The small dataset precluded the ability to compute reliable patient-level performance met-

rics—which is what matters most for clinical applications. Furthermore, the images were

acquired using an Ultrasonix device, (BK Medical, Vancouver, British Columbia, Canada),

which is a larger and more expensive device, thus limiting generalizability to low-resource set-

tings where such equipment would not be available. In contrast, our algorithm was trained on

videos acquired on an ultraportable device by minimally trained research personnel following

a simple standard protocol, making our findings more transferable to austere environments

and a variety of operators. Importantly, all images were acquired point-of-care at the bedside

by research team members using a study-specific standardized operating procedure; images

were not acquired by radiologists or professional sonographers. In addition, rather than simply

detecting a region of interest, our algorithm directly identified consolidations making it more

useful for novice operators. Nti et al. explored the use of AI software to help guide novices in

identifying lung features acquired on a Zonare machine (Zs3, Mindray North America, Mah-

wah, NJ, USA) and found it helped improve novice recognition and diagnosis of abnormal fea-

tures [31]. They did not employ an ultraportable device, however their pilot study

demonstrated the potential for scalability of software that is agnostic to specific machines or

companies.

Limitations

Our accuracy fell short of our 90% goal which may be attributable to the relatively small train-

ing set size. One of the biggest challenges for our algorithm was accurately diagnosing tran-

sient features. This is mainly due to the current version of the video classifier being frame-

based and not accounting for temporal dynamics, (i.e., a consolidation that disappears behind

the rib with each respiratory cycle). Future iterations of the algorithm will incorporate meth-

ods that model temporal dynamics and should be able to detect a better portion of these false

negatives. The algorithm was developed, trained, and tested only on images with consolida-

tions caused by pneumonia. In addition, there are other diseases that can lead to alveolar

injury and filling seen on LUS. Therefore, it is not clear how well this algorithm will be able to
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distinguish pneumonia from other causes of consolidation artifacts on LUS (e.g., atelectasis).

Given the higher prevalence in adult populations of these other illnesses, the addition of adult

training data is a potential contributing factor to this as well. Our study did not test partici-

pants systematically for viral or bacterial pathogens, and thus we were unable to probe rela-

tionships between the causative organism and findings on LUS. Our study design also did not

allow us to determine if our LUS imaging protocol and algorithm could identify small consoli-

dations (< 5mm), or the relationship between specific features of consolidations (such as

dimensions) and etiology, as has been suggested by a prior study [32]. Since pneumonia is a

common cause of lower respiratory infection in low-resource outpatient settings, the algo-

rithm’s specificity may be adequate for this patient population, but limited in other settings.

Finally, the algorithm was highly unpredictable in discerning ambiguous or borderline lung

features, for example small consolidations or irregular pleural lines. These borderline features

can also be difficult for experts to classify and there remains ambiguity as to the clinical signifi-

cance for borderline features, such as sub-centimeter consolidations [33–35]. Ambiguous fea-

tures are a general problem in the application of AI to medicine, one which begs for a

principled and robust approach that will alert the user when the algorithm is unsure of its find-

ings. Future directions include exploring the use of multiclass networks and networks that pro-

vide an auxiliary output indicating the uncertainty of their findings as potential avenues for

ameliorating the impact of ambiguous patterns. Wearable technology may also provide the

opportunity to acquire continuous serial imaging data over an entire disease [36].

Conclusion

A deep learning algorithm developed from images acquired on an ultraportable device demon-

strates high accuracy, sensitivity, and specificity, for identification of consolidation features on

pediatric chest ultrasound among children with pneumonia. The capacity to deploy automated

and accurate diagnostic support on an ultraportable point-of-care device has important impli-

cations for global health, especially in low-resource or austere settings.
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