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ABSTRACT
Objective: Bisphenol F (BPF) is an endocrine-

disrupting chemical, but information about its effect on 
thyroid hormones has not been fully explored. Omega 3 
fatty acids (O3FA), on the other hand, are antioxidant and 
antiapoptotic agents. Therefore, this study explored the 
role and associated molecular mechanism of O3FA in BPF-
induced hypothyroidism-mediated testicular dysfunction in 
male Wistar rats.

Methods: Twenty (20) male Wistar rats were 
randomized into four groups (n=5/group), namely: the 
control group; the BPF treated group (30 mg/kg of BPF); 
and the intervention groups (30mg/kg BPF + 100mg/kg 
O3FA (BPF+O3FA-L) and 30mg/kg BPF + 300mg/kg of 
O3FA for 28 days).

Results: Low and high doses of O3FA ameliorated 
BPF-induced hypothyroidism-mediated reduction in 
sperm quality, testosterone, luteinizing hormone, 
follicle-stimulating hormone, catalase, superoxide 
dismutase, total antioxidant capacity, and nuclear factor 
erythroid 2–related factor 2 and increases in estrogen, 
malondialdehyde, c-reactive protein, interleukin 1 beta, 
caspase 3. Furthermore, O3FA prevented BPF-induced 
Na+/K+-ATPase and Ca2+-ATPase dysfunction, estrogen 
receptor beta overexpression, and tumor protein P53 
(p53)/ b-cell lymphoma 2 (Bcl-2) imbalance.

Conclusions: This study showed that O3FA ameliorated 
BPF-induced dysthyroidism-mediated testicular dysfunction 
by preventing proton pump dysfunction and p53/BCl-2 
imbalance.
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INTRODUCTION
Bisphenol A (BPA) and its analogs, such as bisphenol 

F (BPF), are raw materials widely used in the food, phar-
maceutical, chemical, and canning industries. BPA is the 
most widely used bisphenol, which has been implicated 
in various human diseases, such as metabolic syndrome 
(Caporossi & Papaleo, 2017). Thus, many countries have 
restricted BPA usage (Fatai & Aribidesi, 2022). Alternative-
ly, BPF, considered the major replacement for BPA, has 
been introduced in the industries. 

With the increasing usage, BPF occurrence in the 
environment is rising. In addition to its presence in 
food and medical devices, BPF has also been found in 
environmental media, such as water, dust, thermal paper, 
and water (Yuan et al., 2019). Despite the increasing usage 
of BPF, its gonadotoxic effect remains underexplored. 
Previous findings have shown that BPF impaired testicular 
function by disrupting the hypothalamic-pituitary-gonadal 

(HPG)-axis (Fatai & Aribidesi, 2022), redox balance (Ullah 
et al., 2019; Odetayo & Olayaki, 2022), and apoptotic 
markers activities (Ferreira et al., 2022; Odetayo et al., 
2023a). Despite these findings, the effect of BPF on the 
thyroid gland has not been fully explored, nor has it been 
established whether BPF-induced testicular dysfunction is 
associated by with dysthyroidism.

Thyroid hormone (TH) has important roles in growth, 
oxygen consumption regulation, mitochondrial energy 
metabolism, and other biological processes (Meng et al., 
2016). TH has also been described as one of the major 
hormones responsible for testicular maturation and growth 
(Sahoo et al., 2008), with dysthyroidism linked with testic-
ular dysfunction (El-Kashlan et al., 2015). The presence of 
thyroid receptors (TRs) and thyroid hormone transporters 
in the Sertoli, germ, and Leydig cells further substantiates 
the role of TH in testicular function (Gao et al., 2014). Aside 
from the presence of TRs, these testicular cells also con-
tain deiodinases, responsible for converting thyroxine (T4) 
into active triiodothyronine (T3) and vice versa. Hence, 
testicular cells are equipped with the transporters and en-
zymes required to maintain thyroid hormone homeostasis 
within the testes (Gao et al., 2014). Physiologically, TH is 
an important factor in redox balance, and alteration in thy-
roid homeostasis can lead to oxidative stress, apoptosis, 
and proton pump dysfunction (Chang et al., 2019). Hypo-
thyroidism has been shown to disrupt proton pump (such 
as Ca2+-ATPase) activities, which in turn disrupts calcium 
homeostasis (Chang et al., 2019). Maintaining intracellu-
lar calcium is important for mitochondrial function since 
calcium imbalance is a major trigger for mitochondrial 
dysfunction associated with oxidative stress and apoptosis 
(Nazıroğlu et al., 2012).

Hence, it is plausible to predict that BPF-impaired tes-
ticular function might be associated with thyroid dysho-
meostasis and proton pump dysfunction since BPF has 
been linked with testicular oxidative damage and apoptosis 
(Odetayo et al., 2023b).

Despite the available information on dysthyroidism 
and oxidative stress, the role of thyroid homeostasis in 
apoptosis has not been fully explored. Although hypo-
thyroidism has been associated with increased apoptotic 
markers (Mukherjee et al., 2014), the role of tumor pro-
tein P53 (p53)/ b-cell lymphoma 2 (Bcl-2) signaling has 
not been explored. P53 signaling is responsible for regu-
lating different cell reactions related to apoptosis. It is a 
core participant in apoptosis regulation by stimulating the 
caspase-dependent pathway via the modulation of multi-
ple apoptotic markers such as BCl-2 (Muller & Vousden, 
2013). Thus, P53 directly or indirectly regulates apoptosis 
at different levels (Moulder et al., 2018).

On the other hand, omega 3 fatty acids (O3FA) are an-
tioxidants that can be obtained from diet. O3FA are poly-
unsaturated fatty acids (PUFA) with established protective 
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roles in the cardiovascular system (Jain et al., 2015), liver 
(Parker et al., 2012), kidney (Hu et al., 2017), and testes 
(Akhigbe et al., 2021a; Odetayo & Olayaki, 2023). In ad-
dition, O3FA are antioxidant and anti-inflammatory agents 
considered the precursors of key active metabolites for 
treating several diseases (Abdel-Baky et al., 2023). This 
information suggests that O3FA might be a promising sup-
plement for protecting cells from extrinsic toxic stimuli 
such as BPF.

Despite these pieces of information, no study has 
explored the possible role of TH homeostasis on BPF-in-
duced testicular dysfunction or the role of proton pump 
activity on BPF-induced gonadotoxicity. Although O3FA 
are anti-apoptotic agents, the role of P53/BCl-2 signaling 
in O3FA-mediated anti-apoptotic effect has not been ex-
plored. Hence, this study was designed to establish the ef-
fect of dysthyroidism in BPF-induced testicular dysfunction 
and the possible ameliorative effect of O3FA. Additionally, 
the roles of proton pumps and P53/BCl-2 signaling as the 
possible mechanism of action were explored.

MATERIALS AND METHODS

Chemicals
Each capsule of O3FA used in this study contained 

eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA) at a ratio of 3:2. The capsules were procured from 
Gujarat Liqui Pharmacaps Pvt. Ltd. Vadodara, Gujarat, In-
dia. All other chemicals except otherwise stated were pur-
chased from Sigma Aldrich.

Animals
The twenty male Wistar rats (age: 10-13 weeks, 

weights: 160-180g) obtained from the Biochemistry De-
partment of the University of Ilorin were randomized into 
four groups (n=5) after two weeks of acclimatization. The 
animals in Group 1 (Control) were treated with 0.5 ml of 
corn oil; Group 2 (BPF) received 30 mg/kg of BPF; Group 
3 (BPF+O3FA-L) and Group 4 (BPF+O3A-H) received BPF 
+ low (100 mg/kg) and high (300 mg/kg) doses of O3FA 
respectively. The BPF dosage used in this study was simi-
lar to the doses previously reported by Higashihara et al. 
(2007), Ullah et al. (2019), and Fatai & Aribidesi (2022), 
while the dosage of O3FA was earlier reported and used by 
Adeyemi & Olayaki (2017).

The designed experimental protocol was approved by 
the University of Ilorin Review and Ethical Committee and 
followed the “National Institute of Health guidelines us-
ing the guide for the care and handling of laboratory an-
imals (NIH Publication No. 80–23; amended 1978)”. The 
experimental protocol complied with the National Research 
Council’s guidelines for the Care and Use of Laboratory An-
imals and the ARRIVE guidelines for reporting experimen-
tal findings. 

Sample Collection
The calculated dosage of BPF for each animal was dis-

solved in corn oil so that each received 0.5 ml of the solu-
tion. The solution was administered orally to mimic the 
main route of BPF exposure. The rats were given the solu-
tion for 28 days, and the overnight fasted animals were 
sacrificed after 24 hours from the last treatment with in-
traperitoneal ketamine (40 mg/kg) and xylazine (4 mg/
kg) (Afolabi et al., 2022a). The blood samples obtained via 
cardiac puncture were centrifuged at 3000 rpm to obtain 
serum for hormonal assays. The left testes were homog-
enized in a cold phosphate buffer solution for biochemical 
analysis. The right testes were harvested for immunohis-
tochemistry testing, while the epididymides were removed 
for sperm analysis.

Sperm analysis
Each caudal epididymis was prepared in a clean pe-

tri dish, and sperm count, motility, and morphology were 
estimated according to previous methods (Akhigbe et al., 
2021b; Afolabi et al., 2022b).

Hormonal Assay
Serum T3, T4, thyroid stimulating hormone (TSH) 

(Carlbiotech, USA) and luteinizing hormone (LH), folli-
cle-stimulating hormone (FSH), testosterone, and estra-
diol (Bio-Inteco, UK) were determined using ELISA kits 
according to the manufacturer’s guidelines.

Oxidative stress, inflammatory, and apoptotic 
markers

Testicular malondialdehyde (MDA), superoxide dis-
mutase (SOD), and catalase (CAT) were determined as 
previously established (Afolabi et al., 2022c; Akhigbe et 
al., 2023; Olayaki et al., 2023). Total antioxidant capac-
ity (TAC) (Fortress Diagnostic Kit, Switzerland) was esti-
mated using a colorimetry method. Testicular interleukin-1 
beta (IL-1β) (Nanjing Mornmed Medical, China), C-reactive 
protein (CRP), nuclear factor erythroid 2- related factor 2 
(Nrf2), and caspase-3 (Elabscience, USA) were determined 
as described by the test kit manufacturers.

Proton pump
Testicular transmembrane protein (Na+/K+-ATPase 

and Ca2+-ATPase) activity was determined spectrophoto-
metrically using the method of Torlińska & Grochowalska 
(2004).

Immunohistochemistry
Testicular estrogen receptor β (Erβ), P53, and BCl-

2 were determined as previously described by Odetayo 
et al. (2023a). “Formalin-fixed and paraffin-embedded 
testicular tissues were sectioned at 4 μm for immuno-
histochemistry. Immunohistochemical procedures were 
performed using appropriate antibodies; anti-mouse Erβ 
monoclonal for Erβ expression (1:100), anti-mouse p53 
monoclonal for p53 expression (1:100), and anti-mouse 
Bcl-2 monoclonal for Bcl-2 expression (1:200). The for-
malin-fixed and paraffin-embedded testicular tissues 
were sectioned at 4 μm for immunohistochemistry. Ap-
propriate antibodies; anti-mouse Erβ monoclonal for Erβ 
expression (1:100) (Leica Biosystems, USA with CAT 
NO: 6069100), anti-mouse p53 monoclonal for p53 ex-
pression (1:100) (Espredia with CAT NO: 186P2105D), 
and anti-mouse Bcl-2 monoclonal for Bcl-2 expression 
(1:200) (Thermo Fisher Scientific, USA)”.

Statistical analysis
Software package GraphPad PRISM 5 (GraphPad Soft-

ware, La Jolla, California, USA) was used in statistical 
analysis with one-way analysis of variance (ANOVA) and 
Tukey’s post hoc test. Data were reported as mean ± stan-
dard deviation. Values of p below 0.05 were considered 
statistically significant.

RESULTS

Sperm quality
Low (O3FA-L) and high doses (OFA3-H) of O3FA  

ameliorated BPF-induced decrease in sperm count, 
motility, and morphology compared with controls (Figure 
1). Although there was no significant difference in sperm 
motility and morphology in the rats given O3FA-L and 
OFA3-H, the animals treated with a high dose of O3FA 
had better sperm counts than their counterparts treated 
with a low dose.
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Figure 1. Effect of omega 3 fatty acids on (a) sperm count (b) motility (c) morphology in BPF-exposed 
rats. a. p<0 .05 versus control, b. p<0.05 versus BPF, c. p<0.05 versus BPF + O3FA-L using one-way 
analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison. BPF: Bisphenol F, 
O3FA-L: omega-3 fatty acid low dose, O3FA-H: omega-3 fatty acid high dose.

Hormones
BPF disrupted thyroid homeostasis, as evidenced by 

the significant decrease in T4 and T3 and the increase 
in TSH compared with controls (Figure 2). The observed 
alterations were prevented by the co-treatment of BPF 
with low and high doses of O3FA. However, animals treated 
with O3FA-H had better circulatory T3 levels than those 
treated with O3FA-L. Furthermore, the observed decrease 
in serum LH, FSH, and testosterone and increase in 
estradiol following BPF treatment compared with controls 
were blunted by both doses of O3FA. Although both doses 
of O3FA prevented the observed reproductive hormonal 

imbalance, the ameliorative effect was more pronounced 
in animals treated with high doses.

Oxidative stress
BPF exposure led to a significant increase in tes-

ticular MDA and a decrease in CAT, SOD, TAC, and 
Nrf2 compared with controls (Figure 3). Both doses of 
O3FA ameliorated the redox imbalance, although ani-
mals treated with O3FA-H were significantly different in 
TAC and Nrf2 levels compared with those treated with 
O3FA-L.
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Figure 2. Effect of omega 3 fatty acids on serum (a) 
thyroxine (b) triiodothyronine (c) thyroid stimulating 
hormone (TSH) (d) luteinizing hormone (LH) (e) follicle 
stimulating hormone (FSH) (f) testosterone (g) estradiol 
in BPF-exposed rats. a. p<0.05 versus control, b. p<0.05 
versus BPF, c. p<0.05 versus BPF + O3FA-L using one-
way analysis of variance (ANOVA) followed by Tukey’s 
post hoc test for pairwise comparison. BPF: Bisphenol F, 
O3FA-L: omega-3 fatty acid low dose, O3FA-H: omega-3 
fatty acid high dose.

Figure 3. Effect of omega 3 fatty acids on testicular (a) 
malondialdehyde (MDA) (b) catalase (CAT) (c) superoxide 
dismutase (SOD) (d) total antioxidant capacity (TAC) 
(e) nuclear factor erythroid 2–related factor 2 (nrf2) in 
BPF-exposed rats. a. p<0.05 versus control, b. p<0.05 
versus BPF, c. p<0.05 versus BPF + O3FA-L using one-
way analysis of variance (ANOVA) followed by Tukey’s 
post hoc test for pairwise comparison. BPF: Bisphenol F, 
O3FA-L: omega-3 fatty acid low dose, O3FA-H: omega-3 
fatty acid high dose.

Inflammatory and Apoptotic markers
O3FA prevented BPF-induced increase in testicular IL-

1β, CRP, and caspase 3 compared with controls (Figures 
4 and 5), although except for caspase 3, animals treated 
with a high dose of O3FA exhibited a better ameliorative 
effect in testicular parameters.

Proton pump
BPF affected proton pump activity compared with con-

trols (Figure 6). While both doses of O3FA prevented the 
observed proton pump Na+-K+ ATPase and Ca2+ ATPase 
dysfunction, animals treated with high doses of O3FA ex-
hibited a better ameliorative effect than their counterparts 
treated with a low dose.
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Figure 4. Effect of omega 3 fatty acids on testicular (a) interleukin 1 beta (IL-1β) (b) c-reactive protein
(CRP) in BPF-exposed rats. a. p<0.05 versus control, b. p<0.05 versus BPF, c. p<0.05 versus BPF + O3FA-L 
using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison. 
BPF: Bisphenol F, O3FA-L: omega-3 fatty acid low dose, O3FA-H: omega-3 fatty acid high dose.

Figure 5. Effect of omega 3 fatty acids on testicular 
caspase 3 in BPF-exposed rats. a. p<0.05 versus control, 
b. p<0.05 versus BPF, c. p<0.05 versus BPF + O3FA-L 
using one-way analysis of variance (ANOVA) followed 
by Tukey’s post hoc test for pairwise comparison. BPF: 
Bisphenol F, O3FA-L: omega-3 fatty acid low dose, 
O3FA-H: omega-3 fatty acid high dose.

Er-β and P53/BCl-2 signaling
Low and high doses of O3FA blunted the observed in-

crease in Er-β and P53 and decreased BCL-2 following BPF 
exposure (Figures 7, 8, and 9). However, these ameliora-
tive effects were more pronounced in animals treated with 
high doses of O3FA.

DISCUSSION
The present study explored the effects of BPF on 

thyroid and testicular function. It also determined the 
role of Na+-K+ ATPase and Ca2+ ATPase activities and 
P53/BCl-2 signaling in testicular function. A possible 
ameliorative effect of O3FA on BPF-induced hypothy-
roidism was also established. It further hypothesized 
that BPF-induced testicular dysfunction was due to dys-
thyroidism-mediated Na+-K+ and Ca2+ ATPase dys-
function and P53/BCl-2 imbalance and that O3FA might 
ameliorate BPF-induced dysthyroidism. Our findings 
confirmed that BPF-induced hypothyroidism was asso-
ciated with impaired testicular function. They also es-
tablished that O3FA ameliorated BPF-induced hypothy-
roidism, oxidative stress, inflammatory response, and 
apoptosis in testicular tissues, as evidenced by the sig-
nificant decreases in testicular CAT, SOD, and TAC, Nrf2, 
and the increases in MDA, IL-1β, CRP, and caspase 3. 
These events were accompanied by Na+-K+ and Ca2+ 
ATPase dysfunction and P53/BCl-2 imbalance in testicu-
lar tissues. In sum, our data suggest that O3FA restored 
testicular function by preventing BPF-induced hypothy-
roidism via Na+-K+ and Ca2+ ATPase and P53/BCl-2 
mediated oxidative stress and apoptosis. 

As expected, the results from this study showed that 
hypothyroidism (decreased T4 and T3 levels) was associat-
ed with testicular dysfunction, as evidenced by a significant 
decline in sperm quality and reproductive hormones. This 
confirms previous findings (Mazzilli et al., 2023; El-Kash-
lan et al., 2015; La Vignera et al., 2017) demonstrating 
testicular dysfunction and male infertility in hypothyroid-
ism. Hyperprolactinemia might be the link between the 
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Figure 6. Effect of omega 3 fatty acids on testicular (a) sodium-potassium ATPase (Na-K ATPase) (b) 
calcium ATPase (Ca-ATPase) in BPF-exposed rats. a. p<0.05 versus control, b. p<0.05 versus BPF, c. 
p<0.05 versus BPF + O3FA-L using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc 
test for pairwise comparison. BPF: Bisphenol F, O3FA-L: omega-3 fatty acid low dose, O3FA-H: omega-3 
fatty acid high dose.

observed primary hypothyroidism and hypogonadotropic 
hypogonadism (Brown et al., 2023) since BPF has been 
shown to increase circulatory prolactin (Odetayo & Olaya-
ki, 2023). Hypothyroidism is associated with an increase in 
circulatory TRH, which in turn increases circulatory prolac-
tin (Tashjian Jr et al., 1971). This hypothyroidism-mediat-
ed hyperprolactinemia might directly impair the HPG-axis 
by inhibiting GnRH (Brown et al., 2019) and LH (Gregory et 
al., 2004) secretion, leading to a decline in circulatory tes-
tosterone. Furthermore, the findings from this study that 
BPF-induced hypothyroidism was associated with testicular 
oxidative damage, inflammation, and apoptosis aligns with 
the study of Kochman et al. (2021) and Bowman-Colin et 
al. (2016), which reported similar findings in dysthyroid-
ism.

Although compelling evidence established that hypo-
thyroidism induces testicular dysfunction, information 
about the associated mechanisms is still lacking. There-
fore, the finding that BPF-induced hypothyroidism is asso-
ciated with testicular transmembrane protein dysfunction 
is noteworthy.

BPF-induced testicular injury may be a consequence 
of dysthyroidism-induced testicular Na+/K+-ATPase 
and Ca2+-ATPase dysfunction (Chang et al., 2019). 
Impairment of these transmembrane proteins depresses 
electrochemical gradient generation and maintenance 
across the testicular cell membrane and key organelles such 
as the mitochondria (Therien et al., 1997). Additionally, 
Ca2+-ATPase maintains calcium homeostasis, which plays 
a key role in male fertility. The prostate gland (the main 
source of calcium for human semen), epididymis, and 
seminal vesicles require optimal calcium levels (Valsa 
et al., 2016). Impaired steroidogenesis, sperm motility, 
chemotaxis, capacitation, and acrosome reaction have 
been reported in hypocalcemia (Beigi Harchegani et al., 
2019; Naz et al., 2022). Also, men with hypomotility show 
lower calcium levels in semen than those with typical 

motility (Naz et al., 2022), illustrating the importance of 
calcium homeostasis in male reproduction. Ca2+-ATPase 
is a key factor for regulating calcium homeostasis, and its 
dysfunction has been reported in calcium overload (Chang 
et al., 2019). The testicular Na+/K+-ATPase and Ca2+-
ATPase dysfunction in this study might be a consequence 
of the observed BPF-induced oxidative stress or increase in 
serum estrogen and the subsequent ERβ overexpression. 
Thyroid hormones play a major role in the maintenance of 
reactive oxygen species (ROS) generation, and dysfunction 
has been reported to cause the overproduction of ROS, 
leading to oxidative stress (Chang et al., 2019), which 
might impair proton pump function (Zaidi, 2010). Proton 
pump inhibition has been linked with increased circulatory 
estrogen (Ding et al., 2023). Thus, the observed increase 
in estrogen and estrogen receptors observed in this study 
might result from the observed proton pump dysfunction. 
Interestingly enough, both oxidative stress and ERβ 
are triggers of apoptosis (Odetayo et al., 2023a), which 
culminates in the stimulation of p53/BCl-2-mediated 
apoptosis.

p53 is a key protein that regulates apoptosis via 
direct induction of Bax transcription, which can, in turn, 
overwhelm the antiapoptotic effects of BCl-2 (McCurrach 
et al., 1997; Giorgi et al., 2015). The activation of Bax 
leads to the release of mitochondrial cytochrome c, leading 
to the activation of caspase 3-mediated apoptosis (Schuler 
et al., 2000). In addition, p53 can directly inhibit Bcl-2 
activities by mimicking the proapoptotic ‘BH3-only’ class 
of Bcl-2 to bring about mitochondria permeabilization and 
apoptosis (Hemann & Lowe, 2006). Again, p53-induced 
PUMA protein can distort cytosolic p53–Bcl-2 complexes, 
eventually leading to the direct induction of p53-
mediated apoptosis in mitochondria (Chipuk et al., 2005). 
Furthermore, p53 can directly disrupt proton pump activity 
in the endoplasmic reticulum, leading to calcium overload 
and increased transfer to the mitochondria, leading to 
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Figure 7. Effect of omega 3 fatty acids on testicular estrogen receptor beta (ER β) in BPF-exposed rats. 
a. p<0.05 versus control, b. p<0.05 versus BPF, c. p<0.05 versus BPF + O3FA-L using one-way analysis 
of variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison. BPF: Bisphenol F, O3FA-L: 
omega-3 fatty acid low dose, O3FA-H: omega-3 fatty acid high dose.
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Figure 8. Effect of omega 3 fatty acids on testicular tumor protein p53 (p53) in BPF-exposed rats. a. 
p<0.05 versus control, b. p<0.05 versus BPF, c. p<0.05 versus BPF + O3FA-L using one-way analysis of 
variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison. BPF: Bisphenol F, O3FA-L: 
omega-3 fatty acid low dose, O3FA-H: omega-3 fatty acid high dose.
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Figure 9. Effect of omega 3 fatty acids on testicular B-cell lymphoma 2 (BCl-2) in BPF-exposed rats. a. 
p<0.05 versus control, b. p<0.05 versus BPF, c. p<0.05 versus BPF + O3FA-L using one-way analysis of 
variance (ANOVA) followed by Tukey’s post hoc test for pairwise comparison. BPF: Bisphenol F, O3FA-L: 
omega-3 fatty acid low dose, O3FA-H: omega-3 fatty acid high dose.
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apoptosis induction (Giorgi et al., 2015). Hence, the 
increase in p53 expression observed in this study might 
also explain the proton pump dysfunction following BPF-
induced hypothyroidism. Our findings that BPF-induced 
hypothyroidism disrupted p53/BCl-2 signaling agreed 
with the study of Singh et al. (2003), in which increased 
apoptosis following a decrease in thyroid hormones was 
described.

Another important finding is the protective role of 
O3FA against BPF-induced hypothyroidism. This study 
revealed that O3FA prevented BPF-induced hypothyroid-
ism-mediated testicular injury by restoring hormonal 
and redox balance and suppressing inflammatory and 
apoptotic markers, thus improving sperm parameters 
and testosterone synthesis. Although this is the first 
study to demonstrate the ameliorative effect of O3FA on 
BPF-induced hypothyroidism, our findings agreed with 
those of previous studies that described the antioxidant 
(Meital et al., 2019), anti-inflammatory (Calder, 2017), 
antiapoptotic (Wendel & Heller, 2009), and thyroid pro-
tective (Abd Allah et al., 2014; Benvenga et al., 2022) 
effects of O3FA. In addition, O3FA prevents calcium 
overload during ischemic insult (Kromhout et al., 2012), 
which further supports our claim that O3FA prevents 
BPF-induced dysthyroidism by preventing proton pump 
dysfunction.

CONCLUSION
O3FA prevented BPF-induced primary (peripheral) hy-

pothyroidism and secondary (hypogonadotropic) testicular 
dysfunction. O3FA also reversed the deleterious effects of 
BPF on testicular oxidative stress, inflammation, and apop-
tosis markers.
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