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Ala-114, together with Asp-113, Tyr-115 and GIn-151, form the
pocket that accommodates the 3'-OH of the incoming dNTP in
the HIV-1 RT (reverse transcriptase). Four mutant RTs having ser-
ine, glycine, threonine or valine instead of Ala-114 were obtained
by site-directed mutagenesis. Whilemutants A114S and A114Gre-
tained significant DNA polymerase activity, A114T and A114V
showed very low catalytic efficiency in nucleotide incorporation
assays, due to their high apparent K, values for dNTP. Discri-
mination between AZTTP (3'-azido-3'-deoxythymidine triphos-
phate) and dTTP was not significantly affected by mutations
A114S and A114G in assays carried out with heteropolymeric
template/primers. However, both mutants showed decreased
susceptibility to AZTTP when poly(rA)/(dT),s was used as sub-
strate. Steady-state kinetic analysis of the incorporation of
ddNTPs compared with dNTPs showed that substituting glycine
for Ala-114 produced a 5—6-fold increase in the RT’s ability to dis-

criminate against ddNTPs (including the physiologically relevant
metabolites of zalcitabine and didanosine), a result that was con-
firmed in primer-extension assays. In contrast, A114S and A114V
showed wild-type ddNTP/dNTP discrimination efficiencies. Dis-
crimination against ribonucleotides was not affected by mutations
at position 114. Misinsertion and mispair extension fidelity assays
as well as determinations of G — A mutation frequencies using a
lacZ complementation assay showed that, unlike Tyr-115 or Gln-
151 mutants, the fidelity of HIV-1 RT was not largely affected by
substitutions of Ala-114. The role of the side-chain of Ala-114
in ddNTP/dANTP discrimination appears to be determined by its
participation in van der Waals interactions with the ribose moiety
of the incoming nucleotide.

Key words: ddNTPs, drug resistance, fidelity, HIV, polymerase,
reverse transcriptase.

INTRODUCTION

HIV-1 RT (reverse transcriptase) is a multifunctional hetero-
dimeric enzyme with RNA- and DNA-dependent DNA poly-
merase and RNase H activities, and is responsible for the
conversion of the viral genomic RNA into double-stranded
pre-integrative DNA (for a review, see [1]). The process of reverse
transcription is error-prone, and contributes to the high degree of
genetic variability of HIV (for recent reviews, see [2,3]). One
of the consequences of the high mutation rates has been the emer-
gence of drug-resistant variants, which constitutes a major ob-
stacle for treatment of HIV infection ([4] and references cited
therein). The HIV-1 RT heterodimer is composed of two subunits
of 66 and 51 kDa [5], which are designated as p66 and p51
respectively.

Crystal structures of HIV-1 RT reveal that both subunits each
contain four common subdomains, termed the ‘fingers’, ‘palm’,
‘thumb’ and ‘connection’ [6]. The 66 kDa polypeptide has an
extra C-terminal domain spanning the last 120 residues, which
provides an RNase H (endonuclease) activity. The overall folding
of the subdomains is similar in p66 and p51, but the spatial ar-
rangements of these subdomains differ markedly. The p66 subunit
has a large nucleic-acid-binding cleft formed by the three sub-
domains known as ‘fingers’, ‘palm’ and ‘thumb’ [6,7]. The active
site of the enzyme resides within the 66 kDa subunit that contains
the catalytic aspartic acid residues (Asp-110, Asp-185 and Asp-
186) [8—12]. The crystal structure of a ternary complex formed by
the RT, a DNA-DNA template-primer and dTTP has shown that
residues such as Lys-65, Arg-72, Asp-113, Ala-114, Tyr-115 and
GlIn-151 are involved in interactions with the incoming dNTP
[13].

Asp-113, Ala-114, Tyr-115 and GIn-151 are all highly conser-
ved residues in retroviral RTs (see sequence alignments in [2]),
and form the pocket that accommodates the ribose moiety of the
nucleoside triphosphate. Amino acid substitutions at these posi-
tions are usually deleterious for RT function. Examples are
D113A and D113E [14], Q151A and Q151K [15-17], and Tyr-
115 mutants, such as Y115A and Y115G, among others [18,19].
Tyr-115 acts as an ‘steric gate’, preventing the incorporation of
ribonucleotides [20-22]. Mutants lacking an aromatic side chain
at this position (i.e. Y115V, Y115A or Y115G) were shown to
incorporate rNTPs with 10°~10°-fold higher efficiency than the
wild-type enzyme [22]. Both Tyr-115 and GIn-151 appear to
influence fidelity of DNA synthesis. Thus mutant Y115A showed
a 5-10-fold higher misinsertion and mispair extension fidelity
in comparison with the wild-type enzyme, in assays carried out
with DNA templates [19,22]. This amino acid substitution also
produced a 2.3-fold increase in the viral mutant frequency, as
measured in cell culture during one round of HIV-1 replication
[23]. On the other hand, the viral mutant frequency was reduced 5-
fold when asparagine was substituted for Gln-151 [23], supporting
the results obtained in cell-free reactions that showed the in-
creased fidelity of mutant Q151N [17,24,25]. This mutant is
also moderately resistant to ddNTPs [24]. A natural mutation at
codon 151 (Q151M) showing wild-type fidelity is known to confer
resistance to all dideoxynucleoside analogues used for treatment
of HIV infection [26-28].

For Ala-114 mutants, available information is mostly limited
to activity measurements using partially purified enzymes and
homopolymeric template-primers [i.e. poly(rA)/oligo(dT) or
poly(rC)/oligo(dG)]. In these assays, mutant A114V showed very
low activity [29], while mutants A114G and A114S showed
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polymerase activities ranging from 22 to >80 %, relative to
the wild-type RT [8,29]. Studies with purified recombinant
A114S RT showed that this mutation had a very small effect
on ddTTP sensitivity [30], but conferred resistance to AZTTP (3'-
azido-3'-deoxythymidine triphosphate) and phosphonoformate in
assays carried out with homopolymeric template-primers [8,30].
Paradoxically, mutant viruses harbouring mutation A114S were
viable and showed approx. 3-fold increased sensitivity to AZT
(azidothymidine) when tested in cell culture [8]. In the present
study, we have obtained a series of mutant RTs with substitutions
at position 114 (i.e. A114S, A114G, A114T and A114V) in order
to define its role in nucleotide recognition and fidelity of DNA
synthesis.

MATERIALS AND METHODS
Substrates

Stock solutions of dNTPs, rfNTPs and ddNTPs (100 mM),
poly(rA).uso, oligo(dT)s, and [y-P]ATP were obtained from
Amersham Biosciences. AZTTP was purchased from Moravek
Biochemicals. Oligonucleotides PG5-25 (5'-CCAGAATGCTG-
GTAGGGCTATACAT-3"), 25PGG (5'-TGGTAGGGCTATACA-
TTCTTATTAT-3"), 20PG5cg (5'-TGGTAGGGCTATACATTC-
GT-3"), 3TRP (§-TGTGGCTTGCCAATACTCTGTC-3"), pT
(5'-GGATTTTAGACAGGAACGGT-3) and oligo(dT),, were
labelled at their 5'-termini with [y-*P]ATP and T4 polynucleo-
tide kinase (Promega), as described previously [19]. The phos-
phorylated primers were then annealed to their corresponding
templates: D2-47 (5-GGGATTAAATAAAATAGTAAGAATG-
TATAGCCCTACCAGCATTCTGG-3") for PG5-25, D38G (5'-
AAAATTAAATAAGATAATAAGAATGTATAGCCCTACCA-3)
for 25PGG, D2cg (5'-GGGATTAAATAAAATAGTACGAATG-
TATAGCCCTACCA-3) for 20PG5cg, M_54 (5'-CCCATACA-
AAAGGAAACATGGGAAACATGGTGGACAGAGTATTGG-
CAAGCCACA-3') for 3TRP, M13mp2 ssDNA (single-stranded
DNA) for pT, and poly(rA)-,s, for oligo(dT),s. The templates and
their corresponding primers were annealed in 150 mM NaCl
and 150 mM magnesium acetate as described previously [19].

Mutagenesis, expression and purification of recombinant RTs

Site-directed mutagenesis was carried out with the Quik-
Change Site-Directed Mutagenesis Kit (Stratagene), using plas-
mid pRT6 [31] as template and the mutagenic primers: 5'-GG-
ATGTGGGTGATTCATATTTTTCAGTTCCC-3' and 5'-GGGA-
ACTGAAAAATATGAATCACCCACATC-3 for A114S, 5'-GG-
ATGTGGGTGATGGATATTTTTCAGTTCCC-3' and 5'-GGGA-
ACTGAAAAATATCCATCACCCACATC-3 for A114G, 5'-GG-
ATGTGGGTGATACATATTTTTCAGTTCCC-3 and 5-GGG-
AACTGAAAAATATGTATCACCCACATC-3' for A114T, and
5-GGATGTGGGTGATGTATATTTTTCAGTTCCC-3" and 5'-
GGGAACTGAAAAATATACATCACCCACATC-3 for A114V
(relevant mutations underlined), by following the manufacturer’s
instructions. After mutagenesis, the RT-coding regions were se-
quenced, and inserts containing the appropriate mutations were
cloned in the p51 expression vector pT51H, by following previ-
ously described procedures [18,32]. Purification of wild-type and
mutant RTs was carried out after independent expression of their
subunits [18]. AIlRTs were purified as p66—p51 heterodimers. The
51 kDa polypeptide was obtained with an extension of 14 amino
acid residues at its N-terminal end, which includes six consecutive
histidine residues to facilitate its purification by metal chelate
affinity chromatography.
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Primer-extension assays

Template-primers D2-47/PG5-25, M_54/3TRP, M13mp2 ssDNA/
pT and poly(rA)/oligo(dT),, were used to determine the
DNA polymerase activity of mutant RTs in the presence of differ-
ent mixtures of nucleotides. Primers were labelled with **P at their
5’ termini, and annealed to their corresponding templates as indi-
cated above. A 15 ul volume of a solution containing 12—-60 nM
enzyme and 60 nM template-primer in 100 mM Hepes (pH 7.0)
buffer, 30 mM magnesium acetate, 30 mM NaCl, 130 mM potas-
sium acetate, | mM DTT (dithiothreitol), and 5 % poly(ethylene
glycol) 6000 were incubated at 37°C for 10 min. Primer exten-
sions were initiated by adding 15 ul of a mixture containing equi-
molar concentrations of all ANTPs (usually 50 uM to 1 mM, de-
pending on the assay), in 130 mM potassium acetate, 1 mM DTT
and 5 % poly(ethylene glycol) 6000. Reactions were incubated
for 0—60 min. Aliquots of 5 ul were withdrawn at different times,
and reactions were then stopped by adding 5 ul of 10 mM
EDTA in 90% formamide containing 3 mg/ml xylene cyanol
FF and 3 mg/ml Bromophenol Blue. DNA synthesis products
were separated on 6, 8 or 20 % polyacrylamide—urea gels and
visualized by phosphorimaging with a BAS 1500 scanner (Fuji).
Extensions of primers with four INTPs were carried out with D2-
47/PG5-25, as described previously [22]. The template-primer
M13mp2 ssDNA/pT was used in ddNTP/dANTP discrimination
assays. Primer extensions were performed as described above, but
elongation reactions were carried out for 60 min in the presence
of a 50 uM concentration of each dNTP, and different ddNTPs
were supplied at a concentration of 50 uM or 500 M, depending
on the assay.

Single-nucleotide extension assays

Nucleotide-incorporation assays were performed in 25 ul of
50 mM Hepes (pH 7.0) buffer, containing 15 mM magnesium
acetate, 15 mM NaCl, 130 mM potassium acetate, | mM DTT and
5 % poly(ethylene glycol) 6000 [33]. The template-primer con-
centration was 30 nM for D2-47/PG5-25 and D38G/25PGG, and
20 nM for D2cg/20PG5cg. The active enzyme concentration was
approx. 1.5-8 nM. Reactions were initiated by incubating the en-
zyme with the corresponding annealed template-primer in the
absence of nucleoside triphosphates (10 min at 37 °C), followed
by addition of appropriate nucleotides at various concentrations:
typically, in the range 32 nM-2.5 mM for dNTPs, 1 uM—4 mM
for ddNTPs, and 100 uM-7.5 mM for INTPs. Aliquots of 4—6 1
were withdrawn at different times and mixed with 6 ul of the
EDTA/formamide solution described above to obtain the corres-
ponding product against time plots, at each substrate concen-
tration. Incubation times were usually in the range 10-90 s for
dNTPs and ddNTPs, and up to 45 min for rINTPs. The extension
products resulting from the incorporation of nucleotides at the
3" end of the primer were resolved by electrophoresis in 20 %
polyacrylamide—urea gels, and primer extension was measured
using a BAS 1500 scanner. Elongation measurements were used to
determine the initial velocity for each concentration of nucleotide
substrate. The amount of active enzyme in the assay was cal-
culated from the intercept of the corresponding plots of product
against time, obtained with saturating concentrations of the correct
dNTP. The k., and apparent K, values were determined after fit-
ting the data to the Michaelis—Menten equation using the Gauss—
Newton iteration method. Each of the experiments was performed
independently at least three times.

Fidelity assays

Misinsertion and mispair extension fidelity assays were performed
essentially as described previously [34,35], using a standing-start
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protocol. End-labelling of primers, template-primer annealing
and polymerization reactions were performed in the conditions
described for single-nucleotide extension assays with template-
primers D2-47/PG5-25 and D2cg/20PG5cg. The concentrations
of incorrect ANTPs used to determine catalytic parameters were in
the range 250 ©M—-7.5 mM, and elongation reactions were incub-
ated at 37°C for up to 20-30 min. For mispair extension fidelity
assays, three additional primers were used: PG5-25C, PG5-25G
and PG5-25A. All of them are identical with PG5-25, but have
C, G or A respectively at their 3’ end. Template-primer concen-
trations were kept at 30 nM in all assays. The dTTP concentrations
used were in the range 20 uM-7.5 mM for elongation assays
carried out with mismatched template-primers. Mispair extension
reactions were incubated at 37 °C for up to 90 s for the elongation
of A:C mispairs, and 10-20 min for A:A and A:G mispairs.

M13mp2 /acZ complementation assay to detect G — A mutations
generated in the presence of biased dNTP pools

The frequencies of G — A transitions in RNA-dependent DNA
polymerase reactions catalysed by wild-type and mutant HIV-1
RTs were determined as described previously, using a genetic
screen based on a blue/white B-galactosidase complementation
assay [36]. Briefly, a 141-nucleotide RNA template containing a
66 bp HIV-1 pol fragment that includes the sequence ...AA-
GGAAACAUGGGAAACAUGGUGG... (Trp codons under-
lined) was reverse-transcribed in 50 mM Hepes (pH 7.0) contain-
ing 15 mM NaCl, 15 mM magnesium acetate, 130 mM potassium
acetate and 10 mM DTT, either in the presence of a 50 uM con-
centration of each dNTP, or in the presence of a ANTP cocktail
containing 0.1 uM dCTP, 440 uM dTTP, 40 uM dATP and
20 uM dGTP. The cDNA obtained was amplified by PCR with
appropriate oligonucleotides, and purified PCR products encoding
three tryptophan codons were cloned in-frame of the lacZ« frag-
ment of a modified replicative form of bacteriophage M13mp18.
The ligation products were transformed into Escherichia coli XL-1
Blue MRF’ cells. Transformed cells were plated on to minimal
agar plates containing 8 % X-Gal (5-bromo-4-chloroindol-3-yl
pB-D-galactopyranoside) and 20% IPTG (isopropyl B-D-thio-
galactoside). G:T mispairs formed during RNA-dependent DNA
synthesis result in G — A mutations that when occurring at any
of the tryptophan codons render stop codons (colourless plaques).
A few blue plaques (as control) and all colourless and light-blue
plaques were analysed, and mutations were identified by DNA
sequencing.

RESULTS

The crystal structure of the ternary complex of HIV-1 RTeDNA—
DNAedTTP [13] showed that Ala-114 is located in the bottom of
the NTP-binding site, which is mostly occupied by Tyr-115 (see
Figure S1 at http://www.Biocheml].org/bj/387/bj3870221add.
htm). The side chain of Ala-114 is close to the 3'-OH group of the
incoming dNTP. The distance between atom C? of Ala-114 and
the 3'-OH of the ribose is 3.37 A (1 A = 0.1 nm). In addition, atom
C? of Ala-114 is also close to the peptidic -NH- group of Tyr-115
(2.91 A) and to the catalytic carboxy group of Asp-185 (the dis-
tance between the C* of Ala-114 and the O*? of Asp-185is3.23 A).
As a consequence, increasing the volume of the side chain at
position 114 is likely to have a deleterious effect on the poly-
merase activity of the RT. Primer-extension measurements carried
out with three different DNA-DNA template-primers [i.e. D2-47/
PG5-25 (47/25-mer), M_54/3TRP (54/22-mer) and M13mp2
ssDNA/pT] in the presence of ANTP concentrations ranging

Table 1 Steady-state kinetic parameters of the wild-type (WT) and mutant
RTs for the incorporation of dTTP, using template-primer D2-47/PG5-25

Enzyme  key (Min~") K (uM) Kea/Km (uM= - min=")

WT RT 354+1.35
A114S 4.63+1.69
A114G 140+029 4074230 0.34
A114V 4.73+1.52 714155 0.067
A114T7 528+119  >100 <0.05

0.32+0.10 11.08
2.02+0.95 2.29

Table 2 Kinetic parameters for the incorporation of AZTTP and ddTTP by
wild-type (WT) and mutant RTs, using template-primer D2-47/PG5-25

kcat/Km

Enzyme  Nucleotide  key (Min~")  Kp (M) (uM="-min=")  Selectivity*
WTRT  AZTTP 363+049 2424047 1509 0.135

ddTTP 492+0.78 856+1.34 0575 52 x 1072
A114S  AZTTP 519+151 1154212 0451 0.197 (1.4)

ddTTP 083+055 456+218 0.182 7.9%x 1072 (15)
A114G  AZTTP 1124014 91+11 0.123 0.361(2.7)

ddTTP 1134022 385479 2.9 x 103 8.5 x 1072 (0.16)
A114V  ddTTP 205+012 412456 50x 1073 75 %1072 (1.4)

* Selectivity = [k (inhibitor)/Ky, (inhibitor)/[ke (dTTP)/Kqm (dTTP)I. Values between
parentheses represent the ratio of the selectivity of each mutant enzyme to that shown by
the wild-type RT.

from 50 uM to 1 mM showed that mutants A114G and A114S
displayed a polymerase activity > 90 % of that shown by the wild-
type enzyme. In contrast, A114V and A114T showed primer-
extension efficiencies of 15-20% and 10-15% respectively,
relative to the wild-type enzyme (results not shown). Steady-state
kinetics of polymerization by wild-type and mutant RTs was
investigated by using a 47-/25-mer heteropolymeric template-
primer and dTTP (Table 1). The catalytic efficiency of mutant
A114S was approx. 20 % of the wild-type enzyme, while mu-
tants A114V and A114T had very low catalytic efficiencies
(<0.5% of the wild-type RT). All mutants showed significant
increases in their corresponding K, values, which in the case of
A114V and A114T were > 200-fold higher than the wild-type
enzyme. In contrast, the k., values were not largely affected by
replacements at Ala-114, although it should be noted that under
steady-state conditions, the k. values are probably coincident
with the dissociation rates of the RTeDNA—DNA complex.

Inhibition of dTMP incorporation by AZTTP

Previous reports showed that A114S confers resistance to AZTTP
in cell-free assays [8,30], although viruses containing this muta-
tion within their RT were sensitive to the inhibitor [8]. The selec-
tivity values calculated as the catalytic efficiencies of incorpor-
ation of AZTTP compared with dTTP were less than 3-fold higher
for mutants A114S and A114G than for the wild-type RT, in
assays carried out with D2-47/PG5-25 (Table 2). In all cases, dis-
crimination between AZTTP and dTTP was largely dependent
on the apparent K, values, which were approx. 2—8 times higher
for the inhibitor than for the natural substrate. This slightly
increased resistance to AZTTP shown by both mutant RTs in
comparison with the wild-type RT was almost undetectable
in primer-extension assays using an M13-derived DNA template
(Figure 1A), suggesting that those mutations had no significant
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Figure 1  AZTTP inhibition of wild-type (WT) and mutant RTs

A114S A114G

(A) Primer-extension assays carried out in the presence of 30 nM M13mp2 ssDNA/pT and all four dNTPs (each at 50 1+M) are indicated with an asterisk. Reaction mixtures marked with an ‘A’ or ‘dd’
also contained AZTTP or ddTTP at 50 M (1:1 ratio) or 500 .M (1:10 ratio), depending on the assay. (B) Elongation reactions carried out with 30 nM poly(rA)/oligo(dT)s and 10 M dTTP, with
varying concentrations of AZTTP. The RT concentrations in the assays shown in both (A) and (B) were estimated to be approx. 15 nM, and samples were incubated at 37 °C for 60 min.

effects on AZT resistance. However, in assays carried out with
poly(rA)/oligo(dT)s, A114S and A114G were both less sensitive
to AZTTP inhibition than the wild-type enzyme (Figure 1B), in
agreement with data reported by other authors [8,30].

Discrimination between dNTPs and ddNTPs or rNTPs
by Ala-114 mutants

The proximity of the 3'-OH of the ribose of the incoming dNTP
to the side chain at position 114 suggests that dAdNTP/dNTP dis-
crimination could be affected by substitutions of Ala-114. The de-
termination of kinetic parameters for the incorporation of ddTTP
using D2-47/PG5-25 showed similar selectivity values for wild-
type RT and mutants A114S and A114V (Table 2). The catalytic
efficiency (k../K,) for the incorporation of ddTTP by the wild-
type RT was approx. 5.2 % in comparison with dTTP. However,
this value was reduced to 0.85 % for mutant A114G. The dif-
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ference between the wild-type RT and mutant A114G in ddTTP/
dTTP selectivity is the result of a large increase in the K, value
for ddTTP observed with A114G. The k., for the incorpor-
ation of dTTP is similar to that shown by ddTTP in both en-
zymes.

The reduced susceptibility of A114G to ddNTPs was also
observed in assays that monitored the incorporation of dCTP
and ddCTP, as well as with dATP and ddATP. Both ddCTP and
ddATP are the physiologically relevant derivatives of approved
RT inhibitors, such as zalcitabine and didanosine. The incorpor-
ation of ddCTP compared with dCTP by mutant A114G was
approx. 6-fold less efficient than for the wild-type enzyme and
mutant A114S (Table 3), and similar effects were observed
when measuring incorporation of ddATP compared with dATP
(Table 4). For all tested enzymes, the selectivity values obtained
with both ddNTPs relative to their corresponding dNTPs were
similar to those obtained with ddTTP and dTTP, and mutations
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Table 3 Kinetic parameters for the incorporation of dCTP and ddCTP by
wild-type (WT) and mutant RTs, using template-primer D38G/25PGG

kea/Km

Enzyme Nucleotide ke (Min=") Ky (M) (uM="-min—")  Selectivity*
WTRT dCTP 299+025 0.10040.026 29.74

ddCTP 133+011 0960+0.171 1.38 465 x 102
A114S  dCTP 550+1.71 057540260 9.56

ddCTP 0.79+0.17 0.797+0.309 0.99 1,04 x 10" (2.2)
A114G  dCTP 245+0.70 1.34+0.60 1.83

ddCTP 0404001 265434  149x102 8141073 (0.17)

* Selectivity = [keat (ddCTP)/Ky (ddCTP))/[kear (dCTP)/Ky (dCTP)]. Values between
parentheses represent the ratio of the selectivity of each mutant enzyme to that shown by
the wild-type RT.

Table 4 Kinetic parameters for the incorporation of dATP, ddATP and rATP
by wild-type (WT) and mutant RTs, using template-primer D2cg/20PG5cg

kcal/Km

Enzyme Nucleotide ez (Min=") Ky (uM) (uM~T-min=")  Selectivity*

WTRT  dATP 325+1.00 004740016 69.59
ddATP 2334014 0636+0220 367 53x 1072
TATP 1034032 6204184 17x10°  24x10°°
A4S ATP 10314423 1224032 845
ddATP 2224052 548+128 041 48x 1072 (09)
TATP 046+012  830+156 55x107  65x10°5(27)
AT14G  dATP 5394171 485+246 1.1
ddATP 1604050 129442  12x102  11x1072(02)
TATP 004540015 5774159  79x 105  7.1x 1075 (2.9)

* Selectivity = [kcy (incorrect)/Kry (incorrect)]/[kq (correct)/Kq (correct)], where incorrect
nucleotides were ddATP or rATP, while the correct nucleotide is dATP. Values between parentheses
represent the ratio of the selectivity of each mutant enzyme to that shown by the wild-type RT.

had similar effects on the catalytic efficiencies of ANTP incorpor-
ation. However, substituting glycine for Ala-114 produced signi-
ficant reductions in the relative k., values of incorporation of
ddCTP compared with dCTP, and ddATP compared with dATP,
indicating that, unlike in the case of ddTTP, selectivity differences
resulted from the combined effect of the k., and K, values.

Further evidence for the ddNTP resistance phenotype displayed
by A114G was obtained in primer-elongation assays carried out
with nucleotide mixtures containing all dNTPs, and one ddNTP.
As shown in Figure 2, band patterns were similar for A114S and
the wild-type RT in reactions carried out using a 1:1 or a 1:10
dNTP/ddNTP ratio. However, much larger extensions were ob-
served with A114G, thereby indicating a rather inefficient incor-
poration of ddNTP by this mutant.

Tyr-115 was previously identified as a ‘steric gate’ discrim-
inating against INTPs [20-22]. Therefore we tested if the neigh-
bouring residue, Ala-114, had any effect on INTP/ANTP selec-
tivity. Selectivity values obtained from steady-state kinetic
parameters for the incorporation of rATP or dATP on template-
primer D2cg/20PG5cg (38-/20-mer) were in the range (2.4—
7.1) x 107 for wild-type RT and mutants A114S and A114G
(Table 4). Although selectivity values were somewhat higher for
both mutants than for the wild-type enzyme, differences were not
statistically significant. Furthermore, primer extensions in the pre-
sence of all four INTPs were very inefficient for all Ala-114
mutants, except for Y115V (Figure 3).
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Figure 2 Gel assay for ddNTP/dNTP discrimination

Comparison of wild-type (WT) HIV-1 RT and mutants A114S and A114G at two different
concentration ratios of dNTP compared with ddNTP. Reactions were carried out in the presence
of 30 nM M13mp2 ssDNA/pT, and all four dNTPs each at a 50 «M concentration. Reaction
mixtures marked with ‘G’ ‘A", ‘T or ‘C" also contained the corresponding ddNTP at a concentration
of 50 M (1:1 ratio) or 500 M (1:10 ratio). No ddNTPs were added in reactions marked with
an asterisk.

Fidelity of DNA synthesis

Misinsertion and mispair extension fidelity assays were used to
estimate the fidelity of wild-type RT and mutants A114G and
A114S, using a heteropolymeric DNA-DNA template-primer
(D2-47/PG5-25). Misinsertion fidelity assays involved kinetic
measurements for the incorporation of a correct (T) or an incorrect
(C, G or A) nucleotide at the 3" end of the primer. All tested RTs
showed similar misinsertion ratios for A:C and A:G mispairs,
ranging from 6.7 x 10~° to 1.6 x 107*, and from 2.8 x 10~ to
6.1 x 107 respectively (Table 5). Discrimination between correct
and incorrect dNTPs was mostly due to the large differences
in the K, values obtained with correct and incorrect nucleotides,
although the contribution of the K, was limited for mutants A114S
and A114G. The kinetics of mispair extension were studied for
correctly matched base pairs (A:T) and for mismatches A:C,
A:G and A:A. In all cases, we measured the incorporation of
a correct T opposite A at the 3’ end of the primer. The results are
shown in Table 6. Wild-type RT shows a mispair extension ratio
of 2.8 x 10~ with the template-primer having an A:C mispair,
and lower mispair extension ratios (in the order of 107°) for A:A
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Figure 3 Extension of primer PG5-25 using dNTPs or rNTPs as nucleotide substrates by wild-type (WT) RT, and mutants Y115V, A114S, A114G, A114V and

A114T

Reactions were carried out in the presence of 30 nM D2-47/PG5-25. All nucleotides were supplied at a 1 mM concentration each, and the amount of active enzyme in the assay was approx.
15-30 nM. Lanes 1-4 correspond to the analysis of aliquots taken after 15, 30, 60 and 120 min respectively. ‘P" indicates the position of the 25-mer primer, and ‘F’ stands for the full-length product of

47 nucleotides.

Table5 Misinsertion fidelity of wild-type (WT) and mutant RTs, as obtained
using template-primer D2-47/PG5-25

ND, not determined.

kea/Kn Misinsertion

Enzyme Nucleotide ke (Min=") Ky (uM)  (uM="-min=") ratio (fiys)*

WTRT  dCTP 164+051 1693+876 9.7 x10~* 8.8 x10°°
dGTP 1.64 +0.56 537+75  31x10°° 28 %104
dATP 0.0184+0.002 ND ND ND

A114S  dCTP 050+0.15 1408+265 3.6x10~* 16x 1074 (1.8)
dGTP 0174006  121£37 14x10-3 6.1x 104 (22)
dATP <57x107% ND ND ND

A114G  dCTP 0.0774+0.009 33594553 23x10°° 6.7 x 107°(0.8)
dGTP 0.18+0.08 9104353 2.0x10~* 58 x 1074 (2.1)
dATP <11x10% ND ND ND

* fins = [Kea (incorrect)/K o (incorrect)l/[kqa (correct)/Ky (correct)], where incorrect nucleo-
tides were dCTP, dGTP or dATP, while the correct nucleotide is dTTP (kinetic parameters for the
incorporation of this nucleotide are given in Table 1). Values between parentheses represent
the ratio of the selectivity of each mutant enzyme to that shown by the wild-type RT.

and A:G mispair termini. Differences between the wild-type RT
and mutants A114G and A114S were relatively small, except in
the case of the extension of A:G mispairs by A114G, which was
8-fold more efficient than for the wild-type enzyme. The small
differences found between wild-type and mutants A114S and
A114G were also consistent with the results of primer extension
experiments carried out in the presence of three dNTPs. Primer-
extension patterns were similar for all three enzymes (results not
shown).

Further evidence of the small effect of residue 114 mutation on
the fidelity of DNA synthesis was obtained using a lacZ comple-
mentation assay designed to measure the frequency of G — A
mutations arising in RNA-dependent DNA polymerase reactions.
When reverse transcription reactions were performed in the
presence of equimolar concentrations of each dNTP, the G — A
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Table 6 Mispair extension fidelity of wild-type (WT) and mutant RTs, as
obtained using template-primer D2-47/PG5-25

Base pair at Kkeat/ K Mispair extension
Enzyme the 3 end* ke (min~") Ky (uM)  (uM~"-min~")  ratio (feq)t
WTRT AC 130+014 413+56 32x1072 2.8 %108

AA 0.15+0.04 266+107 57x10~* 51x107°

AG 0.19+004 513+130 3.7x10°* 33x10°°
A114S  AC 1644053 280+134 59x10°° 2.6 x107%(0.9)

AA 0.09840.034 319+121 3.1x10°* 13 %1074 (2.6)

AG 0.112+0.056 415+142 27 x 10~ 12 %1074 (3.5)
A114G  AC 0.78+003 858+348 9.1x10°* 2.6 x107%(0.9)

AA 0.03240.007 824+228 39x10°° 11x1074(22)

AG 0.022+0.006 230+53 9.6x107° 28x107*(8.3)

* The first base corresponds to the template and the second base to the primer.

F foxt = [kear (Mismatched)/Kr, (mismatched)]/[kq (matched)/K, (matched)], where kinetic
parameters for the incorporation of dTTP on matched template-primers are given in Table 1.
Numbers in parentheses represent the relative increase in the mispair extension ratio shown by
the mutant RT relative to the wild-type enzyme. Our analysis assumes that RTs bind with roughly
equal affinity to the matched and mismatched template-primer ends [22,35].

mutation frequency obtained with the wild-type RT was 3.43 x
107*. This value was increased more than 10-fold when poly-
merase reactions were carried out in the presence of biased ANTP
pools (Table 7). This effect was also observed with mutant RTs
carrying the amino acid substitutions A114S, A114G and A114V.
All RT mutants showed a reduced G — A mutation frequency
compared with the wild-type RT at low [dCTP]/[dTTP], but dif-
ferences were not statistically significant.

DISCUSSION

All tested amino acid substitutions affecting Ala-114 led to signi-
ficant increases in the K, values for ANTP incorporation and pro-
duced enzymes with diminished polymerase activity. Although
previous reports showed that HIV-1 variants with the A114S
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Table 7 Mutation frequencies accompanying reverse transcription in the
presence of biased dNTP pools

The number of mutant plaques that carried a G — A substitution in the target sequence and the
total number of plaques were scored in four independent experiments. The frequency of G — A
transitions (fg_ o) was calculated as the number of G — A substitutions identified at tryptophan
codons, divided by the number of target nucleotides (six, in the template used in the assay) and
the total number of plaques analysed. WT, wild-type.

Number of
plagues analysed Number of
Enzyme  [dCTP] (uM)*  Total Mutated G — Atransitions  fg_.a
WTRT 50 486 1 1 343 %1074
0.1 555 13 13 3.90 x 108
A114S 50 448 2 2 7.44 x 10
0.1 578 8 8 2.31x 1073
A114G 50 402 0 0 <414 %10~
0.1 701 6 6 143 x 1078
A4V 50 696 2 2 479 x 10~
0.1 822 8 11 2.23 x 1073

* Nucleotide concentrations in the assays were either 50 ..M of each dNTP, or 0.1 .«M dCTP,
440 M dTTP, 40 M dATP and 20 M dGTP.

mutation were viable [8], amino acid substitutions at this position
are rare in clinical isolates. For instance, the Stanford HIV RT
and Protease Sequence Database [37] contains only eight isolates
(out of 11895) with mutations at Ala-114 [i.e. A114S, A114G,
A114T, A114P (two isolates) and A114E (three isolates)]. In addi-
tion, A114P and A114E were found to be deleterious when intro-
duced in the equivalent position of the RT-coding region of a mur-
ine leukaemia virus [38]. It should also be noted that sequences
deposited in the database may contain sequencing errors and could
represent non-infectious virus. For example, in one of the isolates
containing the substitution A114G (GenBank® accession number
AF347414) [39], we also found a stop codon within the RT-cod-
ing region, as well as another deleterious mutation at codon 115
(Y115K). The key role of Ala-114 in RT function is suggested
further by its conservation in most retroviral RTs as well as in
retrotransposons lacking LTRs (long terminal repeats) [40].

Ala-114 is part of the INTP-binding site of HIV-1 RT [13]. Its
side chain is oriented towards the ribose moiety of the incoming
nucleotide. The methyl group of Ala-114 is less than 3.5 A away
from the 3’-OH group of the ribose and the carboxy group of the
catalytic Asp-185. In addition, the 3'-OH forms a hydrogen bond
with the -NH- group of Tyr-115, which is only 2.9 A away from
the C? of Ala-114. Therefore any increase in the volume of the side
chain of Ala-114 is expected to alter the positioning of the INTP.
In agreement with this proposal, we found that mutants A114V
and A114T had the lowest catalytic efficiencies in comparison
with the wild-type enzyme due to their high K, values for ANTP
incorporation. In the case of mutants A114G and A114S, we
also observed an increase in the K,, values for ANTP incorpor-
ation. However, these enzymes retained significant polymerase
activity.

The side chain of Ala-114 lies close to the 3'-OH of the ribose
which projects into a small cavity (known as the 3’ pocket) lined
by the side chains of Asp-113, Ala-114, Tyr-115 and GIn-151 (see
Figure S1 at http://www.Biocheml].org/bj/387/bj3870221add.
htm), suggesting that Ala-114 could play a role in the discrim-
ination between chain-elongation inhibitors and dNTPs. Previous
reports have shown that both A114G and A114S were resistant to
AZT in cell-free assays, but ddNTP/dNTP discrimination was not
studied in detail with any of those mutants [8,30]. In the case of

the AZT resistance displayed by A114S, conflicting results were
reported by the same authors, since they observed that viruses har-
bouring this mutation were sensitive to the inhibitor in cell culture
[8]. Although we confirmed that both mutants were less sensitive
to inhibition in assays carried out with homopolymeric template-
primers, single-nucleotide incorporation assays revealed only
subtle differences between mutant and wild-type enzymes in their
ability to discriminate against AZTTP. In addition, none of these
enzymes showed detectable ATP-dependent excision activity on
primers terminated with AZT (T. Matamoros and L. Menéndez-
Arias, unpublished work). Taken together, these data support the
evidence obtained in cell culture, indicating that A114S does not
confer resistance to AZT.

A114S and wild-type RT had similar ddNTP/dNTP discrim-
ination efficiencies in single-nucleotide incorporation assays, as
well as primer extensions carried out with different proportions of
ddNTPs and dNTPs. However, we observed that the incorporation
of ddNTP by A114G was very inefficient in comparison with the
incorporation of dNTP, resulting in enzymes that showed a 5-
6-fold reduced ddNTP/dNTP discrimination ability in comparison
with the wild-type RT. This effect is caused by the large difference
in K,, values of ddNTP and dNTP incorporation obtained with
A114G compared with the wild-type RT. Although a mechanistic
interpretation of the data is problematical due to the difficulties
inrelating the steady-state kinetic parameters k., and K, to steps in
the mechanism of nucleotide addition, kinetic data suggest that
removal of the methyl group of Ala-114 has a larger effect on
ddNTP binding than on dNTP binding. The substitution of glycine
for Ala-114 produces a small increase in the size of the 3" pocket,
which probably reduces van der Waals interactions between the
ribose moiety of the incoming nucleotide and the side chain at
position 114. This effect is probably more important for ddNTP
than for INTP binding, because of the contribution to dNTP bind-
ing of the hydrogen bond established between the 3'-OH of the
ribose and the main chain -NH- group of Tyr-115 [13]. The pre-
sence of a bulky azido group in the 3’ position of the ribose,
as occurs with AZTTP, minimizes the effect of increasing the
size of the 3’ pocket, thereby explaining the relatively small dif-
ferences in nucleotide selectivity found in AZTTP-incorporation
assays.

Fidelity assays based on the determination of kinetic constants
for the incorporation of nucleotides on template-primers, or in
the identification of G — A mutations arising during reverse tran-
scription in the presence of biased dNTP pools revealed that all
mutants of Ala-114 were as faithful as the wild-type RT. The lar-
gest differences were observed for A:G mispairs using A114G,
which showed a mispair extension ratio eight times higher than the
wild-type enzyme. Nevertheless, A:G mispairs are very poor sub-
strates of all RTs in comparison with A:A, and particularly with
A:C mispairs, suggesting that, despite the differences, their overall
contribution to fidelity should be relatively small. Although fid-
elity of HIV-1 RT mutants containing substitutions at position 114
has not been previously analysed, it has been reported that murine
leukaemia virus carrying a A154S substitution in its RT-coding
region (equivalent of A114S of HIV-1 RT) showed reduced a viral
titre in comparison with the wild-type construct and produced a
slight decrease in fidelity [38].

Examination of the available crystal structure of the ternary
complex of Tag DNA polymerase bound to template-primer and
a nucleotide [41] indicates that Ile-614 and Glu-615 are located
under the sugar moiety of the incoming dNTP, and are the equi-
valent residues of Ala-114 and Tyr-115 in HIV-1 RT. Ile-614
and Glu-615 of Tag DNA polymerase are conserved in E. coli
DNA polymerase I, where they are designated as Ile-709 and
Glu-710. These residues are part of the highly conserved motif A,
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found in many polymerases [40,42]. Replacement of Glu-710 of
E. coli DNA polymerase I (Klenow fragment) by alanine de-
creases discrimination against tNTPs 1000-fold [43], suggest-
ing that this residue is functionally equivalent to Tyr-115 of
HIV-1 RT. However, mutational analysis of Ile-614 of Tag DNA
polymerase revealed that this position was highly mutable [44], in
contrast with our findings with Ala-114 of HIV-1 RT. In addition,
Tag DNA polymerase mutants with substitutions at Ile-614 had
altered rNTP/ANTP discrimination efficiencies [45], and were
less faithful than the wild-type enzyme [46]. The role of this resi-
due in fidelity of DNA synthesis was confirmed for E. coli DNA
polymerase I using mutants with substitutions involving Ile-709
[47]. Taken together, these results suggest that there is only limited
functional equivalence between motifs A of HIV-1 RT and type I
DNA polymerases.

In summary, unlike other residues within the 3’ pocket, such as
Tyr-115 or GIn-151 which have been identified as part of the fid-
elity centre of HIV-1 RT, while affecting ddNTP/dNTP discrimi-
nation [17-22,24,25], our data support the role of Ala-114 as akey
element of the dNTP-binding site, contributing to ddNTP/dNTP
discrimination, but without a major influence on fidelity of DNA
synthesis. In addition, substituting glycine for Ala-114 leads to
an RT that shows cross-resistance to antiretroviral drugs, such as
zalcitabine and didanosine.
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