Skip to main content
. 2024 Aug 14;18:1439188. doi: 10.3389/fnbot.2024.1439188

Table 2.

Comparison of different models on different indicators.

Method Dataset
Swimming Technique Datasets ImageNet Datasets Kinetics Datasets Sports-1M Dataset
Parameters(M) Flops(G) Inference Time(ms) Trainning Time(s) Parameters(M) Flops(G) Inference Time(ms) Trainning Time(s) Parameters(M) Flops(G) Inference Time(ms) Trainning Time(s) Parameters(M) Flops(G) Inference Time(ms) Trainning Time(s)
Wang et al. 388.10 375.78 316.33 333.84 392.92 387.56 322.59 231.39 319.72 254.78 205.01 370.22 316.82 281.96 240.08 290.39
Aust et al. 389.89 361.01 249.66 308.66 366.67 210.75 399.53 381.73 312.27 339.02 223.11 210.46 317.75 361.67 223.75 358.71
Biewe et al. 300.70 379.74 372.24 258.53 351.51 261.25 242.28 264.86 246.54 379.88 376.79 225.63 329.81 396.55 358.34 265.83
Sant et al. 349.32 283.54 274.55 305.18 280.76 229.60 214.61 349.32 298.49 398.13 358.91 200.38 203.88 395.75 311.97 302.91
Cabr et al. 215.34 335.34 361.48 221.11 339.58 237.88 200.41 301.59 264.36 233.56 369.14 235.64 389.59 314.20 227.29 309.49
Ma et al. 326.29 305.51 303.25 371.38 304.10 232.16 334.90 380.34 227.60 335.66 215.48 390.91 395.46 346.65 209.33 355.87
Ours 177.00 222.90 158.58 114.97 192.73 133.35 108.83 197.33 191.45 122.30 208.18 128.27 143.93 118.94 202.95 126.93