Skip to main content
. 2024 Aug 14;15:1431941. doi: 10.3389/fphar.2024.1431941

TABLE 3.

Optimal feature subsets and prediction performance results.

Feature Set Optimal no. Of Descriptors AUC ACC (%) SEN (%) SPE (%) MCC
DS 100 a 0.8301 77.11 80.10 75.84 0.5203
MOE 123 b 0.8264 76.94 79.89 75.68 0.5178
RDKit 59 a 0.8225 75.95 82.61 73.11 0.5194
DS + MOE 205 b 0.8394 76.79 80.58 75.18 0.5170
DS + RDKit 237 b 0.8446 76.77 82.36 74.40 0.5263
MOE + RDKit 196 c 0.8429 76.28 83.85 73.07 0.5252
MOE + DS + RDKit 328 b 0.8288 76.79 78.77 75.94 0.5093
FP 1019 b 0.7906 71.68 76.50 69.63 0.4269
ExtFP 1007 b 0.7936 71.19 75.82 69.22 0.4173
GraphFP 969 b 0.7674 70.53 71.74 70.02 0.3810
EstateFP 41 b 0.7869 72.52 72.39 72.57 0.4191
MACCSFP 133 b 0.8149 75.46 77.67 74.52 0.4814
PubchemFP 391 b 0.8061 73.99 78.03 72.28 0.4604
SubFP 127 b 0.8327 75.13 77.86 73.97 0.4797
SubFPC 125 b 0.8459 76.10 83.06 73.14 0.5224
KRFP 1149 b 0.8046 74.65 75.51 74.28 0.4666
KRFPC 1084 b 0.8209 74.64 78.39 73.04 0.4758
AP2DFP 263 b 0.7687 71.67 67.40 73.49 0.3795
AP2DFPC 241 b 0.7791 71.49 75.04 69.99 0.4137
a

Feature selection with RFECV.

b

Feature preprocessing by removing null values, redundancy and irrelevant features.

c

Feature selection with MI technique.