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GloRESatE: a dataset for global 
rainfall erosivity derived from 
multi-source data
Subhankar Das1, Manoj Kumar Jain  1 ✉, Vivek Gupta2, Ryan P. McGehee3, Shuiqing Yin4, 
Carlos Rogerio de Mello  5, Mahmood azari6, Pasquale Borrelli  7,8 & Panos Panagos  9

Numerous hydrological applications, such as soil erosion estimation, water resource management, 
and rain driven damage assessment, demand accurate and reliable rainfall erosivity data. However, the 
scarcity of gauge rainfall records and the inherent uncertainty in satellite and reanalysis-based rainfall 
datasets limit rainfall erosivity assessment globally. Here, we present a new global rainfall erosivity 
dataset (0.1° × 0.1° spatial resolution) integrating satellite (CMORPH and IMERG) and reanalysis (ERA5-
Land) derived rainfall erosivity estimates with gauge rainfall erosivity observations collected from 
approximately 6,200 locations across the globe. We used a machine learning-based Gaussian Process 
Regression (GPR) model to assimilate multi-source rainfall erosivity estimates alongside geoclimatic 
covariates to prepare a unified high-resolution mean annual rainfall erosivity product. It has been shown 
that the proposed rainfall erosivity product performs well during cross-validation with gauge records 
and inter-comparison with the existing global rainfall erosivity datasets. Furthermore, this dataset 
offers a new global rainfall erosivity perspective, addressing the limitations of existing datasets and 
facilitating large-scale hydrological modelling and soil erosion assessments.

Background & Summary
Land degradation is a growing global threat to ecosystem goods and services1. It is a human-induced phenome-
non that reduces the capacity of soil to support life. As the world population continues to increase, the pressure 
on soil resources increases, and food security declines2. Soil erosion is a leading process of land degradation 
due to the detachment of fertile topsoil layers, which plays a vital role in global food security, water security, 
ecosystem services, and climate change abatement3,4,5. It was estimated that human actions may be responsible 
for nearly 60% of soil erosion6. Water and wind erosion detach 75 billion metric tons of soil annually, with agri-
cultural land accounting for most of these losses7. The most important type of water erosion is topsoil erosion 
(splash and sheet processes), which is estimated to occur on 920 M ha of global land, while rill and gully erosion 
occur on 175 M ha of global land8. According to the report of United Nations9, erosion is one of the significant 
threats to the soil and impedes progress towards achieving the Sustainable Development Goals (SDGs) related 
to SGD15 (Life on land) and SGD2 (Zero hunger).

Rainfall erosivity (R-factor) is one of the critical drivers of the soil erosion processes with the greatest spati-
otemporal variability10,11. Rainfall erosivity is generally estimated from empirical relations using storm kinetic 
energy and maximum 30-min rainfall intensity utilising pluviographs of more than 20 years12. In the early 21st 
century, Yang et al.6 estimated global-scale rainfall erosivity and soil erosion change due to climate and land 
use changes using the Revised Universal Soil Loss Equation (RUSLE). Further, the Global Land Degradation 
Information System (GLADIS)13 database was also prepared to provide insight into the global land degrada-
tion status and trends. A lack of relatively high temporal-resolution (1–60 min) global rainfall datasets forced 
these pioneering studies to use medium-resolution (monthly and annual) rainfall datasets for rainfall erosivity 
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estimation. In recent periods, Naipal et al.14 improved the global rainfall erosivity estimation using the rainfall 
intensity equation for different climatic regions based on the rainfall erosivity datasets from the United States 
and Europe.

Further, Panagos et al.11 developed the Global Rainfall Erosivity Database (GloREDa) using relatively high 
temporal-resolution rainfall erosivity data (1–60 min) from 63 countries. Liu et al.15 used a daily erosivity 
model from limited station sites at a global scale to understand the changes in rainfall erosivity across the globe 
between 1980 and 2017. More recently, Panagos et al.16 estimated monthly global rainfall erosivity using more 
than 45,000 monthly erosivity records from 65 countries. Moreover, in recent decades, efforts6,10,11,13–16 have 
been made to refine the understanding of the global erosivity estimation and reduction in modelling uncertain-
ties. However, the utilization of high-resolution rainfall datasets for estimating rainfall erosivity in global studies 
has remained limited.

In recent times, noteworthy efforts have been made to update previously developed rainfall erosivity data-
sets or iso-erodent maps at continental or national levels17–22. These initiatives have been complemented by the 
recent availability of high-resolution rainfall datasets for many countries, providing valuable new insights into 
spatiotemporal rainfall erosivity patterns23. The existing global dataset has been used widely as a primary dataset 
for comparison and benchmarking in numerous regional24,25 and global studies10,26. However, the existing global 
datasets11,14 showed regional uncertainty due to the limited availability of gauge stations18,19,21,27. Moreover, the 
existing global rainfall erosivity datasets showed limitations in capturing spatial variation for regions receiving 
intense rainfall27. Furthermore, rainfall erosivity estimated from low-temporal resolution datasets is prone to 
incorrect estimation of erosivity values28. The availability of a high-quality rainfall erosivity dataset is a pre-
requisite for soil erosion estimation and water resource allocations. Given the limited availability of alterna-
tive datasets, the scientific community is compelled to rely on pioneering research based on existing datasets, 
notwithstanding their acknowledged limitations. Nonetheless, the limitations of existing datasets have become 
evident, showing the scope of the improvements.

The recent availability of global and regional satellite and reanalysis datasets at the sub-hourly and hourly 
temporal scales provide an opportunity to estimate rainfall erosivity over a large spatial extent. Many recent 
studies have been conducted to understand the possible role of rainfall erosivity estimation from the satellite and 
reanalysis rainfall datasets10,25,27,29–35. It is essential to acknowledge that the satellite and reanalysis datasets have 
inherent uncertainties, which imparts uncertainty in rainfall erosivity estimates10,24,27,29,34.

The inherent uncertainty in satellite and reanalysis data-based rainfall erosivity estimates and the uncertainty 
in the existing global rainfall erosivity datasets limits the reliable use of these products in soil erosion modelling 
and policy-making. Improving knowledge and reducing uncertainty in global rainfall erosivity datasets with 
newer high-resolution global datasets is essential for decision-makers and earth-system modellers. For instance, 
Panagos et al.36 combined the measured erosivity datasets with General Circulation Models (GCMs), simulating 
future projections of rainfall erosivity for 2050 and 2070. At the global scale, there is a limited number of rain-
fall erosivity datasets available, and earth system modellers are seeking new datasets with a fresh perspective. 
While multisource-based datasets have proven reliable for many hydrological applications37, they have been 
limitedly used in rainfall erosivity estimation. For example, using a non-parametric quantile regression forest, 
Bhuiyan et al.38 showed that a multi-source precipitation dataset significantly improved the streamflow simu-
lations. Similarly, Pham et al.39 illustrated the effectiveness of Artificial Intelligence (AI) models incorporating 
meteorological parameters in predicting daily rainfall in Vietnam. Additionally, prior studies have explored var-
ious merging techniques, including geostatistical interpolation40,41 and machine learning-based merging using 
Support Vector Machine42,43, Random Forest44 and XGBoost45, and Neural Network46 to integrate global precip-
itation products with limited gauge observations. These approaches have effectively addressed the limitations 
associated with individual satellite and reanalysis datasets. Moreover, the notable success achieved by machine 
learning models motivates us to extend their application to rainfall erosivity estimation, leveraging multi-source 
datasets. We employed a Gaussian Process Regression-based machine learning model, which shows promise in 
enhancing the accuracy and robustness of rainfall erosivity estimation.

Therefore, this study aims to present a new global rainfall erosivity dataset generated using a machine 
learning-based fusion of erosivity estimated from multiple datasets. First, we estimated annual rainfall erosivity 
from two high-resolution gridded global satellites and one reanalysis precipitation dataset covering the most 
recent available periods. This process included the estimation of annual rainfall erosivity from satellite-based 
datasets such as IMERG-Final Run and CMORPH, as well as the reanalysis dataset ERA5-Land. These erosivity 
estimates and geoclimatic parameters, specifically elevation, latitude, longitude, and mean annual precipitation 
from the IMERG-Final Run dataset were used to construct a robust regression framework. Within this frame-
work, we integrated a collection of gauge rainfall erosivity data from 6,170 stations across the globe. This amal-
gamation enabled us to generate a unified global rainfall erosivity dataset, seamlessly merging information from 
satellite, reanalysis, and gauge records. The workflow of this study is shown in Fig. 1.

Methods
Rainfall datasets. The present study utilises two high-resolution gridded global satellites and one reanalysis 
precipitation dataset for rainfall erosivity estimation. The satellite precipitation datasets used in this study are (a) 
Climate Prediction Center Morphing Technique (CMORPH) (Version 1) (https://doi.org/10.25921/w9va-q159) 
and (b) Integrated Multi-satellitE Retrievals for GPM (IMERG) (Version 6) (https://disc.gsfc.nasa.gov/datasets) 
Final Run. The reanalysis dataset used in this study is the Fifth generation of European ReAnalysis (ERA5)- Land 
(https://cds.climate.copernicus.eu/cdsapp). More detailed information about the datasets can be found in the 
Supplementary Information. An overview of the datasets used is available in Table 1.
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Global rainfall erosivity station dataset. The rainfall erosivity station dataset was collected by conduct-
ing a thorough literature survey of the already published studies. Through an extensive literature survey and 
survey of regional datasets around the globe, a large number of high-resolution rainfall erosivity station datasets 
were collected and compiled as a representative database covering different climatic and geographical regions 
worldwide. This global rainfall erosivity station dataset includes the following datasets:

•	 A collection of rainfall erosivity datasets of 12 counties across the globe estimated using high-resolution long-
term rainfall data. The collection includes rainfall erosivity data from the United States19,47, Micronesia19,47, 
China18, and Iran22. The dataset also consists of the rainfall erosivity literature survey dataset used for rainfall 
erosivity study over South America20 including Argentina48, Brazil49–51, Chile52, Colombia53,54, Paraguay55, 
Peru56, Uruguay57, and Venezuela58.

•	 The rainfall erosivity data collected through the literature survey from 27 countries across the globe. This 
includes the data of Australia59–61, Bangladesh62, Brazil63,64, Canada65,66, Honduras67, India68,69, Malaysia70,71, 
Mauritius72, South Korea73, Japan74,75, and New Zealand76 and the rainfall erosivity literature survey data from 
16 countries in Africa used in continental study29,77, including Cape Verde78 and Canary Islands79.

•	 Data from the recently launched Global Rainfall Erosivity Dataset (GloREDa)16,80. From the GloREDa, we 
used the rainfall erosivity dataset of European countries and other countries’ rainfall erosivity data, including 
Israel, Japan, Kuwait, Palestine, the Russian Federation, Turkiye, and Yemen. This encompasses rainfall ero-
sivity data from a total of 36 counties.

Detailed information about most of the high-resolution (1–60 min) rainfall erosivity datasets collected 
and used in this study has been given in Table 2. A high-resolution hourly rainfall dataset from the India 
Meteorological Department (IMD) (https://dsp.imdpune.gov.in/index.php) was incorporated with temporal 
coverage from 1969 to 2021. The estimated rainfall erosivity from these 249 stations was further amalgamated 
into the global rainfall erosivity station dataset, resulting in a comprehensive representation of 296 stations in 
India.

Moreover, the global station dataset used in this study contains representative annual rainfall erosivity values 
of 6,170 stations covering 72 counties worldwide. The global rainfall erosivity station dataset (Fig. 2) contains 
~91% of the stations that use high-resolution rainfall data (≤60 min), and the rest uses the regional rainfall 
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Fig. 1 A framework for generating a new global rainfall erosivity dataset.

Datasets
Spatial resolution 
(Approx.)

Spatial 
coverage

Temporal 
resolution

Period 
covered References

CMORPH (Version 1) 0.07° × 0.07° 60° N-S 30 min 1998–2021 Xie et al.116,117

IMERG Final Run (Version 6) 0.1° × 0.1° 90° N-S 30 min 2001–2020 Huffman et al.118

ERA5-Land 0.1° × 0.1° 90° N-S 60 min 2001–2021 Muñoz-Sabater et al.119

Table 1. Overview of satellite and reanalysis precipitation datasets used in this study.
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erosivity equation for rainfall erosivity estimation. The number of representative rainfall erosivity stations varies 
among the continents. North America has the highest number of representative rainfall erosivity stations, with 
2,441 stations (~40%), and Africa has the lowest number of rainfall erosivity stations, with 52 stations (~1%). 
Europe has 1,965 (~32%) stations, the second-highest contributor to the dataset. We have collected 1069 (~17%) 
and 266 (~4%) stations over Asia and Australia-Oceania, well represented to the erosivity classes. Over South 
America, 377 (~6%) station data was collected, including data from high erosivity countries Brazil, Colombia, 
and Venezuela.

Continent Country/Island
Number 
of Stations

Temporal 
Resolution

Start and end 
year (Approx.) Author

Africa Mauritius 4 6 min 2005–2008 Anderson72

Australia - Oceania Australia 159 6 min 1961–2000 Yu, B et al.60,61

Australia - Oceania New Zealand 32 10 min 1997–2012 Klik et al.76

Australia - Oceania Micronesia, Guam, Hawai 75 15 min 1970–2013 McGehee et al.19, NCDC47

Asia India 296
1 min, 
15 min, 
60 min

1994–2015, 
1969–2021 Dash et al.68; Babu et al.69; This study

Asia Kuwait, Russian Federation, Israel, 
Palestinian Territory, Turkiye, Yemen 367 1–60 min 1961–2016 Panagos et al.16,80

Asia South Korea 41 5 min 1961–2015 Lee et al.120; Shin et al.73

Asia Malaysia 34 10 min 1999–2008 Leow et al.71

Asia Japan 82 10 min, 
60 min

1995–2015, 
1990–2009

Laceby et al.75; Santosa et al.74. 
Panagos et al.16,80

Asia China 173 10 min, 
1 min

1998–2002, 
1951–2018 Ma et al.121; Yue et al.18

Europe Austria 76 5 min 1995–2015 Johannsen et al.21

Europe Czechia 85 10 min 1989–2003 Hanel et al.122

Europe

Austria, Belgium, Bulgaria, Croatia, 
Cyprus, Czechia, Denmark, Estonia, 
France, Germany, Greece, Hungary, 
Ireland, Italy, Latvia, Liechtenstein, 
Lithuania, Luxembourg, Netherlands, 
Poland, Portugal, Romania, Russian 
Federation, Slovakia, Slovenia, Spain, 
Sweden, Switzerland, United Kingdom

1804 1–60 min 1980–2022 Panagos et al.16,80,123; Borrelli et al.111

North America United States 2351 15 min 1970–2013 McGehee et al.19, NCDC47

North America Puerto Rico 22 15 min 1970–2013 McGehee et al.19, NCDC47

Table 2. Overview of high-resolution long-term mean annual rainfall erosivity dataset used in the study 
collected from different sources.

Fig. 2 Locations of global rainfall erosivity station (n = 6,170) dataset used in this study.
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5Scientific Data |          (2024) 11:926  | https://doi.org/10.1038/s41597-024-03756-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

The dataset exhibits a comprehensive representation across various climate zones and therefore rainfall ero-
sivity conditions. Approximately 8% of the stations demonstrate very high rainfall erosivity values exceeding 
7,000 MJ.mm.ha−1.h−1.year−1, around 7% of total stations have rainfall erosivity values within the 5,000 to 7000 
MJ.mm.ha−1.h−1.year−1. Nearly 30% of the stations have rainfall erosivity values ranging between 1,000 to 3,000 
MJ.mm.ha−1.h−1.year−1, and approximately 23% register rainfall erosivity values below 500 MJ.mm.ha−1.h−1.
year−1.

Harmonization of different time resolutions in original data. In addressing the variability in the 
range of available time resolution of data, calibration of erosivity values at different time resolutions becomes 
necessary. According to GloRESatE statistics, approximately 69.1% of stations provided rainfall data at very high 
resolution (≤15 min), around 13.3% at intermediate resolution (30 min), and the remaining around 8.8% at a 
resolution of 60 min. Given this heterogeneity, a calibration process is crucial.

A 30-min time resolution was chosen as an acceptable compromise between the coarse resolution of 60 min 
and the higher ones (≤15 min). All the rainfall erosivity values obtained from the various temporal resolutions 
were converted to 30-min rainfall erosivity values using a conversion factor derived from high-resolution rain-
fall erosivity data from Europe81. Numerous studies worldwide have employed similar conversion factors to 
harmonize different rainfall erosivity datasets16,82.

It is worth mentioning that the final version of the global rainfall erosivity station dataset consists of a collec-
tion of 30-min rainfall erosivity values harmonized from various temporal resolutions. These calibration factors, 
developed in the European study, align with range values provided in the literature from studies conducted in 
China83, Italy84, India82, and the USA85–87.

Rainfall erosivity estimation. The rainfall erosivity was estimated from gridded satellite and reanalysis 
datasets at temporal resolutions of 30 and 60 min, following the procedure outlined in recent studies10,27,87. The 
rainfall events with a cumulative rainfall of more than 12.7 mm were considered erosive events, and rainfall less 
than 1.27 mm of more than 6 h was considered dry period87. The total kinetic energy of the erosive storm was 
computed using the rainfall kinetic energy and intensity equation (Eq. 1), a modified version of Brown-Foster 
relationship88. The same equation has been popularly used in recent studies18,19 and Revised Soil Loss Equation 
Version 2 (RUSLE2)89. The total kinetic energy (Eq. 2) was estimated, summing the kinetic energy of each time 
interval. Finally, average annual rainfall erosivity (Eq. 3) was estimated, averaging the total rainfall erosivity 
of years.

= . − . − .e i0 29[1 0 72 exp( 0 082 )] (1)

where e is a rainfall kinetic energy per unit depth (MJ.ha−1.mm−1) for a particular period, and i is the rainfall 
intensity in mm.h−1.

The total kinetic energy (E) of an erosive event was calculated by summing the multiplication of the rainfall 
kinetic energy per unit depth (e) (MJ.ha−1.mm−1) and rainfall depth (θ) (mm) over the entire period of the 
erosive storm.

·∫ θ=E e dt( ) (2)
D

0

where D is the total duration of the erosive storm, and dt is the time increment of the erosive storm.
The rainfall erosivity was calculated by multiplying the total kinetic energy (E) (MJ.ha−1) with the maxi-

mum 30-minute intensity (I30) (mm.h−1) of the storm. The mean annual rainfall erosivity (R) was calculated by 
summing all storm erosivity values over the years and dividing by the total number of year records.
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where R is the mean annual rainfall erosivity in MJ.mm.ha−1.h−1.year−1, n is the number of years, and m is the 
total number of erosive events.

Merging multi-source datasets. The proposed merged long-term mean annual rainfall erosivity product, 
Global Rainfall Erosivity from Reanalysis and Satellite Estimates (GloRESatE) is prepared to address uncertainty 
in satellite and reanalysis erosivity estimates and the limited availability of observed rainfall erosivity dataset glob-
ally. We used a machine learning-based regression approach to merge multiple satellite and reanalysis datasets 
with the station datasets to improve the accuracy of global rainfall estimation. This integration is accomplished 
by considering geoclimatic covariates. Essentially, this approach aims to identify a relation between the estimated 
rainfall erosivity from satellite and reanalysis sources, alongside geoclimatic variables, and the global rainfall 
erosivity station dataset. The covariates used in this study involve

 1. Estimated rainfall erosivity: Derived long-term (2001–2020) mean of annual rainfall erosivity estimates 
from the satellite (IMERG-Final Run and CMORPH) and reanalysis (ERA5-Land) datasets.

 2. Geoclimatic parameter: Latitude, longitude of grids, and elevation data from the ~1 km WorldClim90 
dataset (https://www.worldclim.org/).

 3. Climatic parameter: The long-term (2001–2020) mean annual precipitation from the IMERG-Final Run 
dataset.

https://doi.org/10.1038/s41597-024-03756-5
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Initially, we employed an area conservative regridding technique91 to re-grid all datasets into common grids. 
While various algorithms exist for regridding datasets into common grids, they may not be optimal for rainfall 
and rainfall erosivity data due to their high intermittency and localised extremes92. To address this challenge, we 
utilised an area-conservative regridding scheme, ensuring the preservation of total values during the process. 
The regridding from finer to coarser resolution was accomplished using the following equation92,93:

∫∑=
=

P
A

p dA1
(4)k

k n

N

A n
1 nk

where Pk denotes the value of any variable over the designated cell k with an area Ak. pn represents the variable 
value at the source cell n, while N represents the total number of source cells intersecting within the designated 
cell. Ank indicates the intersection area between cells n and k.

Then, we used Gaussian Process Regression (GPR)94 to establish a robust regression framework between 
derived covariates and gauge rainfall erosivity estimates. The known capability of the machine learning models 
to capture non-linear relationships between input and output variables, suppressing the constraints of tradi-
tional statistical models, is expected to improve global rainfall erosivity estimation. The response variable (y) and 
covariate variable vectors (x), the regression function can be written as

N σ= + =y f x f x K x w( ) (0, )with ( ) ( ) (5)T2

where f(x) represents the deterministic part of the model. It combines feature x with weights w, transformed by 
the kernel function K. The σ(0, )2N  represents random noise with mean 0 and variance σ2.

The Radial Basis Function (RBF) kernel is most commonly used in machine learning; it can model complex 
relationships between input and output variables. The GPR model was tested for kernel functions, including 
‘rbf ’ and ‘Matern’ kernels. Among the tested kernels, a ‘rbf ’ showed an excellent performance. The Radial Basis 
Function used in this study can be written as

k x y
d x y

l
( ) exp

( )

2 (6)
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i j
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where l is the length scale parameter (l > 0) and d(xiyj) is the Euclidian distance between two points xi and yj.

Feature importance of predictor variables. In our study, we utilised a machine learning-based Random 
Forest model to assess the importance of each feature used in our analysis. Random Forest employs a bootstrap-
ping approach where trees are grown in a decorrelated manner. If B number of trees are identically distributed 
with positive pairwise correlation ρ and each with variance σ2, the variance of all trees can be expressed as95:

B
1

(7)
2 2ρσ

ρ
σ+

−

As B increases, the second term diminishes, indicating that the correlation of bagged tree pairs limits the benefits 
of averaging. Specifically, when trees are grown, a subset of m ≤ p input variables is randomly selected as candi-
dates. After B, such trees θT x;{ ( )}b

B
1  are grown, the Random Forest predictor is formulated as:

f x
B

T x( ) 1 ( ; )
(8)rf

B

b

B

b
1

ˆ ∑ θ=
=

where θb represents the characteristics of the b-th Random Forest tree in terms of split variables, cutpoints at 
each node, and terminal node values.

Optimisation of the model. The process unfolds as follows: First, the entire dataset underwent a ran-
domised splitting process to ensure robust model training and evaluation. Initially, 80% of the entire dataset 
was allocated for training purposes, with the remaining 20% reserved for validation, as illustrated in Fig. 3. 
Subsequently, the training dataset was partitioned into K-folds, with K set to 5. This involved dividing the dataset 
into K equal-sized subsets, utilising K-1 folds for training and the remaining fold for testing. This process was 
iterated K-times, rotating the testing set each time to ensure comprehensive model assessment.

Moreover, the dataset was categorised into three sets: training, testing, and validation. During the 
cross-validation procedure, varying sets of the ‘length scale’ and regularisation parameter (‘alpha’) of the GPR 
model were explored to enhance model performance while minimising errors. This process obtained an optimal 
value of hyperparameters by maximising the cross-validation score. The Bayesian Optimization Algorithm96 
(BOA) process effectively optimised the hyperparameters. This algorithm treats the objective function as a 
black-box function, seeking to maximise the output return value with minimal trials.

Notably, BOA relies on an optimised observation-fitting probability model97. An alternative function is cre-
ated to find the value that minimises the objective function based on the past evaluation results of the objective 
function. Compared to other methods, BOA selects the parameters based on past evaluation results, saving 
search time and optimising efficiency98. The BOA process includes four primary steps99: 1. Defining the hyperpa-
rameter search space, 2. Evaluating the test set with a set of hyperparameters, 3. Using the objective function to 
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choose hyperparameter values for the new evaluation, and 4. Reviewing the objective function results, finalizing 
hyperparameter values, and assessing them on the test set.

accuracy evaluation. In this study, we evaluated the dataset performances using four statistical indicators. 
The indicators include Percentage Error (PE), Pearson’s correlation coefficient (r), Nash Sutcliffe Efficiency (NSE), 
and unbiased Root Mean Square Error (ubRMSE). A more detailed definition of these performance indicators 
can be found in Supplementary Information and Chicco et al.100, Moriasi et al.101, Press et al.102, Krause et al.103, 
and Ma, H. et al.104.
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where O is the observed values, P is the estimated values, O  is the mean value of observed values, P  is the mean 
of estimated values, and E represents the mean operator.

Fig. 3 Outline of the methodology used for the model testing.
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Data Records
The estimated global annual rainfall erosivity for each satellite and reanalysis dataset, at their original spatial 
resolution, is available on Zenodo105 (https://doi.org/10.5281/zenodo.11078865). The merged global rainfall ero-
sivity product, estimated from satellite and reanalysis data and incorporating the global rainfall erosivity station 
dataset, has also been uploaded to the same repository. This product has a spatial resolution of 0.1° × 0.1° and is 
freely available for download. All the raster datasets are provided with a “.tif ” extension, and the estimated rain-
fall erosivity is in units of MJ.mm.ha−1.h−1. The long-term mean annual rainfall erosivity values are in MJ.mm.
ha−1. h−1.year−1.The details about every file in the repository are as follows:

•	 “CMORPH.zip”: Contains global rainfall erosivity data estimated from the CMORPH dataset spanning from 
1998 to 2021 with a spatial resolution of approx. 0.07° × 0.07°. Each file is named “CMORPH _yyyy.tif ”, 
where “yyyy” represents the year. Each “.tif ” file contains 13 bands, with “Band 1” to “Band 12” containing the 
monthly rainfall erosivity from January to December and “Band 13” containing the annual rainfall erosivity 
for that year.

•	 “IMERGFinalRun.zip”: Contains global rainfall erosivity data estimated from the IMERG Final Run dataset span-
ning from 2001 to 2020 with a spatial resolution of 0.1° × 0.1°. Each file is named “IMERGFinalRun_yyyy.tif ”, 
where “yyyy” represents the year. The Band structure of each “.tif” file is similar to “CMORPH_yyyy.tif” files.

•	 “ERA5Land.zip”: Contains global rainfall erosivity data estimated from the ERA5 Land dataset spanning 
from 2001 to 2021 with a spatial resolution of 0.1° × 0.1°. Each file is named “ERA5Land_yyyy.tif ”, where 
“yyyy” represents the year. The Band structure of each “.tif ” file is similar to the “CMORPH_yyyy.tif ” file.

•	 “EstimatedMean.zip”: Contains the temporal mean annual rainfall erosivity of all three gridded satellites and 
the reanalysis dataset. Each file is named “xxxx_mean_yyyy_zzzz.tif ”, where “xxxx” is the name of the satellite 
or reanalysis dataset, “yyyy” is the start year, and “zzzz” is the end year of the mean.

•	 “GloRESatE.zip”: Contains the merged global long-term mean annual rainfall erosivity product with a spatial 
resolution of 0.1° × 0.1°, the file named “GloRESatE.tif” and associated uncertainty file named “Uncertainty.tif.”

•	 “Rainfall Erosivity Data.csv”: Contains the observed global rainfall erosivity station dataset.

technical Validation
Performance of merging. The Gaussian Process Regression (GPR) is a powerful and flexible non-paramet-
ric regression technique with the added advantage of probabilistic uncertainty estimation. In this study, we used 
GPR to merge the multi-source datasets. A comprehensive analysis was conducted on all the parameters utilised 
for model fitting to ensure robustness. A Random Forest model was employed to assess the importance of each 
parameter, revealing the potential of overfitting attributed to a single parameter (Supplementary Information). 
The analysis highlighted the CMORPH R-factor as the most crucial one, given the utilisation of the bias-corrected 
CMORPH dataset.

Additionally, the IMERG R-factor emerged as another crucial factor for consideration, contributing signif-
icantly to model accuracy. The geoclimatic parameters also showed significant importance for the modelling. 
They were included for the accurate representation, especially in high-altitude regions. The optimised GPR 
model used in this study demonstrated good performance (Table 3) with a training Nash Sutcliffe Efficiency 
(NSE) of 0.920, a correlation coefficient of 0.957 and an unbiased Root Mean Square Error (ubRMSE) of 
873 MJ.mm.ha−1.h−1.year−1. Through optimisation involving adjustments to the length scale and regularisation 
parameter (alpha), the model achieved a good cross-validation score of 0.879 from 5-fold with the optimised 
parameters. Furthermore, the GPR model underwent further evaluation against a separate validation set, reveal-
ing a good NSE of 0.876 and an ubRMSE of 1015 MJ.mm.ha−1.h−1.year−1. Overall, the optimised GPR model 
employed in this study exhibited consistent and robust performance across training-testing and validation sets, 
highlighting its efficiency and suitability for the merging.

Comparison of satellite and reanalysis estimates with observed dataset. The mean annual 
rainfall erosivity estimated from satellite and reanalysis datasets from 2001 to 2020 was compared with a global 
rainfall erosivity station dataset of 6,170 representative stations across 72 countries. Since the ERA5-Land rain-
fall erosivity was computed from the 60-min precipitation dataset, the extracted rainfall erosivity values were 
converted to 30-min rainfall erosivity for fair comparison by multiplying the conversion factor106 as used for 
the global rainfall erosivity station dataset. The percentage error with the global rainfall erosivity station dataset 
has been shown in Fig. 4a–c. At the global scale, the overall mean (±standard deviation) percentage error var-
ies significantly across different datasets, ranging from −70 (±29) % to +10 (±262) % (Table 4). The detailed 
definitions used for the performance estimation of the datasets are provided in the Supplementary Information. 
Among the dataset, IMERG-derived rainfall erosivity exhibited a low mean percentage error (−3%) with a high 
standard deviation (±99%), while ERA5-Land showed a high mean percentage error (−70%). The IMERG-F 

Kernel Search space Optimised value Metrics Training Validation

RBF

10−5 to 105 Length Scale: 52.47
PE (%) +7 ± 42 +9 ± 51

r 0.957 0.936

10−5 to 105 Alpha: 0.030
NSE 0.920 0.876

ubRMSE (MJ.mm.ha−1.h−1.year−1) 873 1015

Table 3. Selected model parameters and performance during training and validation.
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(Final Run) derived rainfall erosivity displayed a strong positive correlation (r = 0.777) with the global rainfall 
erosivity station dataset at the global scale. Notably, the IMERG-F-derived rainfall erosivity showed the lowest 
ubRMSE of 2151 MJ.mm.ha−1.h−1.year−1 among all the derived rainfall erosivity datasets. The CMORPH dataset 
has a similar correlation (r = 0.726) with the global rainfall erosivity station dataset. However, the correlation 
between the reanalysis data-derived rainfall erosivity and the global rainfall erosivity station dataset was low, with 
a correlation coefficient of less than 0.50. Overall, at the global scale, IMERG-F-derived rainfall erosivity showed 
better performance than other datasets, exhibiting a stronger correlation, low percentage error, and low unbiased 
Root Mean Square Error (ubRMSE) compared to the global rainfall erosivity station dataset.

The evaluation results for different climatic conditions are summarised in Table 4. The global climatic regions 
were identified using the 1-km Koppen-Geiger107 climate classification map (Supplementary Information). Due 
to the limited availability of the rainfall erosivity station data in the polar climate region, only the percentage 
error (PE) has been estimated. Across tropical climatic regions, the rainfall erosivity estimated from satellite 
precipitation datasets has a substantial underestimation (mean PE ~ −50%) compared to the global rainfall ero-
sivity station dataset. The reanalysis-derived rainfall erosivity shows an even greater underestimation, exceeding 
the mean PE by −80%. A low mean percentage error has been observed in the temperate climatic region using 
the CMORPH (+13 ± 132%) and IMERG-F (+4 ± 111%) dataset, with a notably high standard deviation of 

Fig. 4 Percentage error in the long-term mean annual rainfall erosivity between global rainfall erosivity station 
dataset and estimated four rainfall erosivity datasets.

Datasets Metrics All-inclusive Tropical Arid Temperate Cold Polar

CMORPH

PE (%) +10 ± 262 −47 ± 38 +37 ± 613 +13 ± 132 +6 ± 97 +92 ± 195

r 0.726 0.553 0.570 0.602 0.775 —

NSE 0.352 −0.584 0.195 0.167 0.470 —

ubRMSE (MJ.mm.ha−1.h−1.year−1) 2209 4010 967 2268 845 —

IMERG-Final

PE (%) −3 ± 99 −50 ± 30 −32 ± 116 +4 ± 111 +11 ± 78 +101 ± 259

r 0.777 0.656 0.637 0.694 0.791 —

NSE 0.373 −0.597 0.134 0.233 0.538 —

ubRMSE (MJ.mm.ha−1.h−1.year−1) 2151 3814 927 2119 811 —

ERA5-Land

PE (%) −70 ± 29 −79 ± 43 −75 ± 23 −70 ± 30 −66 ± 20 −42 ± 77

r 0.356 0.120 0.626 0.407 0.862 —

NSE −0.290 −2.307 −0.310 −0.541 −0.237 —

ubRMSE (MJ.mm.ha−1.h−1.year−1) 2821 5637 1053 2542 993 —

Table 4. Evaluation metrics results for the different climatic regions, comparing long-term mean rainfall 
erosivity estimated from the three rainfall products with the global rainfall erosivity station dataset.
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percentage error. In the cold climatic conditions, ERA5-Land showed significant underestimation. Across the 
polar climatic regions, all satellite datasets overestimated rainfall erosivity; however, reanalysis-derived data 
showed underestimation. Among the satellite-derived rainfall erosivity, IMERG-F exhibited a strong positive 
correlation (r > 0.65) with the global rainfall erosivity station dataset for the tropical climatic regions. Other 
satellite-derived rainfall erosivity products show a moderate positive correlation with the tropical climatic 
regions. A similar positive correlation has been observed for almost all the satellite and reanalysis-derived rain-
fall erosivity products in arid and cold climatic conditions. Furthermore, ERA5-Land-derived rainfall erosivity 
showed a strong positive correlation of more than 0.80 in cold climatic conditions.

Additionally, we evaluated the performance efficiency of estimated rainfall erosivity from the satellite and 
reanalysis datasets compared to the global rainfall erosivity station dataset using the Nash-Sutcliffe efficiency 
(NSE) for different climatic regions. Despite a moderate positive correlation, the results indicated unsatisfactory 
efficiency (NSE < 0.30) for the tropical climatic regions, suggesting the inefficiency of the satellite-derived rain-
fall erosivity datasets in accurately estimating rainfall erosivity values for tropical climates. Similar unsatisfactory 
performances from the satellite and reanalysis-derived rainfall erosivity were observed in temperate and cold 
climatic conditions.

Furthermore, the ubRMSE for the satellite-derived rainfall erosivity dataset was notably high (~4,000 
MJ.mm.ha−1.h−1.year−1) in the tropical climatic regions, with even higher values (~5,500 MJ.mm.ha−1.h−1.
year−1) for the reanalysis derived rainfall erosivity. Among the satellite and reanalysis-derived datasets, the 
IMERG-F-derived rainfall erosivity had the lowest ubRMSE across most climates, showcasing its superior per-
formance. Despite the limitations of satellite and reanalysis datasets at the sub-daily temporal scale, IMERG-F 
consistently showed more accuracy than other satellite and reanalysis estimates, aligning closely with the out-
come of the global review of IMERG dataset108. Moreover, it is worth noting that the satellite-derived rain-
fall erosivity generally performed better than the reanalysis-derived estimates for most climatic conditions. 
However, over cold climates, reanalysis-derived estimates showed a higher correlation with the observed dataset, 
possibly due to the limitations of satellite estimates over cold climates109. Furthermore, it is important to high-
light that none of the satellite and reanalysis datasets consistently exhibited very good performances across all 
climate regions, underscoring the necessity for significant improvements.

Comparison of GloRESatE with the existing global product. The existing 30 arc-seconds (~1 km) 
global rainfall erosivity map and Global Rainfall Erosivity Database (GloREDa) prepared by Panagos et al.11,16. 
showed an incremental improvement over the previous studies. Among the available global datasets, GloREDa 
has served as a benchmark for many global10 and regional studies24,25,34 in recent decades. Therefore, the newly 
developed merged GloRESatE105 estimate was compared with the GloREDa versions and global rainfall erosiv-
ity station datasets (Fig. 5). The rainfall erosivity values were extracted from the raster datasets (GloREDa and 
GloRESatE105) for the common locations within the global rainfall erosivity station dataset.

The performance was evaluated using Ordinary Least Squares (OLS) regression (Table 5) and evaluation 
metrics. For a perfect fit, the best-fit line should match the regression line with the black 1:1 line and have an 
intercept of zero and a regression coefficient close to one. Notably, the regression line between the modelled 
GloRESatE105 rainfall erosivity dataset and the global rainfall erosivity station dataset is close to the 1:1 line 
and showed an excellent coefficient of determination (R2 = 0.910). The regression coefficient is close to one, 
and the intercept is low. The merged GloRESatE product showed an overall mean percentage error (PE) of 
only +8 (±49) % and a correlation (r) of 0.954. The Nash-Sutcliffe efficiency (NSE) of GloRESatE105 modelled 
data is 0.910, which is much higher than the original satellite and reanalysis-derived rainfall erosivity products. 
The merged dataset showed a very low ubRMSE value of 903 MJ.mm.ha−1.h−1.year−1, the lowest among other 
datasets.

When compared to the existing global rainfall erosivity dataset (GloREDa11), the GloRESatE105 exhibited a 
coefficient of determination (R2) of 0.745, mean percentage error (PE) of +9 (±82) %, and an ubRMSE of 1466 
MJ.mm.ha−1.h−1.year−1. Our estimates also showed a good performance with the newly launched GloREDa 
v1.2, which has a correlation of 0.885 and NSE of 0.686, with a percentage error of only + 13%. Moreover, our 
dataset correlates more with the new version of GloREDa than the earlier version. The better performance of 
the developed GloRESatE105 rainfall erosivity dataset compared to the original satellite and reanalysis estimates 
underscores the need to utilise multi-source datasets to improve the performance of the global rainfall erosivity 
dataset. Furthermore, including more gauge station data in the global rainfall erosivity modelling brings an 
incremental improvement. Our newly developed global rainfall erosivity product shows a lower percentage 
error, higher correlation, and enhanced efficiency in capturing the variability in the rainfall erosivity compared 
to the global rainfall erosivity station dataset and existing Global Rainfall Erosivity Database (GloREDa).

Comparison of GloRESatE at the continental-scale. We cross-validated the accuracy of the 
GloRESatE105 at the continental scale using statistical metrics with respect to the global rainfall erosivity sta-
tion dataset. The evaluation results are presented in Table 6. Remarkably, the merged rainfall erosivity product 
GloRESatE105 exhibits good correlations with the global rainfall erosivity station dataset across all six continents. 
Specifically, over North America, Asia, and Africa, GloRESatE105 showed correlation coefficients of 0.970, 0.945, 
and 0.971, respectively. Moreover, at the continental scale, the GloRESatE showed an excellent correlation value 
of more than 0.90 for most continents, with a slightly lower correlation of 0.862 observed over Europe and 0.880 
over South America. The GloRESatE105 showed a low percentage error for all continents, staying within ∓ 10% 
except for Australia-Oceania, which reached +24%. The excellent Nash-Sutcliffe efficiency (NSE) values were 
observed over the Africa, Australia-Oceania, Asia, and North American continents. The ubRMSE of GloRESatE 
remained low over Europe and North America (~500 MJ.mm.ha−1.h−1.year−1); however, it is higher over Africa, 
Australia-Oceania, Asia, and South America (ubRMSE > 1,000 MJ.mm.ha−1.h−1.year−1). It is important to note 
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that Europe and North America exhibit low mean rainfall erosivity, while Africa, Australia-Oceania, Asia, and 
South America have significantly higher rainfall erosivity values. The higher ubRMSE values over these conti-
nents can be attributed to their high rainfall erosivity values.

At the continual scale, earlier assessments over Africa77 reported a similar NSE of 0.90 and correlation (r) of 
0.95 using the African Rainfall Erosivity Sub-regional Empirical Downscaling (ARESED) model. Our results 
over Africa are very close to the ARESED model statistics. Riquetti et al.20 developed a geographical model to 
estimate rainfall erosivity over South America with a coefficient of determination (R2) of 0.63 and a percentage 

Fig. 5 Scatter plot of estimated global rainfall erosivity in this study (GloRESatE105) with (a) the global rainfall 
erosivity station dataset, (b) the existing global estimates GloREDa (Panagos et al.11) and (c) GloREDa v1.2 
(Panagos et al.16).

Global rainfall erosivity station dataset GloREDa11 GloREDa v1.216

Std. Error p-value Std. Error p-value Std. Error p-value

Intercept 158 14 <0.001 70 26 0.007 171 23 <0.001

Coefficient 0.92 0.004 <0.001 1.02 0.008 <0.001 1.04 0.007 <0.001

R2 0.910 0.745 0.784

Table 5. Ordinary Least Squares (OLS) regression statistics of our estimated global rainfall erosivity 
(GloRESatE105) compared to the global rainfall erosivity station dataset and existing global rainfall erosivity 
datasets (GloREDa11,16).
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bias of −1.80%. Our result also showed a similar percentage error over South America with an NSE of 0.772. 
This also indicates an incremental improvement over South America as this study uses a higher number of sta-
tions. The existing rainfall erosivity model for Europe106 had a cross-validation score (R2) of 0.63 and a fitting 
score (R2) of 0.72 with gauge datasets. Our results also showed a similar performance with an overall score (NSE) 
of 0.724 over Europe. Using satellite rainfall data and the method proposed by Vrieling et al.29,110, an existing 
study over Australia30 showed an excellent coefficient of determination (R2) of 0.86 with the gauge data. Our 
result also showed a similar good performance with an NSE of 0.822 over Australia. Moreover, these results 
collectively show the excellent performance of the merged rainfall erosivity products, GloRESatE105, across all 
continents.

Comparison of GloRESatE at the regional scale. Further, at the regional level, we conducted a compar-
ative analysis between the GloRESatE105 estimates and those from the GloREDa11,16, as well as the regional rainfall 
erosivity datasets from India82, Italy111, the United States19, and China18 (Fig. 6). The spatial maps from these data-
sets for four high erosive regions were plotted side by side. The result shows very similar spatial patterns between 
GloRESatE and the compared datasets. However, our findings indicated that the coastal regions of India exhibit 
higher rainfall erosivity compared to earlier estimates of GloREDa. The updated version (GloREDa v1.2) aligns 
well with our observations. GloRESatE105 estimates showed similar spatial patterns over Southern Europe, East 
Asia and North America when compared to both the versions of GloREDa11 estimates and regional studies18,19. 
Although our results indicate relatively higher rainfall erosivity values in these regions compared to GloREDa, 
this observation aligns well with the findings of regional studies.

In Table 7, we summarise the evaluation results of GloRESatE105 with the regional and existing global data-
sets for four different countries. Our finding revealed a moderate correlation (r = 0.608 and 0.688) between the 
GloREDa estimates and our estimated GloRESatE dataset, but a strong correlation (r = 0.786) with the regional 
study was found over India. Furthermore, compared to the station rainfall erosivity over India, the GloRESatE105 
shows an overall percentage error of only +10 (±39) % and a good NSE of 0.707. Similarly, over China, the 
GloRESatE has a +10 ( ± 67) % mean error with the observed station rainfall erosivity dataset. Other statistical 
measures, such as correlation (r = 0.977) and NSE (0.954), also showed excellent GloRESatE performance in 
China with the observed stations. The GloRESatE dataset showed a PE of +7 (±42) % over the United States 
with the station erosivity dataset. Over the United States, our estimates revealed an excellent correlation (r) 
of 0.950 and an NSE of 0.900 with the observed stations. Similarly, across the complex topography of Italy, 
the GloRESatE dataset exhibited a only +9 (±58) % error with a good correlation with the observed data-
set. A strong correlation (r = 0.853) was observed with GloREDa v1.2 over Italy. Furthermore, the developed 
GloRESatE105 dataset demonstrates a remarkable performance with a significantly lower ubRMSE value. The 
recent studies in China18, United States19, India27, and Austria21 also showed a certain uncertainty in the existing 
global rainfall erosivity dataset at the regional scale. However, we believe the newly developed rainfall erosivity 
dataset from the multi-source dataset will help bridge the knowledge gap in the existing global rainfall erosivity 
dataset.

Summary. Utilising high-resolution precipitation datasets from two satellites (CMORPH and IMERG) 
and one reanalysis (ERA5-Land), global rainfall erosivity was derived over more than 20 years. Furthermore, a 
regression-based approach was employed to create a merged long-term mean annual rainfall erosivity product, 
utilising observed rainfall erosivity data collected from 6,170 stations across 72 countries.

The preliminary analysis revealed significant uncertainty in the long-term mean annual rainfall erosivity 
estimated from satellite and reanalysis datasets. However, the merged rainfall erosivity product, developed using 
a machine learning–based Gaussian Process Regression, exhibited significant improvement. Similar merging 
technique has been used in many studies while merging rainfall datasets from different sources37–39,42,45,112. The 
GPR-based merging approach used in this study demonstrated successful integration of rainfall erosivity from 
these diverse sources.

Furthermore, in addition to incorporating rainfall or rainfall erosivity products, integrating environmental 
variables further enhanced the merging process, particularly for locations lacking observed data and high alti-
tudes. Compared to existing datasets, the prepared dataset added rainfall data points globally, leading to good 
agreement at the regional scale. These results underscore the potential of the dataset prepared using the blend-
ing of multi-source datasets. It represents a promising global and regional soil erosion monitoring and water 
resource management resource.

Continents PE (%) (mean ± standard deviation) r NSE ubRMSE (MJ.mm.ha−1.h−1.year−1)

Africa +1 (±26) 0.971 0.932 1433

Asia +8 (±46) 0.945 0.891 1387

Australia-Oceania +24 (±50) 0.913 0.822 1553

Europe +9 (±61) 0.862 0.724 405

North America +4 (±30) 0.970 0.936 534

South America +8 (±38) 0.880 0.772 1767

Table 6. Evaluation metrics results at the continental scale between the newly developed GloRESatE dataset 
and the global rainfall erosivity station dataset.
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Usage Notes
In this study, we present GloRESatE, a global rainfall erosivity dataset that offers mean annual rainfall erosivity 
data globally, along with estimated modelling uncertainty. The estimated rainfall erosivity from three different 
gridded satellite and reanalysis datasets for each month and year are also provided for further use in hydromete-
orological applications. However, it is imperative to acknowledge and consider the uncertainty associated with 
satellite and reanalysis datasets for their accurate interpretation and application. Furthermore, these datasets can 
facilitate the merging of rainfall erosivity derived from satellite and reanalysis estimates at any spatio-temporal 
scale, thereby reducing the cost of further research and efforts in duplicating work. We recommend using our 
main product, GloRESatE, instead of estimated rainfall erosivity from satellite and reanalysis datasets for soil 
erosion, hydrological modelling, water resource management, and climate impact assessment.

Moreover, GloRESatE also holds relevance for policymakers, earth system modellers, and scientists work-
ing in fields like agriculture, ecology, and flood management. It presents a harmonised rainfall erosivity prod-
uct, consolidating data from diverse temporal resolutions into a unified 30-min resolution. While the rainfall 

Fig. 6 Comparison of spatial maps GloRESatE105 datasets (This Study), from GloREDa estimates (Panagos  
et al.11,16), and regional datasets for the four different locations (a–d) part of South Asia, (e–h) part of Southern 
Europe, (i–l) part of East Asia and (m–p) part of North America.
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erosivity data suits numerous applications directly, users are encouraged to convert it to an alternate resolution 
if necessary, ensuring compatibility with specific analytical or modeling requirements.

Limitations and future scopes. The development of GloRESatE involved incorporating a vast number of 
globally observed station datasets, along with multiple satellite and reanalysis datasets, aimed at enhancing the 
global rainfall erosivity estimation. However, it is essential to acknowledge certain uncertainties that may have 
been introduced while compiling global rainfall erosivity station datasets from different sources. These uncer-
tainties can be attributed to several factors: (1) The rainfall erosivity estimates obtained from different tempo-
ral resolutions and various estimation methods, including the adaptations of the Universal Soil Loss Equation 
(USLE)113 and its subsequent versions, namely RUSLE87 and RUSLE289. (2) The rainfall erosivity estimated from 
different temporal resolutions was converted to a 30-min rainfall erosivity value using the conversion factor used 
in the earlier global study11. However, this may cause uncertainty at the regional scale114,115. (3) The gauge rainfall 
erosivity dataset estimated from other formulations than USLE113 and RUSLE87 can have slight deviations, poten-
tially affecting the dataset’s accuracy at the regional scale. Moreover, the fixed interval rainfall dataset has been 
used for rainfall erosivity estimation. Ideally, a breakpoint dataset should be used in this case28; however, due to 
unavailability, such a dataset was not used. (4) The estimated rainfall erosivity values from breakpoint datasets 
will be higher than our estimated values88. Our results should be verified before benchmarking in any studies. 
Furthermore, due to the unavailability of the time-series data of observed rainfall erosivity at the global level, the 
long-term mean annual rainfall erosivity dataset has been prepared in this study. However, a similar assimilation 
of the multi-source dataset for each year or month can be applied to prepare long-term time series of rainfall 
erosivity at the regional and global scales.

Code availability
Code used in this study is accessible on GitHub (https://github.com/subhankar17th/R-factor.git).
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