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COVID‑19 severity detection using 
chest X‑ray segmentation and deep 
learning
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COVID‑19 has resulted in a significant global impact on health, the economy, education, and daily 
life. The disease can range from mild to severe, with individuals over 65 or those with underlying 
medical conditions being more susceptible to severe illness. Early testing and isolation are vital 
due to the virus’s variable incubation period. Chest radiographs (CXR) have gained importance as a 
diagnostic tool due to their efficiency and reduced radiation exposure compared to CT scans. However, 
the sensitivity of CXR in detecting COVID‑19 may be lower. This paper introduces a deep learning 
framework for accurate COVID‑19 classification and severity prediction using CXR images. U‑Net 
is used for lung segmentation, achieving a precision of 0.9924. Classification is performed using a 
Convulation‑capsule network, with high true positive rates of 86% for COVID‑19, 93% for pneumonia, 
and 85% for normal cases. Severity assessment employs ResNet50, VGG‑16, and DenseNet201, with 
DenseNet201 showing superior accuracy. Empirical results, validated with 95% confidence intervals, 
confirm the framework’s reliability and robustness. This integration of advanced deep learning 
techniques with radiological imaging enhances early detection and severity assessment, improving 
patient management and resource allocation in clinical settings.
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Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus, and it enters into 
the human body through the mouth, nose, or  eyes1 (directly from airborne droplets or virus transfer through 
hands to the face). Once inside the nasal passages, it travels to the mucous membrane at the back of the throat. 
In addition to attaching to cells, it multiplies and enters lung tissue. Once in the body, the virus is capable of 
spreading to other parts of the body. Most people infected with the virus will have mild to moderate respiratory 
illness and recover without special treatment. Some, however, will become critically ill and require medical 
attention. The disease severely impacts people because it affects the lungs and causes severe breathing problems 
and lung  infections2. People over the age of 65, as well as those with underlying medical conditions such as 
cardiovascular disease, diabetes, chronic respiratory disease, or cancer, are at a higher risk of developing serious 
illnesses. However, any age group can become seriously ill or die from COVID-193. Early detection is vital for 
patient care and protecting community health by ensuring prompt patient isolation. One of the major challenges 
in managing COVID-19 is differentiating its symptoms from other respiratory illnesses like pneumonia, as they 
may present similarly. Additionally, a negative test result does not rule out infection, especially for individuals 
with known exposures. While real-time polymerase chain reaction (RT-PCR) testing for antigens is accurate, it 
can be time-consuming and limited by testing resources and laboratory equipment. Considering the drawbacks 
of chest computed tomography (CT) scans, such as higher costs and adverse radiological effects, chest radio-
graphs (CXR) are a more suitable alternative for efficient testing, conserving time and resources. While CXR is 
less costly and minimizes radiation exposure compared to CT scans, its sensitivity in detecting COVID-19 may 
be lower. Current methods, such as RT-PCR, face limitations in terms of availability, cost, and time required 
for results. CXR imaging presents a viable alternative but requires enhanced techniques to improve diagnostic 
accuracy and provide insights into the severity of lung infections.

Machine learning (ML) can be employed in medical diagnosis, particularly in domains like radiology, cardiol-
ogy, and oncology. It helps in analyzing complex medical data, which helps in boosting the accuracy and speed 
of diagnosis. Additionally, ML also plays a significant role in diagnosing and screening critical conditions of the 
 patients4. In the context of diseases like COVID-19, ML and Deep Learning (DL) prove invaluable in identifying 
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potential causes and symptoms. Leveraging medical imaging data such as chest radiography or CT scans, these 
technologies aid in early detection and  diagnosis4,5. Convolutional Neural Networks (CNN), a popular DL 
architecture for image analysis, have gained recognition in the context of COVID-19 diagnosis due to their abil-
ity to analyze medical imaging data. Researchers have developed CNN-based models trained on large datasets 
of CXR images, aiming to distinguish COVID-19 cases from other respiratory conditions or normal  cases6,7. 
Alongside CNN, capsule networks have emerged as a promising alternative for COVID-19  diagnosis8. ML and 
DL techniques have shown promise in medical imaging applications, including the detection of COVID-19, but 
there is a need to develop robust frameworks that can accurately classify the infection and assess its severity.

This paper presents a comprehensive framework for detecting COVID-19 infections in CXR images and 
facilitating the categorization of these CXR images into different levels of lung infection severity, including nor-
mal, mild, moderate, and severe.The categorization relies on the Brixia score, a clinical grading system designed 
to assess the severity of lung infections in hospitalized COVID-19  patients9. Higher Brixia scores correlate with 
increased inpatient mortality rates. The framework starts with the U-Net  model10 for precise segmentation 
of CXR images. Next, a capsule network processes the segmented lung images, classifying them into normal, 
pneumonia, or COVID-19 categories. Several advancements in the design and implementation of the classifier 
and U-Net model are presented. The proposed model integrates the strength of capsule networks with the U-Net 
architecture to enhance feature representation and segmentation accuracy. For COVID-19 cases, the Brixia 
score is used to assess infection severity. To improve the accuracy of severity classification, DL models such as 
 ResNet5011, VGG-1612, and  DenseNet20113 are employed. This demonstrates the framework’s robustness and 
effectiveness in identifying subtle variations in severity levels. This paper makes the following contributions:

• Providing multi-level (classification and severity detection) of CXR images: the first stage utilizes U-Net for 
precise image segmentation, followed by a capsule network to classify CXR images into normal, pneumonia, 
or COVID-19 categories.

• In the second stage, the severity of the infection is evaluated, and COVID-19 detected images are further 
classified into normal, mild, moderate, and severe categories using the Brixia score methodology.

• It facilitates early detection of COVID-19 and provides detailed information about the severity of infections, 
which is crucial for appropriate patient care and management.

• The effectiveness of state-of-the-art DL models in severity classification is compared, enhancing the robust-
ness and reliability of the framework.

The rest of the paper is arranged in the following manner: Section “Literature review” presents an overview of the 
work done to date in this area. Section “Methodology” explains the proposed methodology and implementation 
details. Details about distinct performance metrics are outlined in section “Performance evaluating measures”. 
Section “Dataset” delves into specific details about the dataset. Experimental configurations and results are dis-
cussed in section “Experimental results and discussion”. Finally, the paper’s conclusion and its future direction 
are covered in section “Conclusion and future work”.

Literature review
A variety of techniques have been developed by researchers to identify the COVID-19 virus during the crisis, uti-
lizing datasets containing symptom information, CT scans, and CXR for virus detection. Technological advances 
in ML and DL have significantly enhanced various medical imaging applications.  Studies14–17 have demonstrated 
the potential of patch-based DL approaches for improving classification and segmentation accuracy in medical 
images, including breast cancer, CT vertebrae, and liver segmentation tasks. These studies highlight the effective-
ness of deep belief networks, overlapping patches, and lightweight CNN, achieving high accuracy and precision 
across different datasets despite challenges like computational complexity and the need for extensive labeled data.

To leverage existing  infrastructure18, researchers have proposed a COVID-19 patient screening approach 
based on the results of CT and X-ray examinations. Early studies have demonstrated relatively accurate disease 
diagnosis using ML and DL methods. For instance, Pritam Saha et al.19 introduced GraphCovidNet, a Graph 
Isomorphic Network (GIN) model, to detect COVID-19 from CT scans and CXRs of affected patients. Rezaeijo 
et al.20 focused on automatic prediction of COVID-19 using deep transfer learning models and ML algorithms 
applied to chest CT images, with the DenseNet201 model and KNN algorithm showing superior performance 
when combined with pre-trained models. Khan et al.21 introduced a two-phase deep CNN framework, incorpo-
rating SB-STM-BRNet and COVID-CB-RESeg, which addresses challenges such as limited labeled data and high 
structural similarity in lung CT images. This method demonstrates high accuracy in detecting and segmenting 
COVID-19 infections. However, the framework’s reliance on extensive training data and computational resources 
poses limitations. Additionally, Heidarian et al.22 proposed a fully automated framework based on capsule net-
works to identify COVID-19 cases from chest CT scans, demonstrating the superiority of capsule networks 
in terms of trainable parameters and accuracy compared to CNN-based alternatives. Another alternative, the 
COVID-CAPS  model8, also based on capsule networks, was suggested by Afsar et al., capable of handling small 
datasets, which is crucial given the sudden and rapid emergence of COVID-19. Ter-Sarkisov et al.23 developed 
a COVID-19 prediction method based on CT scans using regional features, achieving an impressive overall 
accuracy of 91.66% on the test data. These models still face difficulties in generalizing across different datasets 
and imaging conditions.

CT scans have shown superior sensitivity and specificity in diagnosing COVID-19 compared to  CXR24. How-
ever, it is crucial to note that CT scans expose patients to 70 times more radiation than CXR, slightly increasing 
the risk of cancer due to medical radiation  exposure25. As a result, researchers have explored classical image 
processing methods and machine/deep learning approaches to automatically classify diseases using digitized 
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 CXR26,27. Rahul Kumar et al.28 proposed a framework for accurate COVID-19 prediction using deep feature 
learning with SMOTE and ML classifiers, training on CXR images using the ResNet152 architecture. Meanwhile, 
Ghaderzadeh et al.29 conducted a review study providing an overview of current models for detecting and diag-
nosing COVID-19 using DL with radiology modalities. They emphasized the importance of avoiding overfitting 
and maximizing the generalizability and usefulness of COVID-19 DL diagnostic models by training them on 
large, diverse datasets covering the entire available data space.  Studies30–32 introduced several DL approaches for 
detecting COVID-19 from CXR images. A channel-boosted CNN showed improved detection accuracy using 
auxiliary channels generated through transfer  learning30. The COVID-RENet-1 and COVID-RENet-2 architec-
tures utilized region and edge-based operations to capture pneumonia-specific patterns, achieving high F-scores 
and  accuracy31. The Deep Boosted Hybrid Learning framework combined these models’ strengths through feature 
space boosting, resulting in excellent performance and a web-based interface for rapid COVID-19  detection32. 
However, these models require substantial computational resources and may struggle to generalize across differ-
ent datasets or imaging conditions. Additionally, their reliance on high-quality labeled data can limit performance 
due to variations in image acquisition and labeling standards.

Identifying COVID-19 in individuals is essential, but assessing the severity of the disease and its impact on 
the lungs is equally critical for understanding disease progression and hospital resource  management39,40. Studies 
have shown a strong correlation between COVID-19 severity and factors like ICU admissions, hospital stays, 
and follow-up  planning41,42. To efficiently and reliably assess COVID-19 severity in patients, Li et al.35 utilized 
CXR, employing the Brixia score for severity computation and U-Net++ for lung-related CXR image segmen-
tation. Zandehshahvar et al.36 utilized a CNN model to classify COVID-19 CXR into severity levels (normal, 
mild, moderate, severe). Shelke et al.37 proposed a framework that classifies CXR into four categories: normal, 
tuberculosis, pneumonia, and COVID-19, while also assessing COVID-19 severity. Another study by Cohen 
et al.38 evaluated COVID-19 pneumonia severity on CXR using scores from blinded experts. Udristoiu et al.34 
employed an ensemble of DL and pre-trained models, achieving impressive results for all diagnosis classes. In 
an acute COVID-19 outbreak, CXR  analysis43 revealed that the severity of opacities was related to advanced 
age, comorbidities, and acuity of care, highlighting the feasibility of artificial intelligence tools based on DL for 
assessing COVID-19 CXR during outbreaks.

As indicated in the literature review (see Table 1), DL models can effectively detect COVID-19 when applied 
alongside CT scans and CXR. These methods work by identifying image features, starting with simple attributes 
like edges and progressing through layers to more complex ones. Additionally, the  studies34–38,43 demonstrate that 
CXR images can be used to assess the severity of lung conditions. However, there has been limited attention on 
utilizing DL methods with CXR images to assess the extent of organ impact caused by COVID-19, particularly in 
the case of organs like the lungs. DL models primarily focus on detecting features in images without considering 
their spatial arrangement. Consequently, they may overlook spatial information and incorrectly select certain 
features, leading to inaccurate predictions and increased costs. To tackle this challenge, we propose utilizing 
the capsule network, which not only captures features but also considers their spatial relationships. Develop-
ing predictive models for images presents its own set of challenges, including accurate data labeling and strong 
inter-rater agreement. Furthermore, creating a representation that generalizes to new images becomes particu-
larly complex when the available labeled images are scarce. This becomes especially evident when developing 
a predictive tool for COVID-19 CXR images, as the absence of a publicly accessible dataset complicates the 
evaluation process.

Methodology
This study presents a framework aimed at the classification and severity assessment of COVID-19-infected 
individuals. The foundation of this process rests upon the analysis of CXR images, capturing the spatial extent 
of viral proliferation. To accomplish this, the U-Net architecture is harnessed, functioning as a generator of 
segmentation masks designed to delineate lung regions within the X-ray data.

Table 1.  Comparison of different approaches studied in the literature review.

S.No. Method name Empirical results Strengths Weaknesses

1 Patch-based DL  approach14–17 Improved classification and segmentation 
accuracy

High accuracy and precision across 
datasets

Computational complexity, need for 
extensive labeled data

2 COVID-19 detection  models21,33 High accuracy in detecting and segment-
ing COVID-19 infections

Advanced techniques like STM blocks 
and FME

Limited labeled data, high computational 
complexity

3 Graph-based and transfer learning 
 models19,20

Effective COVID-19 detection and 
prediction

Utilizes GIN and transfer learning 
models

Dependence on large datasets for 
training

4 Capsule  networks8,22 Superior performance with small datasets Better handling of small datasets Complex architecture

5 Regional feature-based  prediction23 Overall accuracy of 91.66% on test data Effective use of regional features Limited generalizability

6 Deep feature learning with  SMOTE28 Accurate COVID-19 prediction using 
CXR images

Improved accuracy with ResNet152 
architecture Potential overfitting

7 Ensemble and hybrid learning 
 models30–32,34

High performance with web-based inter-
face for rapid detection Combines strengths of multiple models Substantial computational resources 

required

8 Severity assessment  models35–38 Efficient and reliable assessment of 
COVID-19 severity Accurate severity computation Complex preprocessing and segmenta-

tion steps
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Dataset
The COVID-19 Radiography Dataset employed in this  study44 is a publicly available dataset developed by a 
team from Qatar University, Dhaka University, Bangladesh with cooperators from Malaysia and Pakistan and 
cooperators of medical doctors. It comprises 3616 entries for COVID-19, 1345 entries for viral pneumonia, 
10192 entries for normal cases, and 6012 entries for infections other than COVID-19 and the correspond-
ing lung masks. These images are then added to the data frame with corresponding labels: 0 for COVID-19, 
1 for viral pneumonia, and 2 for normal cases. The dimensions of all images are checked and confirmed to be 
(299× 299× 3) , eliminating resizing. Next, the images are transformed into arrays of feature-scaled pixels by 
dividing each pixel value by 255. Additionally, the images’ labels are changed into vectors where 0 is represented 
as [1 0 0], 1 as [0 1 0], and 2 as [0 0 1].

Methods
The CXR scans are provided as input into the U-Net framework, leading to the creation of lung-specific seg-
mented masks as illustrated in Figure 1. This accomplishment is derived from the incorporation of a specialized 
biomedical U-Net architecture. A dedicated segmentation phase is integrated into the proposed model, elevating 
diagnostic efficiency through rapid and precise analyses. The resultant segmented CXR scans are utilized for 
classification and severity assessment, respectively, offering a comprehensive approach to the diagnostic chal-
lenge. CXR images are classified through the CNN, targeting specific dimensions for insights. To extract lung 
segmentation information from X-ray images exhibiting infection, an artificial neural network leverages a CNN 
architecture. Each X-ray image of the segmented lung segment undergoes a process through a series of convolu-
tion layers, pooling, fully connected layers, culminating in the application of the softmax function for precise data 
classification. The CNN model disregards feature location, concentrating solely on detected features. Therefore 

Figure 1.  Proposed framework.
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capsule networks, which is capable of extracting spatial information and crucial attributes, have been employed 
to mitigate information loss during pooling operations. Moreover, segmented lung images are categorized into 
three groups based on different diseases for accurate classification. If individuals are either unaffected or diag-
nosed with pneumonia after classification of the segmented CXR scans, no further action is taken.

However, those presenting COVID-19 symptoms undergo additional testing. The collected lung images 
undergo segmentation using the U-Net model, combined with a classification technique, to establish the severity 
of infection in each affected individual. Contours are extracted from the mask image utilizing a segmentation 
mask and subsequently sorted by area. As segmented lung images prominently display lung region contours, 
based on these segmented images both the left and right lung image areas are divided and cropped accordingly. 
The Brixia scoring system is applied to meticulously analyze variations in CXR, segregating the segmented mask 
(both left and right) into three distinct vertical groups, each with equal area proportions. Leveraging DL models 
such as ResNet50, VGG-16, and DenseNet201, rigorous fine-tuning endeavors aim to estimate the Brixia score 
accurately. Moreover, the model’s performance has been evaluated using the performance evaluating measures 
discussed in section “Methods”. The following subsections provide a comprehensive explanation of the methods 
employed within the proposed framework.

Convolution layers and capsule networks (Conv‑Caps)
Convolution layers utilize various convolution kernels to extract features from segmented CXR images. The 
capsule networks evaluate the likelihood of specific objects being present, incorporating multiple neurons repre-
senting diverse instantiation characteristics like rotation and size, all linked to the underlying objects. To mitigate 
issues associated with pooling layers in CNN, these layers are substituted with the “routing by agreement” tech-
nique. Instead of straightforwardly subsampling the feature maps, the contribution of each capsule is assessed 
by its ability to predict subsequent capsules’ outputs, as opposed to recklessly sub-sampling the feature maps. 
Consider that the rth convolutional kernels employ the M layers. In the (M + 1) layer, the jth, j = (1, 2, ..., r), 
convolutional feature map can be represented as:

In Eq. (1) Tp is the feature map of the mth kernels. The Uj is the jth kernel while as Tp may be a channel of the 
actual image of the CXR, a convolutional map, or a pooling map, f (.) specifies a nonlinear activation function, 
while ∗ denotes the convolution operation. In CNN, the rectified linear unit (ReLU) is frequently used with the 
non-linear function J(y) = max(0, y) . The input images of segmented lungs are frequently compressed in size 
using a pooling technique. The pooling map in layer (M + 1) is generated by conducting a pooling operation on 
the relevant features in layer M previously and is provided as follows:

where pool(.) denotes the pooling strategy and index j traverses each map in layer M.
In general, the most common kind of connection between layers is the scalar-scalar form in CNN. A capsule 

 network45 consists of a group of neurons representing an entire or portion of an entity. The Conv-Caps model 
employs capsule layers instead of traditional convolutional layers, which capture spatial relationships and provide 
a more nuanced feature representation vital for distinguishing between classes. Capsule networks use a dynamic 
routing mechanism that iteratively adjusts the weights of connections between capsules, enhancing the robust-
ness of the network by ensuring that important features are dynamically weighted more heavily. We incorporate 
both max pooling and average pooling operations in our network, improving the diversity of the feature space 
and enhancing the classifier’s ability to generalize across different datasets. Neurons are replaced by groups of 
neurons, and the capsule layers are interconnected in vector-vector form. The output of each capsule in a layer 
is modeled as an attempt to predict the output of a capsule in the layer above it. If its prediction matches the 
actual output, the connection between them is reinforced. This iterative process ensures that capsules with more 
accurate predictions have a greater impact on the network’s final decision, ultimately improving the network’s 
ability to capture complex spatial relationships in the data. The following nonlinear squash function F (z) is 
described for every capsule (expressed as a vector):

where � · �2 stands for the ℓ2-norm, and z is the squash function’s input vector in Eq. (2). With the help of this 
function, short vectors’ lengths are reduced to almost zero, while long vectors’ lengths are nearly one. Conse-
quently, the entity’s probability can be represented by its output length. The ith capsule’s output, ui , is determined 
by:

where wi stands for the input of the ith capsule. Each capsule’s parameters are associated with various properties, 
including its position, scale, and orientation. A weighted sum is employed for the overall input wi of the ith of 
all capsules except the first capsule layer:

(1)TM+1
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where Oi|n is the estimated output of capsule i in the current layer based on capsule n from the preceding layer, 
and An,i is the process of routing coefficient represented in Fig. 2. Assume that Bni refers to the log prior prob-
ability that capsule n (from the preceding layer) is coupled with capsule i (from the present layer). Hence, the 
coefficients Ani may be written as:

In Eq. (4), index q represents the all capsule in the current layer. The routing algorithm initializes Bni with zeros 
and updates it. The following procedure updates Bni in the routing algorithm:

where m represents the iteration index of the layer. The inner product of �ui ,Oi|n� between the estimated output 
and its real (actual) output (for capsule i in the current layer). Each capsule from the preceding layer will forecast 
the capsule i′s value in the current layer, which is intuitive. Accordingly, if the estimation made by capsule n from 
the preceding layer is analogous to the real output ui , and capsule n has a high probability of contributing, the 
coupling coefficient Ani increases. Based on Eqs. (3) and (5), output capsules Pn from the preceding layer, the 
estimations Oi|n can be evaluated as:

where Wi,n stands for the weight transformation matrix linked capsules across two adjacent layers. Assuming that 
there are Z classes, the last capsule layer consists of Z capsules, whose length represents the existence probability 
of each object in the class. An X-ray image of the chest that has multiple classes can be segmented using a margin 
loss function. The margin loss function Lk in Conv-Caps for class k = (1, 2, ...,Z) is defined as:

where Uk is an indicator function. It can be defined as:

where ‖hk‖2 stands for the length of the vector, and hk is the last layer of  the capsule. If and only if class k object 
exists, then sample class label Uk = 1 . If objects of class k are present, the span (length) of capsule hk extends 
beyond g+ . When there is no object of class k, the span of capsule hk must be less than g− . The upper and lower 

wi =
∑

n

AniOi|n

(4)Ani =
exp(Bni)

∑

q exp(Bnq)

(5)B
(m+1)
ni = Bm

ni + �ui ,Oi|n�

(6)Oi|n = WinPn

Lk = Uk max
(

0, g+ − �hk�2
)2

+ η(1− Uk)max
(

0, �hk�2 − g−
)2

Uk =
{

1, If the sample contains instances of class k
0, Otherwise

Figure 2.  Routing coefficient process.
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boundary is defined by the boundary parameters g+ and g− , respectively. The regularization parameter η serves 
the purpose of shrinking the impact of the activity vector in cases where the represented class is absent from 
the sample. The LCLA =

∑

k Lk is used to determine the loss function’s entire classification, which reduces 
the total loss from all last layer capsules. The class prediction thresholds, g+ , and g− , with values of 0.9 and 0.1 
appropriately, are utilized to regulate the class response of the output that has been computed. In particular, 
Lk = 0 if the class capsule layer’s prediction vector hk matches Uk.

An overview of the capsule network architecture is shown in Fig. 3. The initial layer of the primary capsule 
layer includes a convolutional layer with 64 filters, using a (3× 3) kernel size, stride 1, and activating RELU. 
This layer is followed by another convolutional layer with 64 filters of (3× 3) kernel size, stride 1, and activation 
RELU. After batch normalization, an average pooling layer with a (2× 2) kernel size is adopted. In this study, the 
architecture also incorporates two convolutional layers, each using 128 filters of (3× 3) kernel size, stride 1, and 
activation RELU. Convolutional capsules in Digit Caps consist of three layers: two of the 32 channels consist of 
8D capsules, while one of the three channels consists of 16D capsules for categorizing the segmented mask. The 
number of neurons is indicated by the symbol “D”.

U‑Net architecture
Several popular segmentation networks include MTMC-AUR2CNet46,  CMUNeXt47, DDA-SSNets48, SEA-NET49, 
and U-Net. MTMC-AUR2CNet’s design for multi-task learning and cross-consistency adds complexity, hindering 
practical deployment and rapid execution. CMUNeXt’s performance relies heavily on parameter configuration, 
requiring careful tuning of large kernels and skip fusion blocks for optimal results. DDA-SSNets, with their 
dual decoder attention mechanism, demand significant computational resources and fine-tuning, limiting their 
generalizability and usability. SEA-NET’s additional layers and attention modules increase model complexity 
and size, necessitating larger datasets to prevent overfitting and complicating interpretability. In contrast, U-Net’s 
streamlined encoder-decoder architecture offers ease of implementation, reproducibility, and efficient perfor-
mance on standard hardware. U-Net’s relatively simple design allows it to be more generalizable and accessible 
compared to other models, which often require fine-tuning and specialized hardware for optimal performance. 
This makes the U-Net a more practical choice for broader applications, particularly in clinical settings where 
rapid deployment and reliable outcomes are critical. The U-Net model used in this study has been optimized 
to work with the Conv-Caps classifier. This tailored optimization enhances the overall model performance by 
ensuring compatibility and efficient data flow between the segmentation and classification stages. The following 
modifications have been made to the traditional U-Net architecture:

• The U-Net architecture features an encoder-decoder structure that captures multi-scale context information. 
The enhanced version integrates capsule networks within this framework to maintain spatial hierarchies more 
effectively.

• Skip connections are employed between the encoder and decoder paths. These connections ensure that 
high-resolution features from the encoder are directly accessible to the decoder, aiding in precise localization 
during segmentation.

• To improve segmentation accuracy, a hybrid loss function that combines dice coefficient loss and cross-
entropy loss is used. This approach balances the need for pixel-wise accuracy and the overall segmentation 
quality.

Figure 3.  Architecture of capsule network.
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• An attention mechanism is integrated into the U-Net to focus on the most relevant parts of the feature maps. 
This mechanism helps the model to better differentiate between the regions of interest and the background, 
leading to more accurate segmentation results.

Severity detection
The severity assessment of CXR scans is estimated by utilizing a bounding box derived from the segmented mask. 
The labels assigned to the scans encompass viral pneumonia, normal status, and COVID-19 infection. However, 
for individuals with COVID-19-affected CXR images, cases of normal and pneumonia states are excluded. The 
primary focus is on identifying severity within the segmented lung images. To achieve this, the segmentation 
mask is utilized to arrange contours based on their respective areas, Fig. 4a shows the image after applying the 
segmentation mask. The two largest area contours from the segmented lung mask are then cropped, represent-
ing the left and right lung sections in case of contamination as shown in Fig. 4b and c respectively. These lung 
regions are further divided into three segments (upper, middle, and lower) following the Brixia score system, 
each assigned a score ranging from 0 to 3 based on observed pulmonary infiltrate categories.

These segments are then split into vertically distinct sub-segments labeled as (A, B, C) and (D, E, F) for finer 
categorization as shown in Fig. 4d. The upper area (A and D) corresponds to the inferior wall of the aortic arch, 
the middle region (B and E) spans from the inferior wall of the aortic arch up to the inferior wall of the right infe-
rior pulmonary vein, and the lower area (C and F) lies below the inferior wall of the right inferior pulmonary vein.

The severity scoring is defined as follows: 0 for no lung abnormalities, 1 for interstitial infiltrates, 2 for 
dominant interstitial infiltrates with some alveolar involvement, and 3 for dominant interstitial and alveolar 
infiltrates. Utilizing multiple DL models, the optimal severity score for CXR images is predicted. The loss function 
acts as a fundamental measure to quantify the disparities between the predicted severity scores and the actual 
labels obtained through various DL models, including ResNet-18, VGG-16, and DenseNet-201. By employing 
metrics such as mean absolute error (MAE) and mean squared error (MSE) for performance evaluation, a more 
comprehensive understanding of the model’s performance is provided. Such elaboration will not only elucidate 
its significance in optimizing severity predictions but also contribute to the overarching enhancement of the 
framework’s efficacy.

Performance evaluating measures
The proposed framework is composed of different modules, each with its specific function. To gauge the efficacy 
of these modules, a diverse set of accuracy metrics has been employed for performance evaluation. The effective-
ness of the U-Net segmentation model is assessed by employing dice loss (also called the Sørensen-dice index), 
Intersection over union (also known as Jaccard index), precision, and recall metrics. A frequent loss function in 
semantic segmentation problems is dice loss ( D L ). It is determined by computing the dice coefficient between 
the anticipated and ground truth segmentation masks for each pixel and then averaging these values across all 
pixels. The formulation of the D L is as follows:

where the intersection is the number of pixels accurately classified in both the anticipated and ground truth 
masks and the sum of the predicted (Gpred) and ground truth G is the entire amount of pixels in each mask. 
D L represents the dice loss of the models and varies from D L ∈ [0, 1] . In order to prevent division by zero, a 
minor constant ξ = 1 is linked to the numerator and denominator. Furthermore, intersection over union (IoU) 
is employed to evaluate object detection effectiveness by contrasting the ground truth bounding box to the 
predicted bounding box. It can be determined as:

where the areas of overlapping and union are denoted by IAOO and IAOU , respectively. The ranges of IoU 
exist between 0 to 1. This study gauges the classification model’s performance in terms of sensitivity (recall), 
specificity, accuracy, F1Score , and precision (also known as positive predictive value or PPV). The proportion 
of accurately detected positives and negatives is measured by sensitivity and specificity. Accuracy measures the 

D L = 1− 2×
(

G ∩ Gpred + ξ

G + Gpred + ξ

)

IoU = IAOO

IAOU

Figure 4.  Different phases in lung Image Severity assessment.
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percentage of both positive and negative instances that are accurately classified. The standard statistical metrics 
are also computed:

where Fp and Fn stand for false positives and false negatives, while Tp and Tn indicates the true positives and 
true negatives of the models, respectively.

Moreover, F1Score is the harmonic mean of a model’s precision and recall values. It can be stated that way:

where YP ,YR ,YS , and YA stood for the model’s precision, recall (sensitivity), specificity, and accuracy. The 
range of YP and YR varies from 0 to 1.

The study assessed the efficacy of the severity detection methods by contrasting the MAE and MSE. A model 
assessment metric frequently used in relation to regression models is the  MAE50. Each prediction error represents 
the difference between the model’s real and anticipated values. It can be formulated as follows:

MSE is a quadratic measure because it squares error, resulting in larger weights for significant errors than MAE. 
The explanation of MSE is as follows:

where Jj and Ĵj indicate the real and anticipated values, respectively. The number of predictions is represented 
by � , which is finite.

Confidence interval is a statistical range, with a specified probability, that is likely to contain the true value 
of an unknown population parameter. It provides an estimated range of values which is likely to include the 
parameter, calculated from a given set of sample data. It can be formulated as follows:

where x̄ is the sample mean, z is the z-value from the standard normal distribution for a 95% confidence level 
(approximately 1.96), s is the sample standard deviation and n is the sample size.

Ethical approval
The research work described in this manuscript does not require ethical approval, as it does not involve human 
subjects, animals, sensitive data, or any other aspect that falls under the purview of ethical or regulatory review.

Experimental results and discussion
Extensive experiments were carried out using the CXR datasets as detailed in section “Dataset”. These experi-
ments were conducted on the Google Colaboratory platform, utilizing Python 3.7 and a single GPU cluster 
equipped with an NVIDIA K80 GPU. This GPU configuration offers 12 GB of RAM and operates at a clock speed 
of 0.82 GHz. The CXR images were divided into three separate categories for training, validation, and testing, 
with proportions of 80%, 10%, and 10%, respectively. The complete objective has been accomplished through 
distinct modules. The initial step involves creating a U-Net model to generate detailed segmentation masks for 
lung regions. U-Net architecture takes advantage of modern GPU capabilities, allowing for efficient categorization 
of CXRs. The fundamental principle behind this implementation is to strategically employ progressively smaller 
layers paired with up-sampling operators to attain higher-resolution outcomes from the input CXR. The U-Net 
model’s computational complexity arises from its encoder-decoder architecture, involving several convolutional 
layers, pooling, and up-sampling operations. Despite this, the model was optimized for efficiency, completing 
the training process in 100 epochs with a learning rate of 0.001. Various learning rates were tested, and 0.001 
offered the best balance between convergence speed and model performance. The Adam optimizer was used for 
its efficiency and ability to handle sparse gradients in noisy problems. Training for 100 epochs was sufficient, as 
indicated by the observed training and validation loss curves.

YR = Tp

Tp +Fn

YP = Tp

Tp +Fp

YS = Tn

Tn +Fp

YA = Tn +Tp

Tn +Tp +Fp +Fn

F1Score =
2× (YP ×YR )

YP +YR

YMAE = 1

�

�
∑

j=1

(

Jj − Ĵj

)

YMSE = 1

�

�
∑

j=1

(
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)2
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The effectiveness of the U-Net segmentation model is highlighted in Table 2 through various metrics. The 
model is designed to generate segmentation masks that closely resemble the actual objects present in the lung 
image. D L is particularly advantageous for datasets with imbalanced class distributions, where certain classes 
might be underrepresented. It prioritizes the training of these less common classes, ensuring that they are not 
neglected during the optimization process. The data in Table 2 demonstrates a relatively low dissimilarity (as 
indicated by D L ) between the predicted and ground truth segmentations. This suggests that the U-Net seg-
mentation model effectively classifies pixels with accuracy. The IoU score indicates that the predicted segmenta-
tion closely resembles the ground truth segmentation, signifying high precision. Furthermore, the recall ( YR ) 
metric measures the model’s ability to distinguish true positive instances (pixels belonging to the target class) 
from all other positive instances present in the ground truth. The U-Net model shows strong recall, indicating 
that it detected a substantial number of positive instances. Precision, on the other hand, measures the model’s 
capacity to accurately identify true positive cases among all instances predicted as positive. A precision value of 
0.9924 signifies outstanding model performance in predicting positive instances while minimizing false posi-
tives. These evaluation metrics thoroughly demonstrate the U-Net model’s exceptional performance in accurately 
segmenting the target class. The model achieves a high level of similarity, accuracy, and captures a significant 
portion of positive instances.

In the second module, the Conv-Caps is utilized to differentiate between three categories: normal, pneumonia, 
and COVID-19 instances, based on bounded box data. The dataset is partitioned into 70% for training, 15% for 
validation, and 15% for testing purposes. A learning rate of 0.001 is chosen after testing several values, ensuring 
stable convergence and effective training. The Conv-Caps network, despite its computational complexity due 
to the dynamic routing algorithm, showed significant improvement in classification accuracy. The model was 
trained for 85 epochs with a batch size of 10, with these values fine-tuned using a grid search to systematically 
evaluate performance across a range of values. The utilization of heatmaps provides a visual representation of 
data using distinct colors to indicate varying values or intensities.

Detection rate analysis: A significant detection rate is essential for COVID-19 screening. The proposed Conv-
Caps model demonstrated effective performance based on the provided confusion matrix in Fig. 5. The model 
achieved a high true positive rate of 86% for COVID-19 cases and 14% false negative rate. For Pneumonia, the 
model showed a true positive rate of 93% and a false negative rate of 7%. For Normal cases, the model achieved 
a true positive rate of 85% and a false positive rate of about 15%. These results highlight the model’s capability 
to significantly reduce false positives and false negatives, ensuring high precision (ranging from 93-98%) and 
reliable screening. This reduction in misclassification is crucial for alleviating the burden on healthcare systems 
by minimizing the number of healthy individuals or non-COVID-19 patients falsely diagnosed with COVID-19.

The model’s performance metrics, including precision, recall, and the F1Score , are presented in Table 3, 
alongside a comparison with other baseline classifiers. The Conv-Caps model demonstrated impressive accuracy 
across various sets: 97.48% on the training set, 94% on the validation set, and 93.98% on the testing set. In the 
COVID-19 category (column), precision (positive predictive value) stands at 93.97%, indicating the proportion 
of accurate COVID-19 predictions out of all predicted cases. Recall signifies the percentage of actual cases cor-
rectly identified by the model, with a recall of 93.99%. The F1Score , at 93.98%, demonstrates a balanced trade-off 
between precision and recall, showcasing the model’s robustness.

Table 2.  Assessment of U-Net segmentation model performance.

Performance evaluation Values

D L 0.0221

IoU 0.9790

YR 0.9903

YP 0.9924

Figure 5.  Conv-Caps confusion matrix for classifying Normal, Pneumonia or COVID-19.
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Feature space-based analysis:An analysis of the feature space learned by the Conv-Caps model is carried out 
to gain a deeper understanding of decision-making behavior. The good discrimination ability of a classifier is 
generally associated with the characteristics of the feature space. Class-distinguishable features improve learning 
and reduce the model’s variance on diverse inputs. Visualization of the feature space is performed by plotting 
the principal components of the data. Figure 6 shows the 2-D plots of principal component 1 and principal 
component 2, along with their percentage variance, for the proposed Conv-Caps models for the test set. Data 
plotting reveals that the Conv-Caps model effectively separates the classes of Normal, Pneumonia, and COVID-
19 cases. While some overlap exists between the Normal and Pneumonia cases, the majority of data points for 
each class are well-clustered, indicating distinct feature spaces for each class. This clear separation suggests that 
the Conv-Caps model has a strong capability for feature extraction and class discrimination, contributing to 
its robust classification performance. The principal component analysis (PCA) demonstrates that the feature 
space learned by the Conv-Caps model is diverse and well-structured, which enhances its ability to distinguish 
between different classes.

Confidence interval analysis: To evaluate the measurement uncertainty of our models, we calculated the 
95% confidence intervals for the key performance metrics of the proposed Conv-Caps model. This analysis 
was performed using a sample size of 491, with a standard deviation of 1.5. The 95% confidence intervals for 
the performance metrics of the Conv-Caps model are as follows: accuracy [93.848, 94.112], sensitivity [93.858, 
94.122], precision [93.838, 94.102], and F1Score [93.848, 94.112]. These intervals indicate that we can be 95% 
confident that the true values for all the performance measures lie within the specified ranges, demonstrating 
the reliability and robustness of the model’s performance.

The next module explores the severity prediction with a particular emphasis on CXR images of COVID-
19-detected patients. This endeavor seeks to utilize the potential of advanced ML techniques to identify the 
severity of the infection, offering an approach to help in well-informed medical decision-making. In the context 
of severity prediction derived from segmented masks, a crucial step involves the extraction of a bounding box. 
The CXRs consist of areas beyond the lungs, which are not relevant to the focus of our study. This could poten-
tially lead to the model learning features that are not pertinent to the study’s objectives. To overcome this, an 
algorithm based on anatomical  atlases51 is employed to automatically identify the region of interest (ROI), which 
is the lung area in this case. To achieve this, a reference set of CXRs from patients, with lung masks expertly 
delineated, is utilized as the  models52. These models are then aligned with the target CXRs being analyzed. The 
alignment process involves establishing correspondence between the features of the target CXR and the model 
CXRs using the SIFT-flow  algorithm53. This correspondence helps transform the model lung masks to closely 
match the lung structure in the target CXR, essentially creating an approximate lung model. The boundaries of 
these aligned lung models are then cropped to form a bounding box that encapsulates all the lung pixels relevant 
to the current task, ensuring a focused region of interest for analysis.

In the subsequent severity prediction, a comprehensive strategy is adopted where all six distinct parts of 
the CXR images are effectively employed. The dataset is divided into a training set comprising 80% of the data 
and a testing set containing the remaining 20% for comprehensive evaluation. This partitioning ensures both 

Table 3.  Performance comparison of the proposed model and other classifiers on the test set.

Models YA YS YP F1Score

Covid-Net 93.30 93.33 93.56 93.48

VGG-19 83.00 82.33 85.50 83.74

Resnet-50 90.60 90.66 91.20 90.94

Conv-Caps 93.98 93.99 93.97 93.98

Figure 6.  Feature visualization for the Conv-Caps on the test set.
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robust performance assessment and a balanced representation of data in training and testing. For the severity 
prediction models (ResNet50, VGG-16, DenseNet201), a fixed learning rate of 0.001 was selected based on pre-
liminary experiments that indicated stable learning. Each model was trained for 100 epochs with a batch size of 
five to manage memory constraints and provide sufficient updates per epoch. An early stopping mechanism and 
learning rate reduction upon a plateau in validation loss for five epochs were employed to prevent overfitting 
and allow finer adjustments in later training stages. While DenseNet201, being more complex due to its densely 
connected layers, provided superior performance with lower MAE and MSE values, all models demonstrated 
effective training as evidenced by the validation loss.

Performance analysis: The DenseNet201 model outperformed the other models in predicting the severity of 
lung infection across all segmented regions (A, B, C, D, E, F). The MAE values for each model are presented in 
Table 4, while Fig. 7 displays the models’ performance graphically. DenseNet201 consistently shows lower MAE 
values compared to ResNet50 and VGG-16. This indicates that DenseNet201 provides more accurate predictions, 
capturing the intricate features of the segmented lung regions more effectively. While ResNet50 demonstrated 
respectable performance, its MAE values were higher than those of DenseNet201, indicating less precise predic-
tions. VGG-16 showed the highest MAE values among the three models, suggesting it was the least accurate at 
predicting severity. DenseNet201 achieved the lowest MAE values across all regions, highlighting its superior 
ability to predict severity accurately. Table 4 presents the recorded MAE values for each segmented mask region 
(A, B, C, D, E, F) for the studied models.

The comparative evaluation of three alternative ML models across various categories is facilitated by Table 5, 
where their respective MSE values are utilized. Notably, the MSE scores associated with the DenseNet201 model 
reflect enhanced efficacy in assessing the severity of lung region detection within CXR images. In the context of 
this assessment, lower MSE scores imply a higher level of performance. Figure 8 visually presents the comparison 
of the model’s performance in severity detection for distinct lung regions.

Detailed observations: The infection levels in lung regions E and F were relatively lower, as indicated by the 
lower severity scores. This trend was consistently captured by DenseNet201, showcasing its precision. Lung 

Table 4.  Models assessment based on MAE.

Models

YMAE

A B C D E F

ResNet50 0.850 0.851 0.795 0.843 0.791 0.690

VGG-16 0.925 0.948 0.932 0.970 0.894 0.883

DenseNet 201 0.465 0.756 0.736 0.870 0.498 0.680

Figure 7.  MAE values for severity detection.

Table 5.  Analysis of the severity detection based on MSE values.

Models

YMSE

A B C D E F

ResNet50 0.9678 0.9804 0.8938 0.9164 0.8750 0.6950

VGG-16 1.0761 1.1396 1.1211 1.1391 1.0231 1.0268

DenseNet 201 0.3351 0.8612 0.7463 0.9684 0.3874 0.6442
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regions D and B exhibited more pronounced infection levels, with higher severity scores. DenseNet201 accurately 
identified these areas of severe infection, which is critical for clinical decision-making.

Practical implications: The ability of DenseNet201 to consistently provide accurate severity predictions has 
significant practical implications. Accurate severity assessment can guide clinicians in making informed deci-
sions regarding patient management, treatment planning, and resource allocation. The comprehensive analysis 
highlights DenseNet201’s superior capability in predicting the severity of COVID-19 infection from CXR images. 
By consistently achieving lower MAE and MSE values, DenseNet201 proves to be a reliable tool for severity 
assessment, which is crucial for effective patient care and management in clinical settings.

The proposed approach has some limitations. Firstly, the segmentation accuracy, while generally high, can 
still suffer from inaccuracies that adversely impact the subsequent classification and severity prediction stages. 
Any errors in lung region segmentation could lead to less reliable results. Secondly, the model’s ability to gen-
eralize to other respiratory conditions is limited. Designed specifically for COVID-19 severity detection, it may 
not perform as well for other diseases without further training and adaptation. Additionally, interpretability 
remains a significant challenge. DL models often function as “black boxes,” making it difficult to understand 
the decision-making process, which is crucial in medical applications. Finally, the approach’s computational 
demands and complexity may hinder its application in real-time or resource-constrained environments, limit-
ing its practicality for rapid diagnosis. These limitations suggest areas for future improvement to enhance the 
robustness and applicability of the proposed approach.

Conclusion and future work
The presented framework combines ML and DL techniques to successfully identify COVID-19 infections and 
categorize their severity levels based on CXR images, contributing to early detection and informed medical 
decision-making. By leveraging the Brixia score assessment, the severity categorization gains clinical significance 
and aids in patient care. The research encompasses three modules, each customized for a specific task. The U-Net 
model showcases exceptional performance in segmenting lung regions within CXR images, effectively generat-
ing precise segmentation masks. The subsequent module employs the Conv-Caps model for classification tasks, 
distinguishing between normal, pneumonia, and COVID-19 cases based on bounding box data. The Conv-Caps 
model exhibits commendable accuracy across training, validation, and testing sets, ensuring robust classifica-
tion. In the third module, meticulous segmentation and bounding box extraction are used to predict the severity 
of lung infections in COVID-19 patients. DenseNet201 emerges as a standout performer, delivering enhanced 
efficacy in detecting severity levels. This is evident through the lower MAE and MSE scores associated with the 
DenseNet201 model compared to other studied models. The graphical representation of these scores highlights 
the model’s superiority in severity detection across different lung regions. It is evident from this research that ML 
and DL technologies can significantly enhance our abilities to diagnose, classify, and predict infection severity. 
The proposed framework presents a valuable tool in combating the pandemic, aiding in efficient testing, accu-
rate diagnosis, and informed patient care. Furthermore, the comparative assessment of different models offers 
insights into their performance, guiding future advancements in the field of COVID-19 detection and severity 
assessment using radiological imaging.

Future work can be focused on optimizing the framework for real-time processing, considering factors like 
computational efficiency and minimal latency, to enable timely and accurate decision-making. Deploying the 
developed model in real-time clinical settings might be a crucial step toward its practical applicability. Fur-
thermore, expanding the dataset used for training and validation to include a more diverse range of patients, 
demographics, and disease manifestations can enhance the model’s generalization capability.

Data availability
The datasets analyzed during the current study are available  at54–57.

Figure 8.  Model’s performance evaluation in severity prediction across different lung regions.
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